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PCB failure mechanisms under shock

PCB failures under shock are caused by: 

• Bending of the base PCB board, causing 
stresses to build up at the solder balls.

• Adhesion challenges of masses (components) 
accelerating away from the PCB.
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Ongoing work
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Relevant Experimental system



6

Experimental procedure



Project Goal
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Sensing Processing Actuation

• Develop data-driven real-time control 

solutions for systems under shock.

• Extend electronic component lifetime in 

harsh environments.



What is an FPGA?
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U55C UltraScale+Kintex-7 K70T-2C ICE40

Field Programable Gate Array

• A Field-Programmable Gate Array (FPGA) is a reconfigurable hardware device that 
allows for parallel processing, making it ideal for real-time control applications. 

• Low-latency processing for rapid control adjustments.

• Parallel computation enables efficient execution of control algorithms.

• Custom hardware acceleration for ML and structured controllers.



FPGA Components

• Typically, an FPGA consists of three 
basic components:

• Programmable Logic Cells/Blocks (also 
called slices)

• Programmable Routing

• IO Blocks 

• Logic Blocks are responsible for 
implementing the core logic 
functions.

• Routing is responsible for connecting 
the Logic Blocks.

• IO Blocks are connected to the Logic 
Blocks through the routing and help 
to make external connections.
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What is Inside an FPGA?

• What is a CLB?

• A Configurable Logic Block (CLB) is a programmable 
circuit inside an FPGA.

• Think of it like LEGO bricks for digital circuits—each CLB 
can be configured for different tasks.

• What's Inside a CLB?

• Look-Up Tables (LUTs): Store logic functions.

• Flip-Flops (FFs): Hold values for sequential operations.

• Carry Chains: Optimize arithmetic operations.

• Multiplexers (MUX): Decide which signals to use.

• Why is CLB Hardware Important in Design?

• Every logic operation, memory storage, and computation 
needs CLB resources.

• More features = More CLBs = Higher FPGA cost & 
power consumption.
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FPGA vs GPU vs CPU

• CPUs (Central Processing Units)

• Highly flexible and easy to program

• General-purpose, but lower computational efficiency for specialized tasks

• GPUs (Graphics Processing Units)

• Optimized for parallel computing, great for machine learning and graphics

• More efficient than CPUs for certain workloads, but still power-intensive

• FPGAs (Field-Programmable Gate Arrays)

• Custom hardware acceleration for specific applications

• More energy-efficient than GPUs and CPUs for dedicated tasks

• Harder to program, requiring expertise in hardware description languages

• ASICs (Application-Specific Integrated Circuits)

• Highest efficiency but fixed-function and costly to develop

• Key Insight: FPGAs balance efficiency and flexibility, making them 
ideal for edge computing, embedded systems, and real-time 
applications with power and space constraints.
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System Simulation



System Under Test

• Material: 

• Based on slender steel beam.

• Width = 0.05 m; Thickness = 0.005 m; 
Length = 1.00 m

• Young’s Modulus = 210e9 Pa;     
Density = 7850 kg/m^3

• α = 0.01; β = 0.001

• Simulation:

• Nodes (𝑛) = 50; DOFs = 100

• Impact node = ½ 𝑛; Control node = ¼ 𝑛
• Impact Force = 1000 N

• 𝛽𝑛 = 0.25; 𝛾 = 0.5
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Simulation Model

• FEM of a cantilever beam subjected to an impact force.

• Governed by the Euler-Bernoulli Beam Theory:

𝑀 ሷ𝑢 t + 𝐶 ሶ𝑢 𝑡 + 𝐾𝑢 𝑡 = 𝐹(𝑡)

• where 𝑀 is the mass matrix, 𝐶 is the Rayleigh damping matrix, 𝐾 is the stiffness 
matrix, 𝑢 𝑡  is the displacement vector, and 𝐹(𝑡) is the external force vector.

• Discretized into 𝑛 nodes; resulting in 2𝑛 DOFs, due to transverse displacement 
and rotation at each node.

• External forces are applied at a specific node during the impact; control forces 
are superimposed.

• Elemental mass and stiffness matrices are assembled into global matrices.
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Simulation Model

• The Rayleigh damping matrix 𝐶 is constructed as a linear combination of the mass and 
stiffness matrices:

𝐶 =  𝛼𝑀 + 𝛽𝐾

   where 𝛼 and 𝛽 are user-defined damping coefficients.

• Time integration via Newmark-beta method, updating displacements, velocities, and 
accelerations iteratively.

• Effective Stiffness matrix equation: 

𝐾eff = K +
𝛾

𝛽𝑛∆𝑡
𝐶 +

1

𝛽𝑛∆𝑡2
𝑀

   where 𝛽𝑛 and 𝛾 are Newmark-beta parameters.
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Control Strategies



Control Strategies

• Control forces are added to the system's force vector to influence the beam 

dynamics.

• Controllers studied: 

• Proportional-Derivative (PD)

• Linear Quadratic Gaussian (LQG)

• Multi-Layer Perceptron (MLP)

• Focus kept to simpler strategies for the time to confirm feasibility.

• Hardware implementation required to guarantee resource (not simulated).
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Proportional-Derivative

• The PD Controller applies feedback based on the displacement (𝑒) and velocity 

( ሶ𝑒) errors: 

𝑢 𝑡 = 𝑘𝑝𝑒 + 𝑘𝑑 ሶ𝑒

  where 𝑘𝑝 is the proportional gain and 𝑘𝑑 is the derivative gain.

