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ABSTRACT

Condition assessment of civil infrastructures is difficult due to technical and economic constraints associated with
the scaling of sensing solutions. When scaled appropriately, a large sensor network will collect a vast amount
of rich data that is difficult to directly link to the existing condition of the structure along with its remaining
useful life. This paper presents a methodology to construct a surrogate model enabling diagnostic of structural
components equipped with a dense sensor network collecting strain data. The surrogate model, developed as a
matrix of discrete stiffness elements, is used to fuse spatial strain data into useful model parameters. Here, strain
data is collected from a sensor network that consists of a novel sensing skin fabricated from large area electronics.
The surrogate model is constructed by updating the stiffness matrix to minimize the difference between the
model’s response and measured data, yielding a 2D map of stiffness reduction parameters. The proposed method
is numerically validated on a plate equipped with 40 large area strain sensors. Results demonstrate the suitability
of the proposed surrogate model for the condition assessment of structures using a dense sensor network.

Keywords: dense sensor network, strain, model updating, condition assessment, structural health monitoring,
surrogate model

1. INTRODUCTION

The deteriorating condition of civil infrastructures is a source of significant concern for their owners and operators.
The evaluation of structural condition is typically conducted via visual inspection,1 and sometime non-destructive
evaluation (NDE) techniques are leveraged to enhance the ability of inspectors to detect damage.2 However,
visual inspections are left to the inspector’s judgement, may pose safety hazards, and are expensive and labor-
intensive.3,4 A solution is to automate the process of condition assessment, known as structural health monitoring
(SHM).

A notable challenge in SHM is to link sensor data to structural conditions. Research counts several examples
of vibration-based SHM using limited sensors for condition assessment.5–8 Vibration-based SHM is typically
conducted by identifying a change in the structure’s global characteristics provoked by a local damage, which
may be difficult to apply in the field due to the numerous frequency components present in a complex structure.9

Since strain is a direct indicator of, and sensitive to, damage, the monitoring of a structure’s strain fields using
strain sensors has attracted considerable attention in recent years.10 In an effort to monitor the global area of
a large-scale structure, distributed sensing technologies have been investigated for the distinction of local from
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global damage. One example of distributed sensing technologies that have gained broad acceptance is the use of
fiber optic sensors due to their unique capability of monitoring one-dimensional strain fields at a large number
of discrete points. However, fiber optic sensors are not highly deployed for monitoring infrastructure due to the
fragility of the fibers and high deployment cost.11,12

In order to improve the spatial resolution of distributed sensing technologies, it is becoming feasible to deploy
a two dimensional array of densely spaced sensors. Strain sensing sheets based on large area electronics were
developed for fatigue crack detection and localization.13 Carbon nanotube sensors have been demonstrated for
the detection of large strains and cracks.14 Along with this effort, the authors have developed a scalable and
cost-effective flexible skin-like membrane for the monitoring of structural components.15,16 This technology is
analogous to sensing skin because it mimics biological skin’s capability to detect local damage over a global area.
It is based on a large area strain-sensitive sensor termed soft elastomeric capacitor (SEC).15 In contrast with
fiber optic sensors, vibrating wire, or traditional resistive strain gauges that measure strain at discrete points, the
soft elastomeric capacitor (SEC) has the unique capability of measuring the additive in-plane strain over a large
and customizable area. Previous research related to the SEC has decomposed the SEC’s additive strain into two
uni-directional strain components and used these strain components to reconstruct uni-directional strain maps
over the monitored surface17 for damage detection through a visual interpretation of changes in strain fields.16

The objective of this paper is to introduce an algorithm to link strain map data to structural conditions. At
this preliminary stage, we develop a physics-driven approach to reconstruct the stiffness matrix of a component
equipped with sensing skin. Others have already proposed physics-driven approaches with model updating based
on sensor data. Sanayei et al. proposed an iterative technique using static strain data to identify beam- and frame-
like structural element properties.18,19 Others have reconstructed displacement and stress field from discrete
strain measurements employing an inverse finite element method to assess structural integrity.20 A substructure
model updating approach using frequency domain data was proposed to identified structural stiffness and mass
elements.21 Also, a stochastic subspace identification technique was used to extract modal information from
acceleration data and a genetic algorithm was used to reconstruct the stiffness matrix that would match these
parameters.22

