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ABSTRACT

For rapid civil infrastructure assessment following natural and man-made emergencies, the utilization of mini-
mally invasive and cost-effective drone deployable sensor packages has the potential to become a valuable tool.
Although compact sensors with wireless data transfer capabilities have proven effective in monitoring the struc-
tural dynamics of infrastructure, these systems require data processing to occur externally, frequently off-site.
These extra steps impede the high-speed assessment of a structure’s state. Difficulties can arise when the
transmission is unfeasible due to degraded communication links during natural or man-made emergencies. Ad-
ditionally, off-site data processing can add unneeded interruptions to actions that can be taken by emergency
personnel after infrastructure damage. To enhance the effectiveness of sensor packages in expediting infrastruc-
ture assessment, incorporating real-time data analysis through embedded edge computing techniques emerges as
a promising solution. The objective of this work is to demonstrate on-device data processing for frequency-based
structural health monitoring techniques using drone-deployable sensors. This approach advances the effective-
ness of drone-deployable sensors in rapid infrastructure assessment by mitigating their susceptibility to errors
or delays in data communications. The proposed approach computes the frequency components of vibration
measurements taken from a structure of interest, for example, the monitoring of a bridge immediately following
a damaging event such as a flood. This work presents contributions in terms of outlining a methodology that em-
phasizes the hardware-based implementation of edge computing algorithms and examines the required on-device
performance and resource utilization for structural health monitoring at the edge. The execution time for the
sensor’s edge computing functions was profiled, resulting in an additional 9.77 seconds per test, an advancement
over traditional transmit and analyze methods.
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1. INTRODUCTION

The assessment of the structural health of civil infrastructure in the aftermath of natural disasters and man-made
emergencies is a critical area for advancement.1 Extreme weather conditions and environmental factors often
render structures inaccessible or dangerous to inspect and maintain, posing significant risks to human operators.
Moreover, accessibility issues can arise under normal circumstances, compounded further by the aftermath of
emergencies. Traditionally, structural health monitoring (SHM) has predominantly been performed by on-site
work crews, necessitating substantial investments in both time and equipment for a thorough examination of
each structure. These conventional approaches typically involve the collection of data, which is then processed
off-site, which inherently delays the availability of crucial real-time insights into a structure’s dynamic behavior.
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The introduction of rapid, minimally invasive, nondestructive testing technologies presents a promising solu-
tion for overcoming these limitations. A future aspect of this methodology is the utilization of on-the-edge data
processing, which significantly reduces the timeline for obtaining actionable insights into the structural health of
infrastructure. The current landscape of drone technology within SHM primarily focuses on leveraging drones
equipped with integrated sensors for tasks such as digital image correlation, crack detection, and thermal imag-
ing.2 These applications, while valuable, do not fully utilize the potential of drones in SHM. By using drones for
deploying vibration sensors that can perform on-device data processing, there exists an opportunity to deepen
our understanding of structural dynamics under challenging conditions.3,4

Current approaches in SHM have seen significant advancements through the integration of UAVs, edge
computation, and SHM measurement techniques.5 UAV-based remote sensing has emerged as a vital approach
for bridge condition assessment, offering an efficient, cost-effective, and accessible means to inspect and monitor
the structural health of bridges and other infrastructures.6 The use of UAVs allows for rapid data collection
even from areas deemed difficult to access, reducing the need for physical scaffolding and enhancing safety during
inspections.

With various approaches to structural health monitoring and numerous technologies currently in use, such as
optical and thermal imaging, acoustic emissions, and vibrations, the work by Hassani et al.7 sets a framework for
SHM sensor evaluation. From monitoring various types of civil structures to damage prognosis algorithms, the
authors offer a methodology for evaluating cases to assist in the selection of the most suitable sensing technology
for a given application. The authors also present a detailed review method for evaluating state-of-the-art sensors
and damage detection and prognostics algorithms. Furthermore, Hassani et al.8 also define optimal sensor
placement (OSP) as the placement of sensors that results in the least amount of monitoring cost while meeting
predefined performance requirements. This emphasizes the role of aerially deployable wireless sensing systems
due to their high mobility while still being a cost-effective solution with similar performance to their wired
counterparts.