• Effective but linear and limited to its tuning parameters.

19

PD Diagram



Linear Quadratic Gaussian

• The LQG Controller combines state feedback with an observer (Kalman filter) for 
optimal performance in the presence of noise. 

• The augmented state-space model includes both displacement and velocity states. 

• Feedback is applied to minimize the combined cost of state deviations and control 
effort.

• State-space representation: ሶ𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡

• Cost function: 𝐽 = ׬
0

∞
(𝑥𝑇 𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡

• Control law: 𝑢 𝑡 = −𝐾𝑥(𝑡)

• Optimized but sensitive to noise and                                                                               
modeling errors.
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Multi-Layer Perceptron Layout

The MLP Controller is an artificial neural 

network made up of: 

• an input layer with three neurons 

representing displacement (𝑥), velocity 

( ሶ𝑥), and acceleration ( ሷ𝑥); 

• two hidden layers with up to neurons 

each, activated by the ReLU function                

𝜎 𝑥 = max(0, 𝑥); 

• an output layer with one neuron producing 

the predicted control force (𝐹𝑀𝐿𝑃). 
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Training Multi-Layer Perceptron

• The MLP is trained using real LQG data, 

with the control force computed by a 

LQG controller as the reference.

• The training minimizes the error 

between 𝐹𝑀𝐿𝑃 ​ and 𝐹𝐿𝑄𝐺 ​ using the Mean 

Squared Error (MSE) loss and optimizes 

weights and biases through 

backpropagation using the Adam 

optimizer.

𝐿 =
1

𝑁
෍

𝑖=1

𝑁

(𝐹𝑀𝐿𝑃 − 𝐹𝐿𝑄𝐺)2

• A network of 30 neurons per hidden 

layer was chosen.
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Results



Controller Results

• All control methods do 

fairly well.

• The MLP was able to 

learn the majority of the 

LQR’s response.

• In all metrics, the LQR 

outperforms the MLP 

which outperforms the 

PD.
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metric uncontorlled PD controlled LQG controlled MLP controlled

max displacement 0.2575 m 0.2435 m 0.2343 m 0.2451 m

RMS displacement 0.0591 m 0.0266 m 0.0204 m 0.0234 m

settling time 8.74 s 1.82 s 1.01 s 1.36 s

control effort 0.91 N 0.53 N 0.70 N

damping efficiency 3.57% 7.32% 5.09%

time-weighted damping efficiency 1.27% 3.64% 2.25%



FPGA Utilization Results

• MLP has a 22% 

improvement over the LQG 

in terms of total slices used.

• This is the metric that 

matters the most as its 

what typically constrains 

FPGA deployment

• MLP uses more LUTs, this is 

expected as the MLP has 

more weights to store
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resource PD controller LQG controller MLP controller

total slices 53% (539/10250) 36.1% (3699/10250) 28.0% (2867/10250)

slice registers 1.0% (842/82000) 17.4% (14259/82000) 7.9% (6439/82000)

slice LUTs 3.6% (1482/41000) 15.1% (6208/41000) 17.5% (7165/41000)

block RAMs 0.0% (0/135) 1.5% (2/135) 2.2% (3/135)

DSP48s 0.8% (2/240) 1.3% (3/240) 2.9% (7/240)



Conclusion

• Control Trade-offs: 

• PD excels in simplicity

• LQG balances effort and performance

• MLP offers efficiency with optimization potential.

• MLP Viability: 

• With targeted optimizations, MLP can match or surpass traditional controllers in FPGA deployment.

• Structured vs. Learning-Based Control: 

• Predictable, model-based approaches ensure stability, while learning-based methods enable 

adaptability.

• Optimization Potential: 

• Techniques like pruning and quantization can enhance MLP’s real-time feasibility.
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Future Work

• Improvement of simulation 
models.

• Optimization of learning-based 
control strategies.

• System analysis.

• Dataset collection.

• Real-time FPGA 
experimentation.

• Piezoelectric sensing/actuation 
experimentation.
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Questions?
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Real-world Applications
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Piezoelectric actuation on the nose 

and bottom of hypersonic aircraft.

PZT Actuator Patches



Active Control

• Key Point: Optimized control of cantilever beam vibrations.

• Content:

• Study: Awada et al. (2022)

• Conclusion: The genetic algorithm developed in this study successfully optimizes active control of a 

smart cantilever beam using piezoelectric actuators, significantly reducing beam vibrations.

• Takeaway: A simple PID controller demonstrates the potential for stable and efficient vibration control 

in smart structures. This means that simple, but more flexible controllers could be used to improve 

vibration control.
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Control Strategies

• Key Point: Improved performance in structural control through adaptive algorithms.

• Content:

• Study: Banaei et al. (2023)

• Conclusion: The introduction of dynamic weighting factors in the genetic algorithm’s constrained 

objective function leads to improved vibration reduction in complex, large-scale structural systems.

• Takeaway: This approach enhances the adaptability of control systems in varying conditions, making it 

more suitable for complex structural applications.
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FPGA Usage

• Key Point: FPGA-based vibration control enables real-time processing for active 

damping.

• Content:

• Study: Leva & Piroddi (2008)

• Conclusion: Implementing an active vibration controller on an FPGA allows for efficient real-time 

adaptive filtering, reducing vibration in high-precision systems.

• Takeaway: FPGAs provide a powerful solution for vibration control by enabling rapid computation and 

real-time adaptability, which are crucial for systems like PCB protection and structural health 

monitoring.
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