
Physics-Informed Machine Learning Part III: Hard-Constraint ODE
Method for Structural Dynamics

Mohsen Gol Zardian1, Austin R.J. Downey1,2, Eleonora Maria Tronci3, Conor Madden1,
Daniel Coble1,4, Sina Navidi5, and Chao Hu5

1Department of Mechanical Engineering
University of South Carolina, Columbia, SC 29208

2Department of Civil and Environmental Engineering
University of South Carolina, Columbia, SC 29208

3Department of Civil and Environmental Engineering
New York University

4Department of Mechanical Engineering & Materials Science
Duke University

5School of Mechanical, Aerospace, and Manufacturing Engineering
University of Connecticut

Abstract

Physics-informed machine learning (PIML) is a methodology that combines principles from physics with machine learning
(ML) techniques to enhance the accuracy and interpretability of predictive models. By incorporating physical laws and con-
straints into the learning process, physics-informed machine learning enables more robust predictions and reduces the need for
large amounts of training data. PIML has a wide range of applications in science and engineering, such as modeling physical
systems, solving partial differential equations, and performing inverse analysis and optimization.

In Part III of this series, the authors provide an overview of a hard-constraint, indirect-measurement PIML approach for struc-
tural dynamics. An ordinary differential equation (ODE) solver implemented within the automatic differentiation engine serves
as a differentiable layer that enforces the mass-damping-stiffness equilibrium at every inference step. A compact neural net-
work ingests a window of past acceleration samples and outputs an effective stiffness. The embedded Runge-Kutta-4 integrator
then propagates states so that the predicted acceleration satisfies the equation of motion. The technique is demonstrated on
a deliberately simple numerical example: a simulated spring, mass, and dashpot whose stiffness drifts over time along sev-
eral representative paths. A collection of runs is generated, some used for training, the rest held back for validation so that
the model must generalize to unseen stiffness trajectories. Performance is benchmarked against two reference solvers. First,
a physics-only baseline consisting of a conventional ODE integrator that assumes the stiffness is fixed and therefore cannot
reflect its time variation. Second, a data-only baseline consisting of a neural network of identical size trained to minimize
next-step acceleration error, without any governing-equation guidance. Results show that the hard-constraint PIML model
approaches the data-only network in response accuracy while offering far greater physical interpretability through its explicit
stiffness estimates. The paper reports on hyper-parameter tuning for the multi-layer perceptron so readers can readily adapt
the hard-constraint indirect-measurement PIML method to their own inverse-problem applications. Project code are artifacts
available are through thorough a public repository.

Keywords: Physics-informed, physics-based model, data driven model, machine learning, stiffness identification

1 Introduction

The rapid growth of sensing technologies and advances in machine learning (ML) have opened up new possibilities for modeling
and predicting how engineering systems behave. In structural dynamics and health monitoring, data-driven models have proven
highly successful by learning patterns directly from large datasets [1]. However, when it comes to systems such as those
encountered in structural dynamics, purely data-driven approaches face two major challenges: they often require far more data
than is practical to collect, and their predictions can sometimes violate the relevant physics [2]. These limitations have led
to the emergence of physics-informed machine learning (PIML) [3, 4], an approach that blends data-driven modeling with the
governing equations [5] of the system to deliver both accurate and physically meaningful predictions of a structures repose on
state [6].

Recent work by the authors has explored different ways to integrate physical knowledge into ML models. In Part I of this
series, they proposed how embedding domain equations can enhance robustness, improve interpretability, and boost predictive
performance in engineering applications [7]. In Part II, they demonstrated the practical application of PIML techniques to
structural dynamics, showing how physics-informed architectures can forecast system responses [8]. Their work illustrates the
advantages of integrating physical models with neural networks for the inverse challenge of system parameter estimation.

In many fields, data–driven models have achieved remarkable success by capturing patterns directly from large datasets. How-
ever, for physical systems such as structural dynamics, purely data–driven approaches face two important limitations: they
often require more data than is practical to collect, and they may generate predictions that are inconsistent with known physical
laws. This mismatch has motivated the development of physics–informed machine learning (PIML), which integrates governing
equations into ML training to achieve both accuracy and interpretability [9].

