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INTRODUCTION
• Mechanical shock occurs when a 

system undergoes a dramatic and 
sudden change in acceleration.

• Shock events can cause damage 
to the system, contributing to 
objective failure.

• Active control of these systems 
can dampen shock and prevent 
damage. 

• In the lab, we plan to use 
piezoelectric pads to provide 
sensing and actuation.
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REAL-WORLD APPLICATIONS

Blast Against Civil Structures High-speed Aircraft and AirframesAutomotive Impact and Crashes
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REAL-WORLD APPLICATIONS
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Piezoelectric actuation on the nose 

and bottom of hypersonic aircraft.

PZT Actuator Patches



ACTIVE CONTROL
• Key Point: Optimized control of 

cantilever beam vibrations.

• Content:

• Study: Awada et al. (2022)

• Conclusion: The genetic algorithm 
developed in this study successfully 
optimizes active control of a smart cantilever 
beam using piezoelectric actuators, 
significantly reducing beam vibrations.

• Takeaway: A simple PID controller may 
demonstrate the potential for stable and 
efficient vibration control in smart structures.
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CONTROL STRATEGIES
• Key Point: Improved performance in 

structural control through adaptive 
algorithms.

• Content:

• Study: Banaei et al. (2023)

• Conclusion: The introduction of dynamic 
weighting factors in the genetic algorithm’s 
constrained objective function leads to 
improved vibration reduction in complex, 
large-scale structural systems.

• Takeaway: This approach enhances the 
adaptability of control systems in varying 
conditions, making it more suitable for 
complex structural applications.
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PIEZO ACTIVE STRUCTURES
• Key Point: Application-focused development 

of piezoelectric actuator systems.

• Content:

• Study: Gosiewski et al. (2023)

• Conclusion: Experimental tests on different 
configurations of piezoelectric actuators reveal the 
most effective designs for real-world vibration 
control applications, offering practical 
improvements in piezoelectric structure 
performance.

• Takeaway: Real-world testing of piezoelectric 
materials and actuator configurations helps refine 
design parameters for improved vibration control.
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ACTUATOR PLACEMENT
• Key Point: Vibration reduction through 

strategic placement of piezoelectric 
patches.

• Content:
• Study: Labanie et al. (2017)

• Conclusion: Finite element analysis (FEA) 
combined with a parametric sweep 
optimization method shows that placing 
piezoelectric patches near the fixed edge of a 
plate is optimal for minimizing vibration, as it 
enables actuators to create effective counter-
moments that reduce oscillations.

• Takeaway:  Understanding where vibrations 
are most effectively countered, such as near 
the fixed edge, can inform strategic patch 
placement, maximizing the efficiency of 
vibration control systems and enhancing 
structural reliability.
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ONGOING WORK
• Various experiments involving shock 

testing.

o Mainly using circular PCB focusing on a 
USAF application.

o Other testing using cantilever beams, etc.

• To study PCB and onboard 
component response to shock.

• Dataset creation for future and related 
studies.
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ONGOING WORK
• Printed circuit board design focusing 

on studying component fatigue rate. 

o Using many different metrics, requiring 
varying designs of PCB and equipment 
during experiment.

• Onboard dummy component (BGA) 
in place of controller.
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ONGOING WORK
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FOCUSED EXPERIMENT
• System at varying drop heights in cyclical succession (low to high).

• Creation of dataset, primarily for system analysis and later use in control strategy 
development and sensor/actuator placement.  

Drop Tower and Tested Printed Circuit Board.
Board Acceleration over Time.
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SIMULATIONS

14 Simulated Mode Shapes and Natural Frequencies.

• Simulation dimension taken 
from PCB design and 175Tg 
FR4 material properties. The 
system is fixed from 3 holes 
on the outer edge.

• Finite Element Analysis 
(FEA) was used to find 
theoretical natural frequencies 
and mode shapes of the 
system.

System Specifications used in Simulations.



SIMULATIONS

Displacement Magnitude
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Simulated Stress (left) and Strain (right) Magnitude.

• Strain, stress, and displacement simulations identified high-activity regions.

• Comparison of plots helps to determine the most effective locations for piezo placement.



• Data processing to confirm simulation accuracy (FFT, FRF, and Coherence).

• Natural frequency comparison.

ANALYSIS

System Response Fast Fourier Transform

Simulated vs Experimental Natural Frequencies and Margin of Error
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ANALYSIS

System Coherence
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System Frequency Response Function

M
ag

n
it

u
d
e

Frequency (Hz)

Frequency (Hz)

C
o
h
er

en
ce

Mode 1, 2 Mode 3 Mode 4

Mode 4Mode 3Mode 1, 2

0.9



CONCLUSION
• Placing piezo pads in high-

strain areas maximizes in-
plane displacement, improving 
vibration dampening and 
system response.

• Sensors in high-strain regions 
enhance feedback accuracy, 
allowing for more efficient 
real-time control and system 
stabilization.

• Alternative placement will be 
tested in lower-strain/high-
displacement areas to compare 
overall performance and 
confirm the effectiveness of 
the optimal locations. Proposed (left) and Possible Alternative (right) Piezo Placement for Optimization.
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FUTURE WORK
• Progress toward control strategies.

o LabView FPGA used for real-

time implementation of 

control strategies.

o Coded simulations for system 

behavior modeling and 

optimization.

o Simulink for system-level 

simulations and control 

design.

• Piezoelectric sensing and 

actuation experimentation, 

improvement, and performance 

optimization.
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Zoomed Displacement Around Impact Time at Control Node
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Python Active Cantilever 

Beam Simulation



QUESTIONS?

Trotter Roberts 10/17/2024
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