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m This work was developed at the Adoptive Real-Time Systems (ARTS)-
Lab at the University of South Carolina in Collaboration with Jackson
State University.

= The ARTS-Lab is an interdisciplinarity lab focused on real-time data
processing on embedded system.

m This work is presented by Austin Downey.




AGCE | SNOWKReE | Risk Assessment of Levee Breach

m This work is part of a larger effort to develop a data-
driven fragility framework for risk assessment of levee
breach.

m This presentation will focus on preliminary results
obtained using a hand/UAV-deployable sensor
package for monitoring levees.

= This work in being done in close collaboration with
experts in data-driven risk assessment, geo-technical,
and hydrology.
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= Adry levee works by absorbing and slowing

LEVEE INSTABILITY THROUGH-SEEPAGE
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AGCE | SNoWEReE | Measuring Soil Moisture

m Deterministic:
uses predefined function

= Kriging:
Probabilistic
Measure of confidence

Provides prediction surface and the error
surface.
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Spikes for Soil Moisture Test And
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Levee test
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= Sensor package for Levee test.

m Smart sensing nodes for soil moisture test.

DC power supply

Arduino Mega

Lab EEa N
micro SD card



AGCE | SNOWKREE | Moisture Test Experimental Setup

m Sensor package for Levee test.

m Smart sensing nodes for soil moisture test.

denloved bore hole with moisture
eployed smart line sensor
penetrometer,

ERI resistivity
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Electrical Circuit Explanation
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DC power supply :

» Powered the spikes
at 5 V and 0.001
Amps.

Perfboard :

* Used for prototyping
with electric circuits.

White breadboard :

e Connect the micro-
SD card

Arduino Mega :

* Used this to convert
the data to a digital
number.
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Dry sand Moisture propagating through sand
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AGCE | SNoWEReE | Spatial Interpolation (Kriging)

m Selecting kriging as the spatial interpolation method used in this work.

_ = = real data

100 - predicted values
@® inputdata

confidence interval

0 20 40 60 80 100

m Other spatial interpolations could have been used, including:
Radial Bias Functions (RBF).
Spline
Trend (polynomial fitting a least-square regression fit)
Inverse Distance Weighted (IDW).
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= Kriging is a spatial interpolation method with a few key types or models.

m Simple kriging assumes the model : Z(x) = u + e(x)
where Z is the kriging predicted value at x
where u is a known constant
where € is error (small scale variation) at x
simple and not really used in practice

Ordinary kriging assumes the model: Z(x) = u + €(x)
where p is an unknown constant
assumption of a constant mean is unreasonable for this case

Universal kriging assumes the model: Z(x) = pu(x) + e(x)
where p(x) is a deterministic function.
also called kriging with external drift or regression kriging
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m Universal kriging (UK) is used in cases where the prediction mean u(x) varies smoothly.

m A spatially continuous process Z at a location x represented as:

z(x) = pu(x) + e(x)

= In matrix notation, the estimated value Z(x,) can be solved for as:

2(x) = qf B+ 45 e
where
® (, is a vector of the predictors at x.
= [ is a vector that contains the estimated drift term coefficients.
m A, is a vector of n kriging weights determined by the covariance function.

m e is a vector that contains all the regression residuals (solved iteratively).
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= S, can be solved for by generalized least squares:
p=@@ -Ct -t q"-C" 2z

where
z is the sampled observations
g is the matrix of the predictors at all observed locations.
C is the covariance matrix of residuals.

Clxy,x3) - C(xq,%p)
C= : . :

C(xn:xl) C(xnlxn)
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] T?e)power variogram model, s - d* + n, forms the piecewise semivariance function
y(d):
_ o0 d=0
y(d)_{s-d“+n 0<d

where
® Sis a scaling factor

= d is the distance between point covariance pairs C(x;, x;)
m ¢ is the exponent (between 1 and 1.99)
® nis the nugget term

wheny(d) =n— C(xl-,xj). Given:

2(x,) can be iteratively solved for.
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m After solving for the residuals, the predicted value can be obtained:

2(x))=qb - B+25-(z—q - p)

m As can the variance of the predicted value:

0%(x)) =n—cj - C o+ (qo—q" - C" )" (@" - CTH )7 (qo—q" - CT - cp)

® A more compact way of expressing universal kriging (UK) is:

[2(x0), 0% (x)] = UK ((xo)ID = {(x,2)})
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_ = = real data
100 - predicted values
® input data
- 50 - confidence interval
0 -
0 20 40 60 80 100

Key attributes of universal kriging:

At each site, solves for the mean and variance.

The solutions are precise (the prediction equals the training data at training locations).

A variogram model is required; in this case, a power model is utilized.

A drift term equation is required, and liner regional drift is employed here.
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= Spatial kriging for single timestamp.

0.04

0.03

0.00
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1D Mom Xcord ycord zcord

Data processing :

. .. ) 0 1 spike_1 25 25 169
Experimental data is in bits.

= Time is in millisecond. 1 2 spke 2 83 25 169

= Convert it into seconds. 2 3 scpike 3 83 93 169

= 10-Bit to voltage conversion used equation is given below. 3 4 spike d 25 93 169

. y= X 4 5 spike 5 54 64 169
1024

Processed data (coordinate)

time(ms) spike_1(bit) spike_2{bit) spike_3{bit) spike_4(bit) spike_b(bit) time(s) spike_1(v) spike_2(v) spike_3J(v) spike_4(v) spike_5(v)

0 0 9.0 50 0.0 1.0 20 0000 0043932 0024438 0.0 0004832 0009775
1 1070 9.0 50 0.0 1.0 20 1070 0.043938  0.024433 0.0 0004338  0.009775
2 2096 4.0 50 0.0 1.0 20 2096 0039101  0.024433 0.0 0004335 0009775
3 3123 3.0 50 0.0 1.0 20 3123 0039101 0.024433 0.0 0004338  0.009775
4 4149 4.0 50 0.0 1.0 20 4149 0039101  0.024433 0.0 0004335 0009775

Processed data (voltage)
Approaches:
= Temporal kriging for each spike.
= Spatial kriging for one timestamp.

= Data: Need complete mesh grid data. s
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Original data from spikes
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AGCE | KNowienGE Temporal Kriging
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= Developed an open-source sensing platform for geotechnical monitoring.
= Demonstrated the sensing platform in lab-scale testing.
= Demonstrated soil conductivity mapping using a network of sensors.

= Kriging model used to infer soil conductivity between sensors.

Open-Source Hardware Designs

OO

https://github.com/ARTS-Laboratory/Smart-
Penetrometers-with-Edge-Computing-and-
Intelligent-Embedded-Systems
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