PIML has already demonstrated its value in applications ranging from fluid mechanics to materials science. In these areas,
physical constraints can be incorporated in two main ways. In soft–constraint approaches, the residual of the governing equa-
tions is added to the loss function, alongside the mismatch between real and predicted states (As discussed in Part IV of this
series [10]). By contrast, hard–constraint approaches embed the equations directly into the model architecture, ensuring that
physical laws are satisfied exactly during both training and validation [11]. While harder to design, this strategy is especially
important in domains where reliability and physical consistency are critical.

The rapid progress of differentiable solvers has made these ideas more practical. Neural ordinary differential equations (Neural
ODEs) [12] allow parameters of dynamical systems to be learned by backpropagating through numerical integrators, while
more recent methods have improved stability and efficiency. At the same time, learning frameworks such as DeepONet [13]
and Fourier Neural Operators (FNOs) [14] have emerged as powerful tools for approximating families of differential equa-
tion solutions. Together, these advances show that combining learning with physics can reduce data requirements, improve
generalization, and yield models that are more trustworthy for engineering applications.

Structural dynamics presents a particularly compelling case for PIML. Systems such as bridges, buildings, and aerospace
structures are characterized by time–varying properties, nonlinearities, and environmental influences that are difficult to capture
with purely physics–based models. At the same time, safety considerations demand models that remain interpretable and
physically consistent. Reviews in this area highlight both the potential and the challenges of PIML, noting that soft–constraint
formulations often require delicate tuning and may drift from the governing laws when extrapolating [3, 4]. Hard–constraint
approaches, by directly encoding the equations of motion, provide a more principled path that ensures predicted responses
always respect the underlying mechanics.

In this paper, we focus on the development of a hard–constraint PIML framework for structural dynamics. The method is
demonstrated on a mass, spring, and damper system with time-varying stiffness [15], chosen as a benchmark problem to illus-
trate the challenges of parameter identification under nonstationary conditions. Our framework combines a neural network that
estimates effective stiffness from short windows of measured accelerations with a physics layer that propagates states through
a numerical integrator. The training objective is defined solely by the mismatch between predicted and observed accelerations,
eliminating the need for additional residual penalties. By construction, the governing equation is satisfied at every time step,
yielding predictions that are not only accurate but also physically interpretable. We compare the proposed model against physics
baselines, demonstrating its advantages in accuracy and robustness. Finally, we discuss sensitivity to hyperparameters to evalu-
ate performance and highlight the broader implications of this approach for structural health monitoring and other engineering
applications where physical consistency is critical. Project code are artifacts are through thorough a public repository for this
paper [16].

2 Methodology

This work develops a hard-constraint physics-informed machine learning (PIML) framework to identify and predict the dynamic
response of a mass, spring, and damper system. The central idea is to combine a data-driven neural network with a physics layer
such that the governing equation of motion is strictly enforced at every time step. Unlike soft-constraint approaches, where
the residual of the governing ODE is included as a penalty term in the loss function, the present framework encodes the ODE
directly into the model architecture. As a result, the learned solution is more likely to satisfy the physical law, and training is
guided solely by data loss.

2.1 Data preparation

The dataset comprises trajectories of displacement, velocity, acceleration, stiffness, and external forcing, obtained from simu-
lated or experimental measurements. Each trajectory is stored in tabular format, where rows correspond to discrete time steps
and columns correspond to the measured physical quantities. For clarity, let time be denoted by t, displacement by x(t), velocity
by v(t), acceleration by a(t), stiffness by k(t), and external force by F(t).

To reduce redundancy while preserving the essential dynamics, all data is passed through the reprocessing pipeline detailed
in Algorithm 1 (summarized in Fig. 1) and discussed in what follows. Trajectories are downsampled by a factor s. A sliding
window of length W is then applied to extract local temporal patterns from the acceleration histories. To ensure that every
training sample encodes both short- and long-horizon information, consecutive windows are grouped into sequences of length
T . To promote generalization, the resulting sequences are randomly shuffled and divided into training and validation sets using
a prescribed split ratio ρ . Finally, data is arranged into mini-batches of size B, yielding tensors with dimensions (B,T,W),
where B is the batch size, T the number of windows per segment, and W the number of time steps within each window. This
organization facilitates efficient parallel training while maintaining sufficient temporal resolution. The overall data preparation
process used in this study is illustrated in Fig. 1, which outlines the preprocessing pipeline employed in Algorithm 1 to transform
raw sensor trajectories into mini-batches.

