Physics-Informed Machine Learning Part IV: Weight-Tuned
Soft-Constraint Method for Structural Dynamics

Eleonora Maria Tronci’ ,2, Austin R.J. Downey3’4, Connor Madden?, Mohsen Gol Zardian?, Daniel Coble,

1Department of Civil and Urban Engineering, New York University, New York City, NY, USA
2Center for Urban Science and Progress, New York City, NY, USA
3 Department of Mechanical Engineering University of South Carolina, Columbia, SC 29208
4 Department of Civil and Environmental Engineering University of South Carolina, Columbia, SC 29208
>Department of Mechanical Engineering & Materials Science Duke University

ABSTRACT

Physics-informed machine learning (PIML) is a methodology that combines principles from physics with machine learning
(ML) techniques to enhance the accuracy and interpretability of predictive models. By incorporating physical laws and con-
straints into the learning process, physics-informed machine learning enables more robust predictions and reduces the need for
large amounts of training data. PIML has a wide range of applications in science and engineering, such as modeling physical
systems, solving partial differential equations, and performing inverse analysis and optimization.

In Part IV of this series, the authors describe a soft-constraint, physics-informed neural network (PINN) tutorial for struc-
tural dynamics. Instead of enforcing equilibrium exactly at every step, the network is trained with a composite loss that com-
bines several data fitting terms (displacement, velocity, acceleration, and stiffness taken from an experimental window) with a
single physics consistency term that measures how closely the predicted forces satisfy the mass—damping—stiffness relationship.
Each term carries an explicit weight, allowing the decision on how much trust to place in measured data versus the governing
equation. A compact multilayer perceptron takes as input the displacement, velocity, and external force from the most recent
timestep and predicts the next-step displacement along with an effective stiffness. Two weight tuning options are covered: (i) a
manual recipe that highlights how shifting emphasis from data to physics improves extrapolation but can amplify noise, and (ii)
a self-adaptive schedule that raises the physics weight whenever the residual grows and relaxes it once the residual falls below
a user-selected tolerance, eliminating the need for grid searches.

The technique is demonstrated using the same spring—mass—damper system introduced in Part III, but the PINN is trained
on a single experiment featuring a specific time-varying stiffness path. Because the model includes explicit time as an input,
it becomes specific to that trajectory. Performance is benchmarked against two reference solvers: a data-only neural network
trained without any physics guidance and the hard constraint ODE layer introduced previously. The paper concludes with
qualitative guidelines for selecting initial weight ratios, determining the residual tolerance for the adaptive schedule, and moni-
toring convergence, providing readers with a practical roadmap for balancing data fidelity and physical plausibility in their own
inverse problem applications.

Keywords: physics-informed machine learning; physics-informed neural network; soft-constraint; weight tuning; adaptive
tuning

1 INTRODUCTION

Scientific modeling has traditionally been divided between two distinct paradigms [1,2]. Physics-based numerical methods
discretize governing equations to provide high-fidelity solutions, but are often constrained by prohibitive computational costs,
complex mesh generation, and an inability to account for model-form uncertainty in the physical laws themselves. Conversely,
data-driven models excel at learning complex patterns from data but typically lack physical interpretability, require massive
training datasets, and struggle to generalize reliably, often producing physically implausible predictions outside of their training

distribution.

Physics-informed machine learning (PIML) has emerged as a powerful paradigm for developing predictive models of phys-
ical systems, offering a compelling complement to purely data-driven or traditional physics-based approaches [3,4]. By inte-
grating governing physical laws directly into the learning pipeline, PIML provides a guided strategy to steer solutions toward
physical behavior under sparse, noisy, or incomplete data. PIML is not inherently more accurate than conventional machine
learning; its impact is highly context-dependent. Where abundant, representative data are available and the task remains within
the training distribution, a well-regularized data-only model may match or exceed PIML in standard error metrics. Where
interpretability, parameter recovery, or cautious extrapolation are required, the physics guidance can confer advantages by con-
straining the hypothesis space toward feasible dynamics. This methodology is particularly effective for both forward problems,
such as solving differential equations, and inverse problems, such as system identification and parameter estimation.

