
FAMOUS: Flexible Accelerator for the Attention
Mechanism of Transformer on UltraScale+ FPGAs
Ehsan Kabir∗, Md. Arafat Kabir∗, Austin R.J. Downey$, Jason D. Bakos†, David Andrews∗, Miaoqing Huang∗
∗Department of EECS, University of Arkansas, Fayetteville, Department of †CSE, $ME, University of South Carolina, USA

{ekabir, makabir, dandrews, mqhuang}@uark.edu, austindowney@sc.edu, jbakos@cse.sc.edu

Abstract—This paper proposes FAMOUS, a flexible hardware
accelerator for dense multi-head attention (MHA) computation
of Transformer neural networks (TNNs) on field-programmable
gate arrays (FPGAs). It is optimized for high utilization of
processing elements and on-chip memories to improve parallelism
and reduce latency. An efficient tiling of large matrices has
been employed to distribute memory and computing resources
across different modules on various FPGA platforms. The
design is evaluated on Xilinx Alveo U55C data center cards
containing Ultrascale+ FPGAs. Experimental results showed that
it can attain a maximum throughput, the number of parallel
attention heads, embedding dimension, and tile size of 328 (giga
operations/second (GOPS)), 8, 768 and 64 respectively on the
U55C. Furthermore, it is 3.28× and 2.6× faster than the Intel
Xeon Gold 5220R CPU and NVIDIA V100 GPU respectively. It
is also 1.3× faster than the fastest state-of-the-art FPGA-based
accelerator.

Index Terms—FPGA, Transformer, Attention, High-Level
Synthesis, Natural Language Processing, Accelerators.

I. INTRODUCTION

Transformer neural networks have demonstrated significant
advancements in natural language processing (NLP), machine
translation, computer vision [1], [2], and other domains
in recent years. They contain a remarkable feature named
multi-headed attention (MHA) mechanism which is different
from the traditional convolutional neural network (CNN),
recurrent neural network (RNN), and long short term memory
(LSTM) model. It enables a high level of computational
parallelism for both the training and inference phases making
it highly suitable for acceleration on hardware like GPUs
and FPGAs, with FPGAs being particularly advantageous
due to their high degree of parallelism, low latency, and
energy efficiency [3]. Most of the FPGA or ASIC-based
hardware accelerators for transformers [4] have specialized
sparse architecture for a specific application. Thus, they lack
the flexibility to be reconfigured for a different model during
runtime. Most works [4] used high-level synthesis (HLS)
tools, but it is challenging to write efficient HLS code that
can effectively manage certain FPGA resources like DSPs
for optimal performance [5]. Furthermore, MHA uses a large
amount of the block RAMs (BRAM) [6]. Since FPGAs usually
have limited BRAM, creating a good partitioning scheme that
works well with the architecture is necessary and can be
challenging.

To address these challenges, this paper makes the following
contributions:

• An efficient tiling of weight matrices to accommodate
large models in on-chip memory.

• A novel architecture ensuring high BRAM and DSP
utilization for efficient parallel processing of the
transformer’s attention mechanism with low latency.

• A parameterized HLS code that enables users to modify
some parameters at design time from HLS tool.

• A runtime programmable feature that enables users to
modify some parameters at runtime from software.

II. BACKGROUND

There are several building blocks in transformers of which
the multi-head attention (MHA) is described here. Fig. 1
illustrates the scaled dot product attention in each head, which
is a crucial part of the MHA layer. The output of MHA can
be represented as Equation 1 & 2. The input sequence X is
linearly mapped into Qi,Ki, Vi matrices using weights and
biases. The parameter dk = dmodel/h is the 2nd dimension
of Qi and Ki. dmodel is a hyperparameter called embedding
dimension and h is number of heads. ‘i’ is the index for
attention heads.

Attention Score

Q = X * WQ

h Heads

Concatenate

Mask

KeyQuery Value

Multihead

Attention Layer

K = X * WK V = X * WV

Input (X) Input (X) Input (X)

𝒁 = 𝑺𝒐𝒇𝒕𝒎𝒂𝒙
𝑸𝑲𝑻

𝒅𝒌
𝑽

Fig. 1: Multihead Attention Layer.