Algorithm 1 preprocessing pipeline from raw data to mini-batches

1: procedure BUILDBATCHES({CSVn}N
n=1, s, T,W, B, ρ)

Require: each CSVn has L rows and D columns (e.g., t,x,v,a,k,F)
Ensure: iterable of train/validation mini-batches with shape (B,T,W)

2: counts/params: N → number of trajectories; L→ rows/trajectory; D→ columns; T → segment length; W →
window length; B→ batch size

3: shape N×L×D: X ← Stack(CSV1, . . . ,CSVN)
4: downsample by factor s: X̃ ← Downsample(X ,s); L̃← ceil(L/s)
5: for n = 1 to N do
6: for t =W to L̃ do
7: window length W : a(n)t:W ← [a(n)t−W+1, . . . ,a

(n)
t]

8: end for
9: for τ = 1 to L̃−T +1 do

10: segment size T ×W : S(n)τ ← (a(n)
τ:W , . . . ,a(n)

τ+T−1:W)
11: end for
12: end for
13: total segments: Nseg← N(L̃−T +1)
14: split ratio ρ: {train}, {val}← Split({S(n)τ },ρ)
15: tensor shape (B,T,W): batches← Batch({train/val},B)
16: end procedure

start
input trajectories
{CSVn}

stack tables
X ∈ RN×L×D

downsample by s
X̃ , L̃

sliding windows
length W

group T windows
segments S(n)τ

shuffle segments

train/val split
ratio ρ

mini-batches
shape (B,T,W) end

Figure 1: Preprocessing pipeline from raw trajectories to mini-batches.

2.2 Network structure and physics layer

The proposed architecture is designed around the principle of hard-constraint PIML, where the governing physics is enforced
directly in the computational structure. As illustrated schematically in Fig. 2, the framework consists of two interconnected
components, including a data-driven neural network for parameter estimation and a physics layer that integrates the equations of
motion. These components present a hybrid system that combines the flexibility of machine learning with the rigor of classical
mechanics.

The data-driven component is a multilayer perceptron (MLP) that receives the windowed acceleration histories of length W
as input. The output of this MLP is a variable value of stiffness, k̂(t), which can change across time steps and trajectories.
This flexibility enables the model to capture both constant and nonstationary stiffness patterns that may arise from material
variability, nonlinearities, or environmental influences.

Figure 2: High-level architecture of the proposed hard-constraint PIML framework. Unlike soft-constraint layouts [9], the
governing ODE is directly embedded in the physics layer.

The estimated stiffnesses are then passed to the physics layer, which incorporates the mass, spring, and damper of the motion
equation :

mẍ+ cẋ+ ktruex = F(t) (1)

Here, m and c are fixed system parameters, while k̂(t) is provided by the neural network. Given initial conditions and the external
force history, the physics layer propagates the system state vector (x,v) forward in time. Numerical integration schemes, such
as the fourth-order Runge–Kutta method, are employed to approximate the continuous dynamics with high accuracy. From the
updated states, the predicted acceleration â(t) is obtained at each time step.

By embedding the ODE solver into the model, the framework ensures that predictions remain consistent with the governing
law of motion. Unlike soft-constraint approaches, there is no need to include the residual of the ODE in the loss function,
because the residual is automatically satisfied by construction. This design eliminates the need to balance competing loss terms
and avoids issues of weighting between data and physics. As a result, the network focuses on learning to map from observed
histories to stiffness estimates, while the physics layer guarantees that state updates respect fundamental dynamics. The overall
structure achieves a strict hard-constraint formulation that combines physical validity and data-driven adaptability.

To further clarify the inference workflow, Fig. 3 presents the sequential interaction between the neural network and the embed-
ded ODE solver. At each time step ti, the ML model produces a stiffness estimate k̂i, which is then passed to the ODE solver
(here chosen as RK4) together with the external forcing input and the previous system state. The solver propagates displace-
ment and velocity states to the next time step, from which the predicted acceleration is reconstructed. This recursive process
enforces the governing dynamics at every step while allowing the network to compute the stiffness evolution from observed
acceleration windows.

Figure 3: Detailed workflow of the hard-constraint inference method. The ODE solver is embedded within the automatic
differentiation engine, and the ML model generates time-varying stiffness estimates k̂(t) at each step.