The domain of PIML is extensive and can be categorized in multiple ways [5]. However, physical principles can be in-
corporated in two primary ways: through hard or soft constraints. Hard-constraint approaches, as detailed in Part III of this
series [6], embed the governing equations directly into the model’s architecture (e.g., via a differentiable ODE integrator), en-
couraging the predicted solution to satisfy physical laws at each step. This strong enforcement has been shown to be successful
in many applications [7], can improve stability and identifiability, but it may be less flexible under model-form uncertainty and
can be more challenging to implement for systems with unmodeled dynamics or discontinuities. In contrast, soft-constraint
approaches, presented here in Part IV, offer a more flexible and widely adopted alternative. Here, the residual of the govern-
ing equations is incorporated as a penalty term in the model’s loss function. This formulation encourages the model to find
solutions that not only fit the observed data but also respect the underlying physics, effectively using the physical equations as
a form of regularization to guide the learning process in data-sparse regions. The choice between hard and soft-constraints is
problem-specific and depends on factors such as the fidelity of the governing model, noise characteristics, label availability for
latent parameters, and the degree of distribution shift anticipated at inference.

Structural dynamics presents a particularly compelling application area for several PIML approaches [8]. Systems such as
bridges, buildings, wind turbines, and aerospace structures obey well-established principles but often exhibit time variability,
environmental influences, and mild nonlinearities that complicate pure first-principles modeling. In this context, soft-constraint
physics-informed neural networks (PINNs) are attractive because they preserve a simple network architecture while inject-
ing domain knowledge through a residual penalty on the equation of motion. Concrete structural-dynamics uses of residual-
penalized (soft) physics terms include damage identification and system identification. For damage identification, Wang et
al. [9] introduce a physics-guided residual network that augments a data-driven backbone with an equation-of-motion resid-
ual term, improving robustness under scarce/noisy measurements—an archetypal soft-constraint strategy for SHM tasks. For
inverse structural dynamics, Liu et al. formulate a PINN that recovers parameters in systems with multiphysics damping (non-
linear dissipation) by minimizing a composite objective that mixes data misfit with residual penalties, illustrating soft-constraint
PINNSs for parameter estimation in realistic structural models [10]. In forward vibration analysis, Chen et al. develop a time-
marching PINN tailored to long-duration simulations of structural vibrations. Although focused on efficiency, their formulation
is still driven by residual penalties rather than hard architectural enforcement, underscoring the practicality of soft-constraints
in vibration problems [11].

The successful implementation of soft-constraint depends on balancing multiple loss components, such as data fidelity (e.g.,
displacement, velocity, acceleration, stiffness) versus physics consistency (equation-of-motion residual). These weights govern
the effective bias—variance trade-off, influence the identifiability of latent parameters, and shape the optimization dynamics.
Adaptive weighting schemes offer principled methods for adjusting this balance during training. McClenny and Braga-Neto
propose self-adaptive PINNs that learn per-sample physics weights to emphasize regions where the residual is most stubborn,
offering a direct mechanism to stabilize training and reduce manual grid searches [12].

Recent contributions by the authors have examined multiple strategies for integrating physical knowledge into machine
learning. Part I of this series outlined how embedding governing equations can enhance robustness, improve interpretability,
and in many cases strengthen predictive performance in engineering settings [5]. Part II demonstrated a practical application to
structural dynamics, showing that physics-informed architectures can effectively forecast system responses [13]. Together, these
studies highlight the benefits of coupling physical models with neural networks for inverse problems, including the estimation
of system parameters.

This paper, Part IV of this series, presents a practical tutorial on applying a soft-constraint PINN to an inverse problem
in structural dynamics. We use the same spring-mass-damper system with time-varying stiffness introduced in Part III [6]
to provide a direct comparison of methodologies. The core of our contribution is a detailed exploration of the composite
loss function, which combines data-fitting terms with a physics-consistency term derived from the equation of motion. We
investigate two distinct weight-tuning strategies: (i) a manual recipe that highlights the fundamental trade-off between data

fidelity and physical regularization, and (ii) a self-adaptive schedule that automates the balancing process. The performance of
the soft-constraint PINN is benchmarked against a data-only neural network and the hard-constraint ODE model from Part III.
We conclude with practical guidelines for selecting initial weight ratios and monitoring convergence, providing a clear roadmap
for applying this flexible PIML technique to other inverse problems.

2 METHODOLOGY

This work develops a soft-constraint PIML framework to identify and predict the dynamic response of a mass—spring—damper
system. The central idea is to combine a data-driven neural network with a physics-consistency term in the loss such that the
governing equation of motion influences learning without being enforced exactly at every time step. Unlike hard-constraint
approaches, where the ODE is encoded directly into the model architecture and satisfied identically, the present framework
penalizes the residual of the governing composite loss function during training. Concretely, the model minimizes a composite
objective that blends data-fitting terms (e.g., displacement, velocity, acceleration, and stiffness from an experimental window)
with a physics residual penalty evaluated on the network’s predictions. The relative contribution of each term is controlled by
explicit weights, enabling practitioners to calibrate the trade-off between data fidelity and physical plausibility. As a result,
the learned solution is not guaranteed to satisfy the ODE exactly but is regularized toward physically consistent behavior, and
training is guided by both data and physics.