Edge computation is being increasingly integrated into SHM systems to address the delays in data processing
from on-site crews. The use of edge computational devices enables real-time data analysis and decision-making
directly at the data acquisition site. This approach reduces the need to travel off-site for real insights into a
structure as well as decreasing the need to transmit large amounts of raw data to a centralized server. Despite its
potential, the implementation of edge computing in SHM comes with challenges, including the development of
robust algorithms capable of operating under the conditions of constrained computational resources available.9

Vibration-based SHM techniques, utilizing MEMS accelerometers, have become a standard for detecting
anomalies and assessing the structural integrity of buildings, bridges, and other critical infrastructure. These
techniques rely on analyzing the vibrational characteristics of structures to identify potential damage or changes
in structural behavior over time. Advances in MEMS technology have improved the sensitivity and reliability of
these sensors, making them more useful for SHM applications.10

This work presents a methodology for integrating edge computation directly onto drone-deployable sensor
packages designed for the vibration monitoring of civil structure.11 In this preliminary work, the algorithms
specifically designed to detect and track changes in the first mode of a vibrating structure are deployed to
an edge computing device.12 By facilitating real-time analysis of vibration data directly on the device, the
approach minimizes the delay or potential for lost data caused by data transmission. These advancements can
improve emergency personnel’s response to infrastructure damage. Drones can be leveraged to access hazardous
or hard-to-reach areas. The proposed sensor package, designed to autonomously monitor a structure’s first
natural frequency, can function independently and alert first responders or technicians to any alterations in the
structure’s vibrational properties.

The contributions of this work are twofold. First, a previously proposed algorithm12 for frequency-based
damage detection is expanded to include an automated methodology to find the frequency associated with the
first mode of the structure. Second, the appropriateness of the edge computing algorithm is demonstrated by
deploying the algorithm to the same ARM Cortex-M7 microcontroller that is used on the open-source drone-
deployable sensing node designed for SHM. The sensor design and code are available on GitHub.13
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Figure 1. Labeled components for a typical drone sensor package deployment.

2. METHODOLOGY

This section describes the methodology employed to examine and validate the effectiveness of the sensor package
for edge computational SHM. The methodology is divided into three subsections, each detailing a component of
the study: the hardware specifics of the sensor package, the algorithm installed on the sensor package, and an
experimental validation.

2.1 Sensor Package Hardware

The sensor package discussed in this paper is designed for the vibration monitoring of civil structures. For
example, Satme et al. reported on a case study that used the sensor packages to perform experimental modal
analysis on a pedestrian bridge in use.11 For rapid assessment, the sensor packages can be deployed by hand
or by leveraging UAVs.3 Figure 1 illustrates a standard setup for deploying the sensor using a drone, while
Figure 2 details the step-by-step process of UAV deployment. These sensor packages are considered “smart” in
that they can be enhanced with onboard signal conditioning. Satme et al. developed a long short-term memory
(LSTM) error-compensating network for the sensor package that demonstrated a 9.3% increase in signal-to-noise
ratio (SNRdB) of the collected signals, with the most improvement found at lower frequencies.14 Hardware and
software designs for the sensor packages13 and deployment systems15 are open-sourced and freely available.

Figure 2. Deployment steps for the drone-deployable sensor package showing a) delivery, b) deployment, and c) departure.
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The sensor package is shown in Figure 3 and is designed as an embedded system-based device for long-term
data logging of structural vibrations. The core of this device is an ARM-Cortex-M7 processor housed in a Teensy
4.0 microcontroller. The sensor package receives power from a 1500 mAh 2-cell lithium polymer battery, with a
power conditioning and regulating system, ensuring stable power distribution to the various systems on board.