2.3 Training procedure

The training strategy follows the hard-constraint principle by optimizing only for consistency between predicted and measured
accelerations. The training pipeline is summarized in Algorithm 2. At each epoch, the training set is divided into mini-batches,
and for each batch the MLP produces variable stiffness k̂(t). These estimates are passed to the physics layer, which integrates
the mass, spring, and damper in the equation of motion to propagate displacement and velocity states and compute predicted
accelerations â(t). The model output is then compared directly with measured accelerations a(t) to compute the loss.

The loss function is defined exclusively as the mean squared error (MSE):

L =
1
N

N

∑
i=1

(
ẍ(t)i− ˆ̈x(t)i

)2
, (2)

where N is the number of predicted time steps within a batch. This simple formulation reflects the hard-constraint design, since
the governing ODE is embedded in the physics layer, the residual is inherently satisfied and does not need to be included in
the loss function. The training objective, therefore, focuses entirely on reducing the difference between observed and predicted
accelerations.

Algorithm 2 Physics-informed training with time-distributed MLP

1: procedure TRAINPINN(B, E, η ; gθ , Pφ , m, c)
Require: batches B of shape (B,T,W); forces {Ft}; measured accelerations {at}
Ensure: trained parameters θ

2: model: gθ : RW→R predicts k̂t ; Pφ is a mass–spring–damper step (fixed m,c, e.g., RK4)
3: number of batches: M→ |B|
4: for e = 1 to E do
5: for j = 1 to M do
6: select batch: B→B[j]
7: segment index (parallelizable):
8: for i = 1 to B do
9: for t = 1 to T do

10: stiffness per time step: k̂(i)t ← gθ (a
(i)
t:W)

11: end for
12: initial state: s(i)0 ← (x(i)0 , v(i)0)
13: for t = 1 to T do
14: forward physics step: s(i)t ←Pφ (s

(i)
t−1, k̂

(i)
t ,F(i)

t)

15: predicted acceleration: â(i)t ← Accel(s(i)t)
16: end for
17: segment loss (MSE): L(i)

seg←
1
T

∑
T
t=1(â

(i)
t −a(i)t)2

18: end for
19: batch loss: Lbatch←

1
B

∑
B
i=1 L(i)

seg

20: Adam update: θ ← Adam(θ ,∇θ Lbatch,η)
21: end for
22: end for
23: return θ

24: end procedure

Model parameters are updated using the Adam optimizer, which provides adaptive learning rates and robust convergence for
nonlinear problems. In practice, training stability is further enhanced by techniques such as early stopping and learning rate
scheduling. We applied an early stopping criterion during network training to avoid unnecessary computation once the model
had converged. The validation loss was monitored at each epoch, and the training process was terminated when no improvement
was detected beyond a specified patience threshold. Learning rate scheduling, such as reducing the rate when validation loss
plateaus, so the optimizer explores the parameter space efficiently for converging to a stable solution.

The batch-wise structure of the algorithm ensures efficient use of computational resources and supports parallelization across
samples. Each batch loss is computed as the average of segment losses, which allows the model to learn stiffness patterns
consistently across multiple sequences. By iterating over all batches and epochs, the model gradually refines its parameters
until the predicted accelerations closely align with experimental observations. This design guarantees a balance between data-
driven adaptation and strict adherence to the underlying physics.

3 Case Study

To evaluate the proposed hard-constraint PIML framework, we apply it to a classical single-degree-of-freedom (SDOF) spring,
mass and damper oscillator subjected to an external force F(t). This canonical model is representative of a wide range of
structural dynamics problems in mechanical and civil engineering [15]. The system dynamics are governed by the equation
of motion already introduced in Eq. (1), where the objective is to recover the time-varying stiffness parameter k(t) indirectly
from measured acceleration responses. The reference physics-based model was implemented in MATLAB Simulink/Simscape
and is available in the public repository for this work [16]. The main physical parameters used in the simulation, including the
mass, damping coefficient, stiffness range, and excitation characteristics, are summarized in Table 1.