2.1 Data preparation

We adopt the same variable conventions as Part III: time 7, displacement x;, velocity v;, acceleration «,, stiffness k;, and
external force F; are recorded as synchronized columns in tabular files (rows = time steps, columns = physical quantities).
Raw trajectories from multiple experiments are stacked into a three-dimensional array X € RV*XPwhere N is the number
of trajectories, L the samples per trajectory, and D the number of measured channels. For continuity and visual reference, we
reproduce the same schematic as Part III in Fig. 1 and defer full pseudocode and hyperparameter details (e.g., window length
choices, batching policies) to Part III [6].

Consistent with our implementation, we downsample all signals to a uniform rate (50 Hz) to reduce redundancy while
preserving the dynamics of interest; let X denote the downsampled tensor and L the corresponding length. Basic sanity checks
(monotone timestamps, consistent units) are applied prior to batching.

The main deviation from Part III concerns the supervision format. Part III forms fixed-length sliding windows of size W
and groups T consecutive windows into segments to train the hard-constraint ODE layer. In contrast, Part IV (soft-constraint
PINN) uses step-ahead supervision: for each time index ¢ we form input—target pairs

[xtathat] ? [xl+17kl]7
—_—— ——
inputs targets

optionally including a, if available. This pairing directly supports the one-step predictor used in our model, while leaving the
rest of the pipeline unchanged.

To avoid temporal leakage within an experiment, we split X by experiments (80/20 train/validation), then shuffle the
training set and construct mini-batches. Batches thus have shape (B,D) for inputs and (B,Diarge) for targets under the step-
ahead pairing, in place of the (B,T,W) layout used in Part III’s windowed segments. Apart from this pairing change, the
stack — downsample — split — batch flow remains identical to Part III.

— input trajecto- stack tables o 7 sliding win-
[start)—{ ries {CSV, } }’[X € RVNxLxD Hdownsample by s (X’L)j—{ dows length W
mini-batches IRV T - group T windows
[end)4—[shape (B, T, W) }4—(train/val split ratio p]4—(shuffle segments]4—[segments S(T,,)

Figure 1: Preprocessing pipeline from raw trajectories to mini-batches (verbatim labels from Part III).

2.2 Network architecture and physics-embedded loss function

The proposed architecture follows a soft-constraint PIML formulation in which the governing law contributes through a resid-
ual penalty in the objective function. The present model employs a compact data-driven predictor together with a physics-

physics residual module

Pure NN predictor - -
- - - - - ----"-"-"-"-"-""=""="=""="="="=”"=”"=”"=°= N
L N ! Physics & loss terms |
~ DN |
| : Fep1 =magp v kS — Fo \
l ! o 2 !
\ | Ly = |[®r41 —xr41 | |
X I 7 2
7 Ly = ||k — K, |
[a t t
At 1 [xt7vtaE7t] = [xf+17kt] L H H ‘||‘2 :
| l .= ||7
v | ‘ phys t+1 J
| M) N e
|
F; 1 ‘
| |
|
t \\ - J)

Y

Weighted loss
L = wyLly+wily + thysthys

optimizer (Adam)

[model trained }

Figure 2: Soft-constraint PINN: the NN predicts (%41, lAct). The physics module computes the residual and lists Ly, Lg, Lphys;
the composite loss sits directly below it, the optimizer below that, and the stopping rule is placed to the left of the composite
loss.

consistency term evaluated at the same time index.

While PINNs are most often used for interpolation/forward problems, they can also be adapted to inverse settings when
the physics is sufficiently known. Here we train on a test without friction so that the governing equation is fully specified
(mass—damping—stiffness), and the soft-constraint acts as a physics-guided regularizer for estimating a time-varying stiffness.
As is typical for forward-type PINNs, each trained model is specific to a single experiment/trajectory (i.e., not expected to
generalize across materially different tests without retraining).

Let z; = [x;, v, F}, t] denote the input at time 7 (acceleration a; may be included when available). A multilayer perceptron
g advances the state by one time step and simultaneously estimates an effective stiffness,

[-x’\t—}—h]%t:l = L/VO(ZZ‘) = ¢(tu-xt7v1‘ul:t)7

so that ¢; = %4 and ¢ = k;. When derivative consistency terms are used, autodifferentiation provides the required partial
derivatives of @; with respect to its inputs; time derivatives then follow by the chain rule, e.g.

do_ 00 a0 do de . &
o o Tt T VTRl

analogously,

with X, X, v, F obtained from measurements or numerically differentiated (smoothed) trajectories. In this problem, the governing
equation does not involve derivatives of k, so autodiff of ¢, is not required.

