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Meet Your Instructor

◼ This work was developed at the Adoptive Real-Time Systems (ARTS)-
Lab at the University of South Carolina in Collaboration with Jackson 
State University. 

◼ The ARTS-Lab is an interdisciplinarity lab focused on real-time data 
processing on embedded system. 

◼ This work is presented by Austin Downey. 
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Risk Assessment of Levee Breach

3

◼ This work is part of a larger effort to develop a data-
driven fragility framework for risk assessment of levee 
breach.

◼ This presentation will focus on preliminary results 
obtained using a hand/UAV-deployable sensor 
package for monitoring levees.

◼ This work in being done in close collaboration with 
experts in data-driven risk assessment, geo-technical, 
and hydrology.



Levee

◼ A dry levee works by absorbing and slowing 

down the water until river level drops. 

◼ Levees are made mostly of

◼ compacted dirt, 

◼ not concrete or metal, 

◼ are permeable. 

◼ Water will seep through or under a levee 

given enough time.
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Image courtesy of SAFCA 2007, NLIP Landside 

Improvements Project DEIR.



Measuring Soil Moisture

◼ Deterministic: 

◼ uses predefined function

◼ Kriging:

◼ Probabilistic

◼ Measure of confidence

◼ Provides prediction surface and the error 
surface.

◼ distances between spikes

◼ 𝑑𝑖𝑗 = |𝑥𝑖 − 𝑥𝑗|

◼ raw values of the variogram

◼

𝑡 𝑥𝑖 −𝑡 𝑥𝑗
2

2

◼ The gaussian covariance

◼ 𝐶𝑖𝑗 = 𝑏𝑒
−
𝑑𝑖𝑗
2

2𝑎2

◼ The variogram

◼ γ𝑖𝑗 = 𝑏 1 − 𝑒
−
𝑑𝑖𝑗
2

2𝑎2
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Open-Source Sensor Package
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Sensor Package Levee Test
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Spikes for Soil Moisture Test And 

Sensor Package for Levee Test

Raw material to final product

raw material 

spike

back side different layer

Sensor package 8



Sensor Package Levee Test

Levee test

9



Moisture Test Experimental Setup

◼ Sensor package for Levee test.

◼ Smart sensing nodes for soil moisture test.
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Moisture Test Experimental Setup

◼ Sensor package for Levee test.

◼ Smart sensing nodes for soil moisture test.
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Electrical Circuit Explanation

Perfboard :

• Used for prototyping

with electric circuits.

Arduino Mega :

• Used this to convert

the data to a digital

number.

White breadboard :

• Connect the micro-

SD card

DC power supply :

• Powered the spikes

at 5 V and 0.001

Amps.
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Moisture Test

Dry sand Moisture propagating through sand
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Spatial Interpolation (Kriging)

◼ Selecting kriging as the spatial interpolation method used in this work.

◼ Other spatial interpolations could have been used, including:

◼ Radial Bias Functions (RBF).

◼ Spline

◼ Trend (polynomial fitting a least-square regression fit)

◼ Inverse Distance Weighted (IDW). 
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Kriging

◼ Kriging is a spatial interpolation method with a few key types or models. 

◼ Simple kriging assumes the model : Z 𝑥 = 𝜇 + 𝜖 𝑥

◼ where Z is the kriging predicted value at 𝑥

◼ where 𝜇 is a known constant

◼ where 𝜖 is error (small scale variation) at 𝑥

◼ simple and not really used in practice

◼ Ordinary kriging assumes the model: Z x = μ + ϵ x

◼ where μ is an unknown constant

◼ assumption of a constant mean is unreasonable for this case

◼ Universal kriging assumes the model: Z x = μ x + ϵ x

◼ where μ x is a deterministic function.

◼ also called kriging with external drift or regression kriging 
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Universal Kriging

◼ Universal kriging (UK) is used in cases where the prediction mean 𝜇 𝑥 varies smoothly. 

◼ A spatially continuous process 𝑍 at a location 𝑥 represented as: 

𝑧 𝑥 = 𝜇 𝑥 + 𝜖 𝑥

◼ In matrix notation, the estimated value Ƹ𝑧 𝑥0 can be solved for as:

Ƹ𝑧 𝑥0 = 𝑞0
𝑇 ⋅ መ𝛽 + 𝜆0

𝑇 ⋅ 𝑒

where

◼ 𝑞0 is a vector of the predictors at 𝑥0.