Table 1: System parameters used in the SDOF spring–mass–damper simulation.
Parameter Symbol Value
Mass m 3.8 kg
Stiffness (maximum) kmax 1500 N/m
Stiffness (minimum) kmin 500 N/m
Damping coefficient c 0.48 N/(m · s)
External force amplitude F0 1 kN
Excitation frequency f 100 Hz

Figure 4 illustrates the two configurations considered in this study. In Fig. 4(a), the assumed oscillator for the system (i.e.
the one used in the ODE in Figure 2) is modeled with a conventional linear mass, spring, and damper arrangement in which
stiffness k(t) is permitted to vary with time, thereby simulating gradual stiffness degradation or environmental variability.
Fig. 4(b) shows the system that is used to develop the dataset; an additional nonlinear restoring force f is introduced in parallel
with the damper, enabling the system to capture the more complex friction behavior.

Figure 4: Schematic of the case study system: (a) classical spring–mass–damper with time-varying stiffness k(t) used as the
assumed model for the system; (b) extended configuration with an additional nonlinear restoring force f used for developing

the training dataset.

The input data for training are obtained by simulating multiple realizations of the system response under various forcing
conditions and time-varying stiffness. Displacement, velocity, acceleration, and external force trajectories are collected at
discrete time steps and organized following the preprocessing pipeline described in Algorithm 1. These trajectories form the
training and validation datasets used to drive the learning process outlined in Algorithm 2. By embedding the physics directly
through Eq. (1), the framework ensures that all predicted accelerations remain consistent with the governing dynamics, while
the neural network focuses exclusively on estimating the hidden stiffness evolution.

Model performance is assessed by comparing predicted and measured accelerations through the mean squared error (MSE)
of the data. Additionally, the reconstructed stiffness trajectories k̂(t) are benchmarked against ground truth values to evaluate
how well the model captures the underlying parameter. The results presented in the following section demonstrate that the
framework not only reproduces accurate dynamic responses but also yields interpretable stiffness estimates.

3.1 Simulated Stiffness Trajectories

Figure 5 presents the simulated stiffness evolutions used for training and validation across the 100 trajectories. As shown,
stiffness values decrease nonlinearly. This diversity ensures that the training set captures a wide distribution of possible system
behaviors. As highlighted in earlier sections, these stiffness histories are not directly available to the neural network during
training but are used to benchmark the predictions.

Figure 5: True stiffness profiles k(t) across 100 simulated trajectories of 120 s each. The variability in decay paths provide a
diverse training and testing environment.

3.2 Simulated Dynamic Response

Figure 6 shows how the response passes through resonance as stiffness decreases over time: the decay in stiffness (k) lowers
the natural frequency (ωn), bringing it into alignment with the frequency of the forcing function (F), producing the visible
amplitude build-up near mid-simulation. As k continues to drop, ωn moves past the forcing band and the oscillation amplitude
subsides, consistent with the expected resonance-crossing behavior.

Figure 6: Measured acceleration response for one test trajectory, showing how the system moves through resonance during a
reduction in stiffness.

3.3 Inverse Stiffness Identification

Figure 7 compares three stiffness trajectories for a representative test case, the solely data-driven neural network, the physics-
informed machine learning (PIML) that includes stiffness indirectly by minimizing the acceleration residual of the governing
dynamics, and the physics-based ground truth. Both learning approaches reproduce the global trend of stiffness degradation and
closely track the reference over the entire time span. The solely data-driven model yields a smooth estimate that aligns well with
the ground truth, demonstrating strong interpolation capability within the training distribution. The physics-informed model,
which embeds the spring, mass, and damper equations in the learning loop, sometimes exhibits fluctuations in the estimated
stiffness. These arise from sensitivity to transient dynamics and reflect the model’s insistence on satisfying the equations of
motion at each step rather than fitting a smooth regression.

The close agreement between the PIML learned stiffness and the physics-based ground truth shown in Figure 7 suggests that
the measured responses are well captured by the framework. While incorporating physics helps guide the solution space toward
behavior consistent with the assumed dynamics, it does not guarantee correctness. The approach holds promise for extending
inference beyond the systems and conditions represented in the training data, including under noise, parameter drift, or unseen
loading. However, its success remains dependent on model adequacy, identifiability, and optimization stability.

Figure 7: Comparison of stiffness estimates for the considered test case.

4 Parameter Study

This section investigates the effect of hyperparameters over two different activation functions to predict the accuracy of the
proposed PIML framework. Here, sigmoid and tanh are utilized as two widely used activation functions in the artificial neural
network diagrammed in Figure 2. Table 2 reports the RMSE values for different network configurations where depths (number
of hidden layers) and widths (neurons per layer) are the main tuning hyperparameters in evaluating the network performance.