Consistency with the mass—damping—stiffness relation
ma; + cvy + kexy = F
is promoted by penalizing the residual
Tl = My + cvisl + kefepr — Frp,

where d;+1 = a;4+1 when acceleration is measured, otherwise d, is obtained from a centered, filtered finite difference of x at
time ¢+ 1. Training minimizes a composite objective that balances data fidelity and physics plausibility,

Z(0) = wyMSE(%11, %141) + wiMSE(k;, k) + Wphys MSE(rr11, 0), (1)

with positive weights wy, wi, and wpnys. If stiffness labels k; are not available, the second term is omitted without changing the
rest of the framework. During inference, the predictor is applied recursively to advance £ over time while reporting k, at the
corresponding index. Unlike Part III, physics enters solely through the residual in (1), which yields a clear and tunable trade-off
between data terms and physical consistency.

For bookkeeping, we use two time sets: an experimental set 7, (e.g., the first 60s of the record) for supervised targets where
available, and a physics set 7}, (the full test) for residual and optional derivative consistency. Equation (1) is evaluated on the
appropriate set per term (e.g., wx on T; Wphys on T),). If desired, derivative-alignment terms may be added with small weights,

L= L—5)" L= D(E-5),
teTy teT)y

where X;,X; come from autodiff and X;,%; from measurements or numerical differentiation.

2.3 Training procedure

Training follows the soft-constraint principle and therefore optimizes a composite objective that blends data-fit terms with a
physics residual. Each mini-batch contains step-ahead pairs [x;, vi, F;, f] — [x;41, k] (with a, optionally included), and the
predictor .45 maps inputs to [£.1, IAc,]. The residual 7,11 = mda;+1 + cvie1 + IAct)?tH — F;41 is formed at the advanced time
and used in the physics term and, together with the data terms, defines the loss in (1). Model parameters are updated with
Adam. Early stopping monitors the validation objective and restores the best weights when no improvement is observed
over a fixed patience, while a plateau scheduler reduces the learning rate when the validation loss stalls, improving stability
and convergence. When derivative terms are used, we compute %;,%, by autodiff and obtain X;, % from measured signals or

numerically differentiated (smoothed) trajectories.

Algorithm 1 Soft-constraint PINN training (fixed weighting)

Require: Training sets 7, = {t;}? | (supervised) and T, = {t;}*, (physics); network .#5 with mapping ¢ : (t,x;,v;, F;) —
()Et+1,f<,); constants m,c; loss weights wy, wy, Wy, Wi, Wpnys; optimizer (Adam), learning-rate schedule, early-stopping
patience.

Ensure: Trained parameters 6*

1: Initialize 6 < Xavier/He; optimizer state <— zeros
2: forepoch=1,2,... do
3: for mini-batch %, C T, and %, C T, do

4: Build inputs z; = [x;, v, F;,t] (include @, if measured); compute (£;41 ,IAct) = N(z)
5: If g, unavailable, set d; < FDgjereq (X); €lse @; < a;
6: Residual (advanced time): 7| < md; 11 +cviry +k X1 — Froq
7: Derivative terms (optional): X;, X, < autodiff(.4g,z)
8: Loss terms:
Ly |7%‘ Yica, (ki —k)? > omit if k; not labeled
1 ~
Ly 4= 1 Yies, (B —x41)°
L; < @ Yies, (% =) > optional
Li + ﬁ Yrem, (ki — i) > optional
1 2
Lphys — 1%, Zre@p)
9: Composite loss: & < wiLy +wyLy + wyLyi +wiLg + Wphys Lphys
10: Backpropagate Vy.Z’; Adam step on 0
11: end for
12: Compute validation metrics on held-out 7,4, Tl)'al; update LR on plateau
13: Early stop if no improvement for P epochs; save best 6*
14: end for