◼
መ𝛽 is a vector that contains the estimated drift term coefficients.

◼ 𝜆0 is a vector of n kriging weights determined by the covariance function.

◼ 𝑒 is a vector that contains all the regression residuals (solved iteratively). 
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Universal Kriging

◼
መ𝛽, can be solved for by generalized least squares:

መ𝛽 = 𝑞𝑇 ⋅ 𝐶−1 ⋅ 𝑞 −1 ⋅ 𝑞𝑇 ⋅ 𝐶−1 ⋅ 𝑧

where

◼ z is the sampled observations

◼ q is the matrix of the predictors at all observed locations.

◼ C is the covariance matrix of residuals.

𝐶=

𝐶 𝑥1, 𝑥2 ⋯ 𝐶 𝑥1, 𝑥𝑛
⋮ ⋱ ⋮

𝐶 𝑥𝑛, 𝑥1 ⋯ 𝐶 𝑥𝑛, 𝑥𝑛
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Universal Kriging

◼ The power variogram model, 𝑠 ⋅ 𝑑𝛼 + 𝑛, forms the piecewise semivariance function
𝛾 𝑑 :  

𝛾 𝑑 = ቊ
0 𝑑 = 0
𝑠 ⋅ 𝑑𝛼 + 𝑛 0 ≤ 𝑑

where

◼ s is a scaling factor

◼ d is the distance between point covariance pairs 𝐶 𝑥𝑖 , 𝑥𝑗
◼ α is the exponent (between 1 and 1.99)

◼ n is the nugget term 

when 𝛾 𝑑 = 𝑛 − 𝐶 𝑥𝑖 , 𝑥𝑗 . Given:

𝐞 = 𝐳 − 𝐪 ⋅ ෡𝛃

Ƹ𝑧 𝑥0 can be iteratively solved for. 
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Universal Kriging

◼ After solving for the residuals, the predicted value can be obtained:

Ƹ𝑧 𝑥0 = 𝑞0
𝑇 ⋅ መ𝛽 + 𝜆0

𝑇 ⋅ 𝑧 − 𝑞 ⋅ መ𝛽

◼ As can the variance of the predicted value:

𝜎2 𝑥0 = 𝑛 − 𝑐0
𝑇 ⋅ 𝐶−1 ⋅ 𝑐0 + 𝑞0 − 𝑞𝑇 ⋅ 𝐶−1 ⋅ 𝑐0

𝑇 . 𝑞𝑇 ⋅ 𝐶−1 ⋅ 𝑞 −1 ⋅ 𝑞𝑜 − 𝑞𝑇 ⋅ 𝐶−1 ⋅ 𝑐𝑜

◼ A more compact way of expressing universal kriging (UK) is: 

Ƹ𝑧 𝑥0 , 𝜎2 𝑥0 = 𝑈𝐾 |𝑥0 𝐷 = 𝑥, 𝑧

19



Universal Kriging

Key attributes of universal kriging: 

◼ At each site, solves for the mean and variance.

◼ The solutions are precise (the prediction equals the training data at training locations).

◼ A variogram model is required; in this case, a power model is utilized.

◼ A drift term equation is required, and liner regional drift is employed here.
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Spatial Kriging 

▪ Spatial kriging for single timestamp.
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Data Processing

Processed data (voltage)

Processed data (coordinate)

Approaches:

▪ Temporal kriging for each spike.

▪ Spatial kriging for one timestamp.

▪ Data: Need complete mesh grid data.

Data processing :

▪ Experimental data is in bits.

▪ Time is in millisecond.

▪ Convert it into seconds.

▪ 10-Bit to voltage conversion used equation is given below.

• 𝑦 =
5𝑥

1024

22



Low Resolution Time Series Data

Original data from spikes
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Temporal Kriging
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◼ Developed an open-source sensing platform for geotechnical monitoring.

◼ Demonstrated the sensing platform in lab-scale testing.

◼ Demonstrated soil conductivity mapping using a network of sensors.

◼ Kriging model used to infer soil conductivity between sensors.  

Conclusion
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https://github.com/ARTS-Laboratory/Smart-

Penetrometers-with-Edge-Computing-and-

Intelligent-Embedded-Systems

Open-Source Hardware Designs
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