For sigmoid, the linear-scale plot (Fig. 8a) highlights the steep error reduction when moving from shallow to deeper networks,
while the logarithmic scale (Fig. 8b) makes it easier to distinguish fine differences within the low-error region. For tanh, the
linear-scale surface (Fig. 8c) shows overall lower errors compared to sigmoid in shallow configurations, while the logarithmic
view (Fig. 8d) emphasizes the robustness of deeper and wider models, where multiple settings converge to similar small RMSE
values. By considering the values in Table 2, these plots demonstrate that while tanh offers advantages for shallow networks,
both activation functions reach a stable low-error region in deeper and wider architectures.

In general, Figure 8 shows that depth beyond two layers yielded diminishing returns in our hyper-parameter search. Across
both activations, error drops sharply when moving from one to two hidden layers, then flattens into a broad low-RMSE basin
for 2–4 layers. For shallow networks, tanh achieves consistently lower errors than sigmoid. Increasing width (nodes per layer)
helps, but with gentler, nearly monotonic improvements; most of the gain arrives by 50 nodes. The logarithmic views highlight
a shallow gains along 2–4 layers and 50–100 nodes. The best accuracy is obtained with four layers and 100 neurons, though
several nearby configurations perform nearly as well at lower computational cost.

Figure 8: RMSE surface as a function of hidden layers and neurons per layer for two activation functions. (a) Sigmoid with
linear scale, highlighting the sharp error reduction. (b) Sigmoid with logarithmic scale, making small variations more visible.
(c) Tanh with linear scale, showing generally lower RMSE than sigmoid in shallow networks. (d) Tanh with logarithmic scale,

revealing stable low-error regions across deeper and wider architectures.

Table 2: RMSE for sigmoid vs. tanh activation function across different network configuration

Number of hidden layers

Neurons per layer Sigmoid activation Tanh activation

1 2 3 4 1 2 3 4

10 6.20 1.20 2.00 0.90 3.36 0.68 0.37 0.35
25 3.60 0.18 0.30 0.19 2.42 0.14 0.09 0.08
50 1.42 0.13 0.09 0.05 1.83 0.06 0.05 0.04
75 1.23 0.07 0.05 0.04 1.56 0.08 0.04 0.05
100 1.07 0.06 0.04 0.04 1.40 0.05 0.05 0.04

5 Conclusion

This paper presented a hard constraint physics-informed machine learning (PIML) framework for structural dynamics and
demonstrated its effectiveness on a spring, mass, and damper system with time-varying stiffness. By embedding the govern-
ing equation of motion directly into the learning process, the proposed approach biases the solution space toward physically
consistent behavior while retaining the flexibility and adaptability of data-driven models.The framework successfully recovers
hidden stiffness trajectories that closely match the reference dynamics.

Overall, the hard-constraint PIML framework successfully recovered time-varying stiffness and reproduced key response fea-
tures on the studied spring–mass–damper system. A simple hyperparameter sweep showed that modest depth (2–4 layers) with
moderate width is sufficient to drive test error to roughly RMSE≈ 0.04, indicating practical accuracy without excessive model
complexity.

There is a trade-off between the PIML model and a solely data-driven model. While a neural network trained solely on data
can mimic stiffness trajectories with high accuracy, it lacks a true understanding of the underlying physics and may fail when
exposed to conditions beyond its training distribution. In contrast, the PIML approach, though sometimes yielding responses
that deviate from the reference trajectory, actively enforces the governing ODE constraints and therefore reflects a physically
guided attempt to capture the system behavior. This enables PIML to generalize more reliably to unseen scenarios, operate
effectively with less data, and produce predictions that are physically interpretable.

For the hard-constraint PIML considered here, there is clear promise for inverse problems: coupling measurements with the
governing equation of motion to regularize otherwise ill-posed parameter estimates (e.g., time-varying stiffness). While promis-
ing, the main challenge observed in this study is the appearance of ripple artifacts in the inferred stiffness, arising from unsteady
solutions when the equation of motion is enforced at every step within the learning loop.