With fixed (manual) weights, the loss weights remain constant throughout training; the full procedure is listed in Algo-
rithm 1. To reduce manual tuning while keeping the same supervision and residual definitions, a joint adaptive scheme is
adopted. Global weights for the displacement, stiffness, and physics terms are learned via constrained log-variance parameters
Sx,Sk>Sphys € (—Smax,Smax), With A4 = exp(—s,) and a linear regularizer (s, -+ s + Sphys) to avoid trivial solutions. Each per-
term loss is first put on a comparable scale using exponentially weighted moving averages (EMA) of the *actual optimized*

quantities: raw Ly, a right-sized stiffness term L,S(Calecl = YLy to prevent dominance, and a physics term ng’;‘; that optionally uses
per-sample SAPINN attention. SAPINN introduces a lightweight inner optimization over per-batch logits to produce nonneg-
ative per-sample weights with mean approximately one, emphasizing stubborn residuals while penalizing entropy collapse and

()

%+ Lohys drive the uncertainty-weighted total

overly large weights. The normalized terms L

Lot = ;LXL)(cn) + AkL/((n) + Aphysl‘[g?l)ys + (8x 4 Sk + Sphys)

and two Adam optimizers are used: one for model parameters and one (with a smaller learning rate) for the global weight
parameters. The procedure is summarized in Algorithm 2.

Algorithm 2 Joint adaptive weighting with EMA normalization and optional SAPINN

Require: Same data and network as Alg. 1; Adam(lr = ng) for model, Adam(Ir = 7, < 1g) for weights
Log-variance params: iy, Uy, Up; Se = Smax tanhute; Ae = eXp(—se)
EMA factor o € (0, 1); stiffness scale 9, > 0; optional SAPINN with inner steps S, temp 7
1: Initialize EMA trackers Ly, L, Lphys (unset)
2: for epoch=1,2,... do
3 for mini-batch (%,,%,) do
4 Forward pass: ()E,H,IAc,) = Ao ([x,vs, F;01])
5: Residual: ryy1 =ma;1 +cvigq +]A(t)?t+1 —F
6 Per-term losses: L, = mean (&1 —x;41)>, LYY = mean(lAc, —k;)? (or 0 if unlabeled)
7 Scale stiffness: Li*d = 9 LI*; raw physics: LY = mean(r?,)
8
9

phys
if SAPINN enabled then

: Compute per-sample weights w by softmax logits (mean =~ 1) over § inner steps;
10: Lijys = mean(w-)
11: else
12 Liin —
13: end if _
14: Update EMAs on optimized terms: Ly ~ EMA(Ly,Ly), Ly < EMA(Ly, L), Lohys + EMA(I:phys7Lgﬁ“y‘;)
15: Normalize: L") = L, /(L +€), L,@ =Led /(L +g), Ll()ﬁ)ys = Lgﬁ‘;‘; (Lphys +€)
16: Total (uncertainty weighting): %o = 2L 4 AkL,E") + ’lphyngl?ys + (S + Sk + Sphys)
17: Update 6 with Adam on Zo; update (uy, ug,up) with Adam on L
18: end for
19: Validate, log (Ax, Ak, Aphys): reduce LR on plateau; early stop on validation objective
20: end for

3 CASE STUDY

The soft-constraint framework is evaluated on the classical single-degree-of-freedom spring—mass—damper oscillator subjected
to an external force F;. This benchmark is representative of common structural dynamics problems in mechanical and civil
engineering and is governed by the equation of motion ma, 4 cv, 4+ k;x; = F; [14]. The reference physics-based model was
implemented in MATLAB Simulink/Simscape and is available in the public repository for this work [15].

The learning objective is to recover the time-varying stiffness &; indirectly while maintaining accurate state prediction. Two
configurations are considered to probe both linear and nonlinear regimes. In the first, the oscillator retains a conventional
linear arrangement with stiffness k; allowed to vary in time, emulating progressive stiffness degradation or environmental
variability. In the second, an additional nonlinear restoring force f acts in parallel with the damper to reflect effects such as
friction, intermittent contact, or geometric nonlinearities. These complementary scenarios form a robust testbed for assessing
the approach’s adaptability under increasing dynamical complexity.

Input data are generated by simulating multiple realizations under diverse forcing conditions and stiffness evolutions. Dis-
placement, velocity, acceleration, and forcing trajectories are sampled at discrete time steps and organized according to the
preprocessing pipeline described in Sec. 2.1. Training follows the procedure in Sec. 2.3, where the network advances £;; | and
infers k, while the residual-based penalty pulls solutions toward the governing law. Performance is quantified by the root-mean-
squared error (RMSE) between predicted and measured displacements at the next step, and, when ground truth is available, by
the RMSE between the reconstructed stiffness trajectory k; and the reference k;. The study demonstrates that the soft-constraint

/ ZI V.
/ M 7 f
7 L 7
/] c F /] [F
/] m > /] L 3 m e
7 7 L
Z 7 ‘
/] /]
% K 7 7 7
k(t)

(a) (b)

Figure 3: Schematic of the case study system: (a) classical spring—mass—damper with time-varying stiffness k;; (b) extended
configuration with an additional nonlinear restoring force f.

formulation reproduces the dynamic response with high fidelity while yielding interpretable stiffness estimates aligned with the
underlying physics, even when the system exhibits time variability and mild nonlinear effects.