The novelty of this paper resides in the development of the physics-based algorithm that could be later
transformed into a hybrid model/data approach enabling fast reconstruction of physical representation, in real-
time. Such reconstructions could be readily used for damage detection, localization, quantification, and condition
evaluation. In particular, we exploit a physically representative surrogate model based on a Mindlin finite
elements to harness additive strain measurements of the SEC. Upon the static forces applied to the plate, the
stiffness can be reconstructed from the surface additive strain measurements by minimizing the difference between
the estimated and observed responses.

The paper is organized as follows. First, the sensing principle of the SEC is reviewed. Second, the formulation
of the physics-driven surrogate model is explained. Third, the algorithm is demonstrated through a numerical
simulation. Last, the paper is concluded.

2. BACKGROUND

The previously proposed sensing skin is constituted from a network of strain sensors. These sensors, or SECs,
are large area capacitors suitable for strain sensing over large-scale surfaces. The sensor’s fabrication procedure,
sensing characteristics, and its electromechanical models have been studied in detail in previous works.23,24

Briefly, the SEC is built using a layer-by-layer approach where a dielectric (white layer of the capacitor shown in
Figure 1(a)) is fabricated from a styrene-ethylene-butadiene-styrene (SEBS) polymer matrix filled with titania.
The conductive layers are painted from a conductive paint fabricated using the same SEBS matrix but filled with
carbon black. The capacitance (C) of an SEC can be estimated from the equation for a parallel plate capacitor
(assuming negligible losses):

C = ε0εr
A

h
(1)
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Figure 1. The proposed SEC-based sensing skin showing the: (a) SEC with key components annotated; and (b) example
of sensing skin layout with key components annotated.

where ε0 is the vacuum permittivity (ε0 = 8.854pF/m), εr is the relative permittivity of the dielectric, A is the
electrode’s surface area of width w and length l, and h is the thickness of the dielectric. Assuming that the
capacitor undergoes small strain, the change in capacitance is related to the additive in-plane strains εx + εy
with a gauge factor λ ≈ 2:24

4C
C0

= λ(εx + εy) (2)

An example layout for the sensing skin is shown in Figure 1(b). This fully integrated skin consists of SECs
deployed on a flexible polyimide sheet along with the necessary electronics. A more detailed discussion regarding
on the electronics can be found in reference.16

3. SURROGATE MODEL FORMULATION

A surrogate model is constructed by simplifying the structural behavior of the component of interest, here a
plate. The plate is discretized into four-node quadrilateral Mindlin elements,25 with an SEC in the center of each
element. A graphical representation of the element is shown in Figure 2. Assuming a static load, the governing
equation for the surrogate model, expressed as F = KU, is based on the static stiffness relationship between
the force vector F, the stiffness matrix K, and displacement vector U. Vector U is related to the measured
additive strain through a transformation matrix B. Once the surrogate model is constructed, an optimization
function can be defined such that it minimizes the error between the strain predicted by the surrogate model
and the strain measured by the SECs through the alteration of the K matrix. Matrix K is recursively refined
until the error converges . The processes is outlined in Figure 3. The production of a surrogate model enables
greater computational efficiency, which can be useful in conducting condition assessment, structural predictions,
and remaining useful life estimations.
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Figure 2. Illustration of the Mindlin element with four nodes located on the mid-line of the element.
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Figure 3. Flowchart of the proposed physics-driven algorithm.