6 ACKNOWLEDGEMENTS
This material is based upon work supported by the National Science Foundation grant numbers CCF - 1956071, CCF-2234921,
and CPS - 2237696. Additional support from the Air Force Office of Scientific Research (AFOSR) through award no. FA9550-
21-1-0083. Any opinions, findings conclusions, or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science Foundation or the United States Air Force,

7 References

[1] Fuh-Gwo Yuan, Sakib Ashraf Zargar, Qiuyi Chen, and Shaohan Wang. “Machine learning for structural health monitoring:
challenges and opportunities”. In Daniele Zonta, Hoon Sohn, and Haiying Huang, editors, Sensors and Smart Structures
Technologies for Civil, Mechanical, and Aerospace Systems 2020. SPIE, April 2020.

[2] Elizabeth J. Cross, S. J. Gibson, M. R. Jones, D. J. Pitchforth, S. Zhang, and T. J. Rogers. Physics-Informed Machine
Learning for Structural Health Monitoring, pages 347–367. Springer International Publishing, October 2021.

[3] Marcus Haywood-Alexander, Wei Liu, Kiran Bacsa, Zhilu Lai, and Eleni Chatzi. “Discussing the spectrum of physics-
enhanced machine learning: a survey on structural mechanics applications”. Data-Centric Engineering, 5, 2024.

[4] X. Liang, Y. Zhang, and J. Chen. “Physics-informed machine learning for structural dynamics: A review and outlook”.
Mechanical Systems and Signal Processing, 215:111246, 2024.

[5] Daniel Coble, Liang Cao, Austin R.J. Downey, and James M. Ricles. “Physics-informed machine learning for dry friction
and backlash modeling in structural control systems”. Mechanical Systems and Signal Processing, 218:111522, September
2024.

[6] Ying Zhou, Shiqiao Meng, Yujie Lou, and Qingzhao Kong. “Physics-informed deep learning-based real-time structural
response prediction method”. Engineering, October 2023.

[7] Eleonora Maria Tronci, Austin R. J. Downey, Azin Mehrjoo, Puja Chowdhury, and Daniel Coble. Physics-Informed
Machine Learning Part I: Different Strategies to Incorporate Physics into Engineering Problems, pages 1–6. River
Publishers, August 2025.

[8] Austin R. J. Downey, Eleonora Maria Tronci, Puja Chowdhury, and Daniel Coble. Physics-Informed Machine Learning
Part II: Applications in Structural Response Forecasting, pages 63–66. River Publishers, August 2025.

[9] M. Raissi, P. Perdikaris, and G.E. Karniadakis. “Physics-informed neural networks: A deep learning framework for solv-
ing forward and inverse problems involving nonlinear partial differential equations”. Journal of Computational Physics,
378:686–707, 2019.

[10] Eleonora Maria Tronci, Austin Downey, Conor Madden, Mohsen Gol Zardian, and Daniel Coble. Physics-Informed
Machine Learning Part IV: Weight Tuned Soft Constraint Method for Structural Dynamics. August 2026.

[11] Z. Lai, L. Lu, M. Dao, and G.E. Karniadakis. “Hard enforcement of interface and boundary conditions in physics-informed
neural networks”. Computer Methods in Applied Mechanics and Engineering, 404:115783, 2023.

[12] R.T.Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. “Neural ordinary differential equations”. In Advances in
Neural Information Processing Systems, pages 6571–6583, 2018.

[13] L. Lu, P. Jin, G. Pang, Z. Zhang, and G.E. Karniadakis. “Deeponet: Learning nonlinear operators for identifying differ-
ential equations based on the universal approximation theorem of operators”. arXiv preprint arXiv:1910.03193, 2019.

[14] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar. “Fourier neural operator
for parametric partial differential equations”. arXiv preprint arXiv:2010.08895, 2020.

[15] Austin Downey and Laura Micheli. “Vibration mechanics: A practical introduction for mechanical, civil, and aerospace
engineers”. 2024.

[16] ARTS-Lab. “Paper-2026-PIML-part-III-hard-constraint-ODE-method-for-structural-dynamics”. GitHub, 2026.
https://github.com/ARTS-Laboratory/Paper-2026-PIML-Part-III-Hard-Constraint-ODE-Method-for-Structural-
Dynamics.

	Introduction
	Methodology
	Data preparation
	Network structure and physics layer
	Training procedure

	Case Study
	Simulated Stiffness Trajectories
	Simulated Dynamic Response
	Inverse Stiffness Identification

	Parameter Study
	Conclusion
	ACKNOWLEDGEMENTS
	References