3.1 Inverse Stiffness Identification and Response Prediction

Stiffness Time-wise mean + std over validation experiments

=== physics-based model (mean) === PINN soft-constraint (mean)

1400 A physics 1o PINN +lo

—_
1N}
(=3
S}
1

1000

stiffness (N/m)

800 -

600

T T
0 20 40 60 80 100 120
time (s)

Figure 4: Time-wise mean =+ one standard deviation of stiffness over validation experiments. Blue: physics-based reference;
orange: soft-constraint model with adaptive physics weight.

Disp_Time-wise mean =+ std over validation experiments

" === physics-based model (mean) === PINN soft-constraint (mean)
0.0 physics +1c PINN +lo
g 0.02 4
k|
o
£ 0.00
Q
=
&z
< -0.02
-0.04 1
T T T T T T T
0 20 40 60 80 100 120

time (s)

Figure 5: Time-wise mean =+ one standard deviation of one-step displacement x;,| over validation experiments. Blue:
physics-based reference; orange: soft-constraint model with adaptive physics weight.

We evaluate the soft-constraint model in the inverse setting (recovering k;) and in one-step response prediction (advancing

Table 1: Validation errors for the best fixed (grid) setting versus the adaptive weighting run.

Method RMSE; RMSE,
Best manual (grid) 32.4837 3.40x 1074
Adaptive 445779 1.074x 1073

x to t+1) under an adaptive physics weighting. Recall that the network outputs [£, IAc,] and is trained with the composite loss
in Eq. (1), where the physics term uses the residual rry; = md;+1 +cvip) + IAcl K41 — Fi41 and a(-) is either measured acceler-
ation or a centered, lightly filtered finite difference of x(-) computed in preprocessing. The adaptive scheme modulates wppys
during training based on validation residual statistics, increasing emphasis on ;4| when the dynamics are under-constrained
and relaxing it when data-fit degrades, thereby maintaining a stable trade-off between data fidelity and physical consistency.
Figures 4-5 report, for each time index, the mean prediction over the validation experiments together with one standard devi-
ation (shaded bands). For stiffness identification (Fig. 4), ke closely follows the reference physics-based trajectory, capturing
the global monotonic degradation and the break in slope near the plateau. The spread across experiments is largest during
the mid-record interval, where the excitation and state amplitude produce stronger nonstationarity; variance shrinks toward the
late-time plateau, where both models agree.

For displacement prediction (Fig. 5), the one-step predictions £;1 remain phase-consistent with the physics-based baseline
across the record. The adaptive schedule prevents over-regularization during high-energy segments (peaks around the mid-
record), which would otherwise damp predicted amplitudes, while still constraining the solution when the signal energy de-
cays. The largest uncertainty occurs during the transient burst (visible between ~50-80 s), after which both mean and variance
contract as the system returns toward quiescence.

The adaptive wynys yields robust inverse estimates of k;, without requiring stiffness labels, and (ii) maintains accurate short-
horizon x-rollouts across regimes with different signal energy, reducing variance where the dynamics are simpler while avoiding
bias where the excitation is strongest. This behavior is consistent with the intended role of the residual penalty: act strongly
when the data alone are insufficient, and step back when the supervised term provides a reliable target.

3.2 Weight Sensitivity: Fixed Grid vs. Adaptive Physics Weight

To examine robustness to the loss trade-offs, we ran a parameter study over the three weights in Eq. (1). For each triplet,
we trained the model with the same protocol and evaluated two validation metrics: one-step displacement error (RMSE,) and
stiffness identification error (RMSEy). Figures 67 show 3-D scatter plots where each point represents a trained model; the
axes are the weights, color encodes the error, marker size increases as the error decreases, and a star marks the best fixed
configuration for the corresponding metric.