3.1 Model formulation

At this preliminary stage of the research, the model formulation assumes a static load of known location and
magnitude, and is based on work from.18,20 The discretized displacement vector ue and stiffness matrix ke

is constructed for each element, where e = 1, 2, . . ., NEM with NEM being the total number of elements
in the surrogate model. Using the Cartesian coordinate system, ue fully defines the deformation of a four-
node quadrilateral element as shown in Figure 2. Each element comprises three independent degrees-of-freedom
(DOFs) θx, θy, and w, resulting in 12 DOFs for the four nodes:

ue =
[
θx1 θy1 w1 θx2 θy2 w2 θx3 θy3 w3 θx4 θy4 w4

]T
(3)

where w is the mid-surface deflection in the z axis, θx = z∂w/∂x and θy = z∂w/∂y are the transverse bending
rotations with respect to the x and y axes, respectively. Vector ue can be approximated from geometry using
the bilinear quadrilateral shape functions Ni(i = 1, 2, 3, 4)

θx =

4∑
i=1

Niθxi; θy =

4∑
i=1

Niθyi; w =

4∑
i=1

Niwi (4)

The surface bending strains εx, εy and in-plane shear strain γxy for each element can be obtained based on
three-dimensional elasticity:

eeb =

 εxεy
γxy

 =
h

2


∂θx
∂x
∂θy
∂y

∂θy
∂x + ∂θx

∂y

 =
h

2
Bbu

e (5)

where Bb is a transformation matrix. To relate to SEC data, the bending strains in the plate are converted from
the displacement vector (ue) by differentiating the shape functions through the transform matrices Bb:

Bb =

0 N1

∂x 0 . . . 0 N4

∂x 0
0 0 N1

∂y . . . 0 0 N4

∂y

0 N1

∂y
N1

∂x . . . 0 N4

∂y
N4

∂x

 (6)

Also, the out-of-plane shear strains es can be written:

ees =

[
γxz
γyz

]
=

[
∂w
∂x + θx
∂w
∂y + θy

]
= Bsu

e (7)

along with the strain-displacement shear transformation matrix Bs:

Bs =

[
N1

∂x N1 0 . . . N4

∂x N4 0
N1

∂y 0 N1 . . . N4

∂x 0 N4

]
(8)
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where Bs can be obtained for each element from the three-dimensional elasticity. It is noted that only the
additive surface axial strains can be experimentally measured by the SEC (i.e. the shear strains cannot be
directly obtained from the SEC). However, for a thin plate, the shear strains can be neglected due to their
relatively small magnitudes when compared to the bending strains.26

After the element stiffness matrix that governs the structural behavior of the plate is constructed as a function
of Youngs modulus (E), Poissons ratio (ν), and shear modulus (G = E

2(1+ν) ). The element stiffness matrix, ke,

is built using the principle of minimum potential energy using the Gauss quadrature technique with a two point
integration for bending and one point integration for shear to avoid shear locking.25 Once the elemental stiffness
matrix is constructed, the stiffness matrix for one element can be expressed:

ke =
h3

12

∫
Ae

BT
b DbBbdA

e + αh

∫
Ae

BT
s DsBsdA

e, (9)

where α is the shear correction factor taken as 5/6,25 Db is the constitutive equation for bending:

Db =
E

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 (10)

and Ds is the shear constitutive equation matrix:

Ds =

[
G 0
0 G

]
(11)

By introducing the displacement vector ue and stiffness matrix ke into the element-wise governing equation
of the surrogate model fe = keue, the bending strains of one element (eeb) can be obtained assuming fe is known:

eeb = Bb[ke]−1fe (12)

For a linear system, only the additive strains are measured by the SEC. It follows that the system’s overall
bending strain vector (eb) and transformation matrix (Bb) for the measured and unmeasured strains can be
rearranged as: [

emeasured

eunmeasured

]
=
[

Bmeasured,b

Bunmeasured,b

]
K−1F (13)

Because the unmeasured strains are not required for estimating the measured strain, they can be removed
from Equation 13, with

ê = Bmeasured,bK
−1F (14)

where the hat denotes an estimation, ê is a vector with a length equal to NEM and F is a vector equal to the
number of DOFs (nDOF), and Bmeasured,b and K are matrices of sizes NEM × nDOF and nDOF × nNDOF,
respectively.
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3.2 Damage detection and localization