Attention(Qi,Ki, Vi) = softmax

(
Mask

(
QiK

T
i√

dk

))
Vi (1)

Qi = X ×Wq +Bq,Ki = X ×Wk +Bk, Vi = X ×Wv +Bv

(2)
III. ACCELERATOR ARCHITECTURE

The core of the accelerator shown in Fig. 2 was designed
in C language on Vitis high-level synthesis (HLS) 2022.2.1
tool. There are three main processing modules in it. They
are denoted as QKV PM , QKPM and SV PM according
to the output they produce. The number of instances for
these modules depends on the number of attention heads (h).
Each module contains an array of processing elements (PE).
A PE is comprised of a DSP48 performing multiplication
and accumulation (MAC) operations. The number of PEs
(t) depends on the unrolling factor of the inner loop and
the initiation interval of the pipelined outer loop. QKV PM

module generates the query, key, and value matrices. The

arrays used in this module are divided into subarrays using
our tiling technique to fit into the BRAMs. QKPM module
performs the matrix-matrix multiplication operations between
the Q and K matrices. As these matrices are relatively
small, they are not tiled. The output from QKPM module
is transmitted to the SV PM module after softmax operation,
where it undergoes matrix-matrix multiplication operations
with the value (V) matrix.

Fig. 2: Accelerator Architecture for Attention Mechanism

IV. TILING TECHNIQUE

Fig. 3 describes our unique tiling strategy. The weight
matrices are tiled along the second dimension (column of the
matrix) only because the first dimension (row of the matrix)
is already reduced by the number of heads. Thus, they are

𝑋00 𝑋01 𝑋02

𝑋10 𝑋11 𝑋12
 ×

𝑊00 𝑊01 𝑊02

𝑊10 𝑊11 𝑊12

𝑊20 𝑊21 𝑊22

𝑊03 𝑊04 𝑊05

𝑊13 𝑊14 𝑊15
𝑊23 𝑊24 𝑊25

Tile 1 Tile 2 Tile 6

𝑋00 𝑋01 𝑋02

𝑋10 𝑋11 𝑋12
×

Tile 1

𝑊00

 𝑊10

𝑊20

𝑋00𝑊00 + 𝑋01𝑊10 + 𝑋02𝑊20

𝑋10𝑊00 + 𝑋11𝑊10 + 𝑋12𝑊20

Tile 3 Tile 4 Tile 5

Load values of each tile into the weight BRAMLoad inputs into the

input BRAM

1st Iteration: Computation with 1st Tile

Computation Output of 1st Tile

𝑋00 𝑋01 𝑋02

𝑋10 𝑋11 𝑋12
×

Tile 2

 𝑊01

 𝑊11

 𝑊21

𝑋00𝑊01 + 𝑋01𝑊11 + 𝑋02𝑊21

𝑋10𝑊01 + 𝑋11𝑊11 + 𝑋12𝑊21

2nd Iteration: Computation with 2nd Tile

Computation Output of 2nd Tile

𝑋00 𝑋01 𝑋02

𝑋10 𝑋11 𝑋12
×

Tile n

 𝑊01

 𝑊11

 𝑊21

𝑋00𝑊0𝑛 + 𝑋01𝑊1𝑛 + 𝑋02𝑊2𝑛

𝑋10𝑊0𝑛 + 𝑋11𝑊1𝑛 + 𝑋12𝑊2𝑛

nth Iteration: Computation with nth Tile

Computation Output of nth Tile

Final Matrix = Output for 1st tile + Output for 2nd tile + …………. + Output for nth tile

Fig. 3: Tiling Technique in Multihead Attention Layer.

loaded (dmodel

TS) times. Input buffers of each attention head
are declared as a two-dimensional matrix of size (SL × TS).
Therefore, tiling is applied along the column of the matrix,
and they are also loaded (dmodel

TS) times. TS is tile size and
SL is sequence length.

V. RUNTIME PROGRAMMABLE FEATURE

The parameters such as attention heads, embedding
dimension, and sequence length were runtime programmable.
These parameters can be sent to FAMOUS from the software
using the steps shown in Fig. 4.

Pytorch Model
(.pth file)

Interpreter
(Python code)

Value of
Reconfigurable

Parameters

Software
Development Kit

(Xilinx SDK)

Send Generate Send

Instructions &
Control Signals

Software (C/C++)
Running in
Processor

AcceleratorGenerateDevelopSoftware
Development

Kit (Xilinx SDK)

Send

TNN_model.pth

sub_string = ['EncoderLayer', 'mha', 'ff', 'linear', 'linear2']

count_er = 0

start_index = 0

for i in range(len(a)):

 j = a.find(sub_string[0], start_index)

 if (j != -1):

 start_index = j+1

 count_er+=1

print ("Total Encoders are: ", count_er)

Total Encoders are: 2

Total Heads are: 2

Hidden Dimension: 2

Feedforward Dimension: 7

Fig. 4: Process for Incorporating Programmability.