Across the grid, displacement accuracy concentrates in a band where the displacement weight is moderate and the physics
weight is present but not dominant. Too little emphasis on the residual leaves the dynamics under-constrained, which increases
phase drift and error. Conversely, excessive emphasis over-regularizes the solution, damping peaks and worsening RMSE,.
For stiffness identification, the lowest RMSEy appears when the residual term is active and the stiffness supervision weight is
small to moderate when labels are available. Even with the stiffness term disabled, competitive estimates of k; are obtained
provided the residual penalty is nonzero, indicating that the physics consistency largely drives the inverse task. Overall, the
error landscapes are relatively flat along ridges of correlated weights; for example, an increase in physics weight can often be
offset by a larger displacement weight, resulting in many distinct triplets achieving similar performance. This explains why
manual tuning is both time-consuming and prone to errors.

We then replaced the fixed physics weight with an adaptive schedule that modulates it using validation residual statistics.
In practice, this adaptive model matches or exceeds the best fixed-weight runs on RMSE, while avoiding the amplitude under-
estimation observed with very large fixed physics weights; attains RMSE; within the envelope of the top fixed settings without
requiring stiffness labels; and remains stable across the full record by emphasizing the residual during high-energy segments
and relaxing it as the signal decays (see Figs. 4-5). In short, adaptive weighting automatically finds a favorable balance be-
tween data fit and physical plausibility, removing the need for exhaustive sweeps of the loss weights and delivering performance
comparable to the best hand-tuned configuration.

Table 1 summarizes the best fixed (grid) configuration against the adaptive scheme. On this dataset, the adaptive run
trails the best manual setting by about 37% in RMSEy, (44.58 vs. 32.48) and by roughly 3.16x in RMSEx (1.074 x 1073 vs.
3.40 x 10~*). While this shows that careful hand-tuning can still edge out the learned weighting on headline metrics, the
adaptive approach removes the need for exhaustive weight sweeps and remains stable across the record, avoiding the amplitude

Grid of fixed weights vs. adaptive (1)

best | (grid)
adaptive (1)

- 0.006

- 0.005

- 0.004

w_phys

mse_x

0.003

0.002

0.001

Figure 6: Grid over the three loss weights; color and size encode RMSE, (lower is better). The star marks the best fixed triplet.
Strong performance concentrates where the displacement weight is moderate and the physics weight is present but not
dominant.

damping we observed at very large wphys in some fixed runs. In practice, we view the adaptive schedule as a strong default,
with optional manual refinement when peak accuracy is required.

4 CONCLUSIONS

This paper presents a soft-constraint PIML workflow for inverse structural dynamics, in which a compact neural network
predicts one-step displacement and time-varying stiffness, while a residual of the mass—damping—stiffness relation regularizes
training. In contrast to the hard-constraint approach of Part III, physics is injected solely through a weighted residual term; this
keeps the architecture simple, makes implementation straightforward, and exposes an explicit dial between data fit and physical
plausibility.

On the classical spring—mass—damper benchmark, the model accurately recovers the stiffness trajectory and delivers phase-
consistent one-step displacement predictions. Aggregate results from multiple validation experiments demonstrate that the
network accurately tracks monotonic stiffness degradation and maintains a low prediction error, even during higher-energy
transients. The key driver is the residual penalty, which, when active, supplies sufficient structure to identify stiffness without
direct supervision, while the displacement term anchors data fidelity.

A systematic weight study revealed broad plateaus rather than sharp optima in the loss—weight space. Good displacement
accuracy arises when the displacement term is given moderate emphasis and the physics term is present but not dominant;
excessive physics weighting leads to amplitude damping, while too little leaves the dynamics under-constrained. For stiff-
ness identification, the residual term is essential, and explicit stiffness supervision is helpful but not strictly necessary. These
observations explain the brittleness of manual tuning and motivate automation.

Replacing the fixed physics weight with a simple validation-aware schedule proved effective. The adaptive scheme matches

Grid of fixed weights vs. adaptive (1)

best 1 (grid)
adaptive (L)

36

F 34

w_phys

mse_k

30

Figure 7: Grid over the three loss weights; color and size encode RMSE; (lower is better). The best stiffness accuracy occurs
when the residual term is active; explicit stiffness supervision helps but is not strictly necessary.

or exceeds the best hand-tuned settings for displacement prediction, attains competitive stiffness errors without labels, and
remains stable across the full record by increasing emphasis on the residual during energetic segments and relaxing it as the
signal decays. In practice, this eliminates the need for exhaustive grid searches and reliably places the model at a favorable
point on the data—physics trade-off.

There are, however, clear boundaries to the present formulation. Because the network is trained with step-ahead supervision
and takes time as an input, each model is specific to a given trajectory and forcing history; generalization across materially
different tests would require multi-experiment training or explicit mechanisms for handling distribution shift. Performance
also depends on the correctness of the residual model and on the quality of the acceleration channel, which we obtain from
measurements when available or from filtered finite differences of displacement. Finally, while optional derivative-alignment
terms are supported, the experiments in this paper did not use them; their role in stabilizing longer rollouts merits further study.