The functionality of the sensor package is provided by a Murata SCA 3300-d01 MEMS accelerometer, which
communicates via the Serial Peripheral Interface (SPI) protocol. For deployments with minimal intrusion, the
sensor package incorporates an EPM V3R5C NicaDrone electropermanent magnet. This magnetic setup requires
a 5W pulse to change states, which is typically done twice during deployment for low power consumption. IO
commands and data transmission are handled by a Nordic Semiconductors NRF24L01+ module, which operates
at 2.4 GHz using the ShockBurst protocol. This network enables multi-link communication with several sensor
nodes in addition to wireless sensor activation. A real-time clock and a nonvolatile memory module are also
incorporated to extend the device memory to conduct computation in addition to ensuring accurate data logging.
The package is protected by a 3D-printed PLA frame and a PVC shell to shield against any environmental
conditions during field use. The sensor package is designed with a suitable size and weight for UAV deployment.

Figure 3. The hardware of the sensor package with key components annotated.

2.2 Sensing Algorithm

The methodology implemented on the sensor package includes an application of edge computing for SHM to
leverage real-time data acquisition and processing directly on the device. A flow chart containing the basic run
sequence of the methodology is shown in Figure 4. The methodology starts by initializing the libraries for the
components of the sensor package as well as setting up variables and functions for later use. Then, data is
collected from the z-axis of the accelerometer with recorded timestamps. Once a full vibration test is completed,
the collected data and timestamps are then saved to an SD card in a CSV file format.

After data collection, the file containing the accelerometer data is read and each value is used to perform a
Fast Fourier Transform (FFT) analysis. The FFT run on the sensor package is a variant of the Cooley-Tukey
FFT algorithm.16 This algorithm is meant to recursively break down a Discrete Fourier Transform (DFT) with
a size that is a power of 2. The dataset is split into two sequences of even-indexed and odd-indexed points.
The algorithm then computes the DFTs of these two sequences and combines them back into one sequence to
produce the DFT of the original dataset.
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The full FFT data is written to a new file on the SD card to provide a record of the frequency magnitudes. A
peak detection algorithm is run to identify peak frequencies and their magnitudes, which are saved onto another
file on the SD card.

Figure 4. Flowchart indicating the sequence of operations deployed on the sensor package for the automated frequency-
tracking algorithm.

2.3 Experimental Validation

To evaluate the sensor package’s performance and the effectiveness of its algorithm, an experimental setup was
devised involving a square stock beam positioned with a pinned support and a roller support. The experiment,
shown in Figure 5, aimed to evaluate the sensor’s precision in capturing data under diverse structural scenarios.

Figure 5. Experimental setup of a beam with pinned and roller boundary conditions on each end with key components
annotated.

Positioned at the midpoint of the beam, the sensor package underwent three tests, each performed to emulate a
different structural condition. Following the initial placement, the left roller support was sequentially repositioned
closer to the beam’s center for subsequent tests. A visualization of the repositioning can be seen in Figure 6.
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Figure 6. Pined-roller beam test setup showing the shifted roller boundary condition to simulate an altered structural
state.

To induce vibrations, a modal impact tool was used, generating an impulse response within the beam, shown
in Figure 7. The observed impulse response enabled the evaluation of the sensor package’s vibration-sensing
ability, FFT analysis, and the rapid identification of the beam’s first flexural mode through a frequency domain
peak detection algorithm.

Figure 7. Impulse response of three cases of boundary conditions of a beam with roller supports.

3. RESULTS

This section presents the findings from the analysis of the sensor package’s performance, focusing on its algorithm
and hardware operation. The sensor’s capability to process temporal vibration data and identify the first linear
modal frequency of structures is examined. Additionally, an investigation into the hardware’s computational
resource utilization is also reported.