VI. EVALUATION AND RESULTS

Table I illustrates the runtime programmable capability,
resource utilization, and performance of FAMOUS. Tests 1,
2, and 3 examine the effect of varying the number of heads,
tests 4 and 5 evaluate changes in embedding dimensions, and
tests 6, 7, and 8 analyze variations in sequence length, all
in relation to latency and throughput (GOPS (giga operations
per second)). On Alveo U55C, the lowest latency of 0.94 ms

and the highest GOPS of 328 were achieved for 8 parallel
heads when the tile size was 64. Table II compared FAMOUS
with some GPUs and CPUs running approximately at 1.5GHz
frequency. We achieved 3.28×, 2.6×, 1.17× speed up, and an
increase in throughput compared to Intel Xeon Gold 5220R
CPU, NVIDIA V100 GPU, and Intel E5 2698 v4 CPU
respectively because of higher parallelism. Table III compared
FAMOUS with other FPGA-based accelerators. Our latency
is lower and GOPS is higher than all other works except for
Calabash [6] because it excluded computation time for Q, K,
and V calculations.

TABLE I: Overall Results for MHA Accelerator.

Test no.
Sequence Embedding Number Tile

FPGA
Data

DSPs
BRAMs

LUTs FFs
Latency

GOPSLength Dimension of Heads Size Format 18k (ms)

#1

64 768

8

64
Alveo

8bit fixed 4157 (46%) 3148 (78%) 1284782 (98%) 661996 (25%)

0.94 328

#2 4
U55C

1.401 220

#3 2 2.281 135

#4
64

512
8 64

Alveo
8bit fixed 4157 (46%) 3148 (78%) 1284782 (98%) 661996 (25%)

0.597 184

#5 256 U55C 0.352 312

#6 128

768 8 64
Alveo

8bit fixed 4157 (46%) 3148 (78%) 1284782 (98%) 661996 (25%)

2 314

#7 32
U55C

0.534 285

#8 16 13 16

TABLE II: Comparison with Other Acceleration Platforms.

Platform
Intel E5 NVIDIA V100 Intel Xeon NVIDIA P100 FAMOUS
CPU [6] GPU [7] CPU [8] GPU [8] (Alveo U55C FPGA)

Topologies 64, 768, 12 64, 512, 4 64, 512, 8 64, 512, 4 64, 768, 8 64, 512, 8

GOP 0.308 0.11 0.11 0.11 0.308 0.11

Latency
1.1 1.5578 1.96 0.496 0.94 0.597(ms)

GOPS 280 71 56 221 328 184

TABLE III: Comparison with FPGA Accelerators.

Works
Calabash Lu et al. Ye et al. Li et al. Peng et al.

FAMOUS[6] [9] [8] [7] [4]

FPGAs
Xilinx Xilinx Alveo Xilinx Alveo Alveo
VU9P VU13P U250 VU37P U200 U55C

Method HDL HDL HDL HLS HLS HLS

DSPs 4227 129 4189 1260 623 4157

BRAMs 640 498 1781 448 – 3148

GOPS 1288 128 171 72 97 623

Latency
0.239a 0.8536b 0.642 1.5264 1.706c 0.494(ms)

a Q, K, V matrix computation time ignored.
b Time adjusted for 8 attention heads.
c Time extracted for attention mechanism from a full transformer.

VII. CONCLUSION

This research presents a flexible FPGA-based accelerator for
the multi-head attention layer of transformer neural networks,
designed using high-level synthesis. It supports runtime
programmability for various topologies without requiring
synthesis. Efficient tiling enables large models to fit on-chip
while optimizing computation. The accelerator achieves 328
GOPS throughput, outperforming some CPUs and GPUs, with
1.3× lower latency than the fastest state-of-the-art FPGA-based
solutions.

REFERENCES

[1] A. Vaswani et al., “Attention is all you need,” NeurIPS, 2017.
[2] T. Wang et al., “ViA,” IEEE TCAD, 2022.
[3] K. Guo et al., “[dl] a survey of fpga-based neural network inference

accelerators,” ACM TRETS, 2019.
[4] H. Peng et al., “Accelerating Transformer-based Deep Learning Models

on FPGAs using Column Balanced Block Pruning,” in ISQED, 2021.
[5] E. Kabir et al., “Accelerating lstm-based high-rate dynamic system

models,” in FPL, 2023.
[6] Z. Luo et al., “Calabash,” in FPL, 2023.
[7] T. Li et al., “Unified Accelerator for Attention and Convolution in

Inference Based on FPGA,” in ISCAS, 2023.
[8] W. Ye et al., “Accelerating Attention Mechanism on FPGAs based on

Efficient Reconfigurable Systolic Array,” ACM TECS, 2023.
[9] S. Lu et al., “Hardware Accelerator for Multi-Head Attention and

Position-Wise Feed-Forward in the Transformer,” in SOCC, 2020.