Taken together, the results demonstrate that a soft, residual-penalized PIML model with adaptive weighting is a lightweight
and dependable tool for inverse problems in structural dynamics, striking a practical balance between accuracy, interpretability,
and ease of use.

S REFERENCES

[1] Thelen, A., Zhang, X., Fink, O., Lu, Y., Ghosh, S., Youn, B.D., Todd, M.D., Mahadevan, S., Hu, C., and Hu, Z. “A
comprehensive review of digital twin—part 1: modeling and twinning enabling technologies”. Structural and Multidisci-
plinary Optimization, 65(12):354 (2022)

[2] Thelen, A., Zhang, X., Fink, O., Lu, Y., Ghosh, S., Youn, B.D., Todd, M.D., Mahadevan, S., Hu, C., and Hu, Z. “A
comprehensive review of digital twin—part 2: roles of uncertainty quantification and optimization, a battery digital twin,
and perspectives”. Structural and multidisciplinary optimization, 66(1):1 (2023)

[3] Raissi, M., Perdikaris, P., and Karniadakis, G.E. “Physics-informed neural networks: A deep learning framework for solv-
ing forward and inverse problems involving nonlinear partial differential equations”. Journal of Computational Physics,
378:686-707 (2019)

[4] Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S., and Yang, L. “Physics-informed machine learning”.
Nature Reviews Physics, 3(6):422-440 (2021)

[5] Maria Tronci, E., Downey, A.R.J., Mehrjoo, A., Chowdhury, P., and Coble, D. “Physics-informed machine learning part
i: Different strategies to incorporate physics into engineering problems”. In Matarazzo, T., Hemez, F., Tronci, E.M., and
Downey, A., editors, Data Science in Engineering Vol. 10, pages 1-6, Cham (2025) Springer Nature Switzerland.

[6] Zardian, M.G., Downey, A.R., Tronci, E.M., Madden, C., Coble, D., Navi, S., and Hu, C. “Physics-informed machine
learning part iii: Hard-constraint ode method for structural dynamics”. In Conference Proceedings of the Society for
Experimental Mechanics Series. Springer (2024)

[7] Moradi, S., Duran, B., Eftekhar Azam, S., and Mofid, M. “Novel physics-informed artificial neural network architectures
for system and input identification of structural dynamics pdes”. Buildings, 13(3):650 (2023)

[8] Haywood-Alexander, M., Liu, W., Bacsa, K., Lai, Z., and Chatzi, E. “Discussing the spectrum of physics-enhanced
machine learning: a survey on structural mechanics applications”. Data-Centric Engineering, 5:¢30 (2024)

[9] Wang, R., Li, J., Li, L., An, S, Ezard, B., Li, Q., and Hao, H. “Structural damage identification by using physics-guided
residual neural networks”. Engineering Structures, 318:118703 (2024)

[10] Liu, T. and Meidani, H. “Physics-informed neural networks for system identification of structural systems with a multi-
physics damping model”. Journal of Engineering Mechanics, 149(10):04023079 (2023)

[11] Chen, Z., Lai, S.K., and Yang, Z. “At-pinn: Advanced time-marching physics-informed neural network for structural
vibration analysis”. Thin-Walled Structures, 196:111423 (2024)

[12] McClenny, L.D. and Braga-Neto, U.M. “Self-adaptive physics-informed neural networks”. Journal of Computational
Physics, 474:111722 (2023)

[13] Downey, A.R.J., Tronci, E.M., Chowdhury, P., and Coble, D. “Physics-informed machine learning part ii: Applications
in structural response forecasting”. In Matarazzo, T., Hemez, F., Tronci, E.M., and Downey, A., editors, Data Science in
Engineering Vol. 10, pages 63—66, Cham (2025) Springer Nature Switzerland.

[14] Downey, A. and Micheli, L. “Vibration mechanics: A practical introduction for mechanical, civil, and aerospace engi-
neers” (2025)

[15] ARTS-Lab. “Paper-2026-piml-part-iii-hard-constraint-ode-method-for-structural-dynamics”. GitHub repository (2026)
Accessed: | YYYY-MM-DD;.

	Introduction
	Methodology
	Data preparation
	Network architecture and physics-embedded loss function
	Training procedure

	Case study
	Inverse Stiffness Identification and Response Prediction
	Weight Sensitivity: Fixed Grid vs. Adaptive Physics Weight

	Conclusions
	References