Damage characterization in the plate can be obtained through the temporal comparison of updated values in K,
which values are represented through a reduction parameter ζ, as diagrammed in Figure 3. Matrix K is updated
by minimizing the objective function J :

J =‖ê− e‖2 (15)

where || · ||2 is L2 norm and e is the mean of the observed strain field, which is obtained by averaging over a
number of observations. In this present work, there is no additional inequality or equality constrains, except
for the bound [0, 1] on ζ. When ζ = 0, the structural element has no damage, and conversely, when ζ = 1 the
structural element is removed (i.e. complete damage). Equation 15 is a nonlinear, multiple parameters function.
For the purpose of this work, the pattern search solver in MATLAB27 was used to solve the optimization problem
through the minimization of the error, J . Convergence thresholds for either ζ or J were set to

‖ζi+1 − ζi‖ ≤ 10−8 or ‖J i+1 − J i‖ ≤ 10−8 (16)

and were used as the stop criteria for the optimization (Equation 15).

4. NUMERICAL EXAMPLE

This section numerically demonstrates the proposed algorithm.

4.1 Model Description

This numerical example considers a rectangular aluminum plate 1000 mm long by 500 mm wide and 3.3 mm
thick. The model is clamped (i.e., fixed) on the right-hand side and a roller support is used on the left-hand
side, and has a Young’s modulus E = 69 GPa and a Poisson’s ratio ν = 0.33. For this preliminary work, the
numerical representation of the plate was constructed using 50 elements, where 40 SECs are simulated with one
SEC installed at the center of each element covering the majority of the element plus five boundary elements for
each side without SECs). The Figure 4 is a schematic of the 50 elements showing the 40 SECs (darker squares)
and 10 boundary elements (light rectangles).

Damage was introduced in the plate in the form of a reduction in stiffness at two different locations. The
Young’s modulus in the rectangular elements denoted as “damage a” and “damage b” in Figure 4 were reduced
by 20% (ζ = 0.2) and 40% (ζ = 0.4), respectively. To investigate the effect of noise on the system, four levels of
noise investigated: 1% uniformly distributed, 1% Gaussian, 3% Gaussian, and 5% Gaussian. A unit concentrated
force was applied to a node near the center of the plate, as shown in Figure 4.

damage a

damage b fixedroller
force

Figure 4. Schematic of the numerical example.
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4.2 Numerical Results

Figure 5 shows the spatial distribution of ζ obtained through the algorithm. When inspecting results from the
low-noise levels presented in Figures 5(a) and (b), it can be observed that the optimization technique was capable
of correctly quantifying the reduction in stiffness for “damage a” as ζ = 0.4 and “damage b” as ζ = 0.2. Also,
results show that while increasing the noise level reduces the precision of the damage localization, the algorithm
can still identify and quantify both damage locations.
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Figure 5. Contour plots of the identified stiffness reduction values for a noise level of: (a) 1% uniform; (b) 1% Gaussian;
(c) 3% Gaussian; and (d) 5% Gaussian.

5. CONCLUSION

This work proposed and derived a physics-driven approach bespoke to components equipped with sensing skin
providing additive strain measurements. The sensor forming the sensing skin, termed the soft elastomeric
capacitor (SEC), is a large-scale strain sensor that is designed to cover large surfaces at low cost. The surrogate
model presented in this work allows for the SEC’s additive strain measurement to be mapped to structural
stiffness. This is done by updating the stiffness matrix to match the strain measurements through a minimization
function. A temporal comparison of the obtained stiffness matrix can be used for condition assessment, and the
surrogate model itself could be useful to conduct further studies such as structural behavior prediction and
remaining useful life estimation.

A numerical demonstration was conducted on a steel plate with a simulated dense sensor network of 40 SECs.
Results showed that the proposed surrogate model could be used to detect, localize, and quantify damage, even
in the presence of noise. Future work will involve validating the surrogate model technique through the use of
higher fidelity finite element models and experimental data, and extend the methodology to dynamic excitations
with uncertain loads.
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