3.1 Algorithm Performance

The sensor demonstrated efficiency in processing vibration data from the beam, accurately identifying the sys-
tem’s first flexural modal frequencies. The frequencies identified for the first modes in each successive test were
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45.1, 51.0, and 56.0, respectively. These variations in modal frequencies can be directly attributed to the adjust-
ments in the beam’s structural configuration for each experiment, evidencing the sensor’s sensitivity to changes
in structural conditions. To validate the sensor’s onboard algorithm’s accuracy, its FFT output was compared
to an off-edge FFT calculated using the Numpy Library in Python17 in Figure 8. The root mean square error
values quantifying the comparison between the onboard and off-edge FFT computations were 0.0032, 0.0028, and
0.0031 in units of the normalized gain for tests 1, 2, and 3 respectively. This indicates a high degree of accuracy
across all tests. Note that results here are normalized for the magnitude to account for variations resulting from
differences in the Cooley-Tukey FFT algorithms as implemented in the two software packages.

Figure 8. FFT comparison showing the offsite FFT alongside the onboard sensor FFT.

A frequency response function (FRF) analysis was conducted to quantitatively measure the similarity between
the onboard FFT and the external FFT computation as shown in Figure 9. Ideally, a flat FRF, hovering around
1 indicates a perfect correlation between the onsite sensor FFT and the offsite analysis. This would suggest
that the sensor’s algorithm can match the accuracy of external processing. Although there is a slight deviation
between the two FFT analyses, the greatest discrepancy near the modes was approximately 9.4%, seen in test 1
at 46 Hz. This deviation is in an acceptable range, as the magnitude was still enough to recognize what frequency
the first mode was located at. The comparison showed a remarkable alignment between the two sets of Fourier
transforms.

Figure 9. FRF comparison showing the difference between the offsite and onboard FFTs.
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3.2 Hardware Performance

The Teensy 4.0 Development Board is an ARM Cortex-M7 microcontroller with a 600MHz primary oscillator.
The microcontroller is well suited for on-the-edge computing, featuring 2MB of OCM flash, 1MB of RAM, and
8MB of QSPI flash memory. Its modest demand for operational power at 100mA makes it an ideal platform for
sensor packages designed for long-term, continuous SHM.

The overall performance of the hardware driving the Fourier analysis and peak-finding algorithms is examined
through GNU gprof,18 an open-source profiling software from the GNU’s Not Unix software collection. The
algorithm itself was written using the Arduino toolchain sourced from the Arduino.h header, allowing access to
quality-of-life features such as SD card and Serial communication support. This particular workflow is ideal for
ensuring a stable algorithmic implementation capable of running continuously without the need for recalibration
or similar intervention. Time efficiency is examined by probing profile data correlating to time, cumulative time,
and percent of total time.

Table 1. Timing profile describing execution time of processes in the sensor package’s algorithm.

process time (s) cumulative time (s)
percent of total

time (%)
data collection 10.24 10.24 51.07
read sensor 4.43 14.67 22.07
SD card read 0.05 19.54 0.27
SD card write 0.01 19.88 0.07
FFT computation 0.01 19.90 0.07
numeric conversions 0.00 20.01 0.01

A collection of 30 profiling runs was conducted and compiled into a mean aggregate. The configuration of
the profiling runs was controlled and consistent, with the sensor package arranged to collect 16384 samples at
a 1.6 kHz sampling rate. The data was then processed using the FFT algorithm, which was then followed by a
peak-finding algorithm. The sensor package was bench-bound for all runs. This does not affect the quality of
the profiling runs. An equal number of floating-point operations occur regardless of data composition or testing
environment. The timing profile includes only functions imperative to the algorithm’s operation and is shown in
Table 1.

4. CONCLUSION

The testing and analyses of the sensor package have successfully demonstrated its capability to effectively process
and analyze vibration data on the edge. The sensor’s detection of flexural modal frequencies under varying struc-
tural conditions proves its adaptability to dynamic environments. The congruence between the sensor’s onboard
FFT analysis and an offsite FFT calculation further validates the accuracy and reliability of the embedded al-
gorithm. The findings from this study underscore the algorithm’s ability to be deployed on resource-constrained
devices for SHM. Future work will focus on refining the sensor algorithm to read multiple modal frequencies from
a structure as well as learning modal frequencies to recognize discrepancies. This study makes contributions in
the form of a methodology of edge computing algorithms.
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