

Development of a Characterization Methodology for Composite Plates in UAV Wing Applications

Sydney Morris¹, Liang Cao, Ph.D.², James Ricles, Ph.D.², Patrick Wynne¹, Joud N. Satme¹, Austin R.J. Downey, Ph.D.^{1,3}

¹Department of Mechanical Engineering, University of South Carolina

²Department of Civil & Environmental Engineering, Lehigh University

³Department of Civil & Environmental Engineering, University of South Carolina

Purpose

To develop characterization methodologies for custom composite plates in fixed-wing UAV wing applications

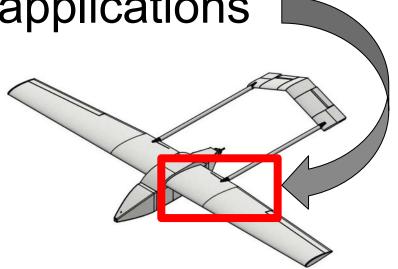


Fig. 1. Fixed-wing UAV model (ARTS-Lab, 2025)

Introduction

- UAVs excel in remote field work (Adawy et al., 2023)
- Composites have increasingly important role in aircraft design optimization
 - Including structural batteries (Jin et al., 2023)
- Aircraft are subject to extensive testing to uphold flight standards (Blasi et al., 2021)
- A characterization protocol will create a GFRP property database

Background: Composites

- Currently, aerospace composite work is focused on carbon fiber (CFRP)
- Fiberglass (GFRP) composites offer similar properties, but are lower cost and easier to assemble (Ashrith et al., 2023)
- Structural battery composites further aid in design optimization (Jin et al., 2023)

Background: Static Characterization

- Various loading tests done on across wing (Sullivan et al., 2006)
 - hydraulic actuator
 - whiffletree

Methods: Static Characterization

Measure load vs deflection

Generate y=k*x (least squares)

Identify stiffness, k

Calculate natural frequency, f

- Suspend a series of weights from the free end
- Measure corresponding deflections

- Fit data using least squares estimation method
- Least squares forces an origin of 0
- The slope of the least squares estimation line
- $\mathbf{k} = \frac{F}{\Delta} = \frac{3EI}{l^3}$

- (Amrita, 2011)
- theoretical value,

$$f = \frac{1}{2\pi} \sqrt{\frac{k \cdot g}{\frac{33}{140} W_b + W_t}}$$

Use correction factor,

$$\frac{f_1}{f_2} = \sqrt{\frac{l_2}{l_1}^3}$$

$$f = \frac{3.5156}{2\pi} \sqrt{\frac{k * g}{3 * W}}$$

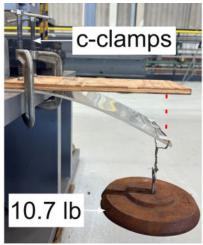


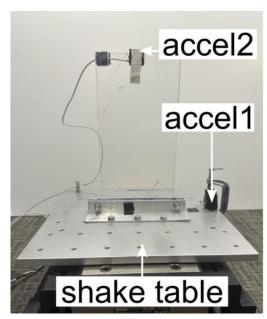
Fig. 2. Static characterization set up

Background: Dynamic Characterization

- General dynamics
 - Ironbird (Blasi et al., 2021)
- Modal
 - Originally, Impact Hammer Test (Saheb & Deepak, 2023)
 - Recently, Ground Vibrations Test (GVT)
 - Shake table (Sullivan et al., 2006)

Methods: Dynamic Characterization

Apply sine wave sweep to shake table


Record accelerations

Analyze FFTs

Compare theoretical and experimental values

- Manually applied between a range of 1 to 20 Hz
- Accelerometer located at the base
- Accelerometer located at specimen tip

- Analyze individually
- Create a FFT ratio (tip/base) to further identify frequency
- Experimental (peak(s) on FFT) vs theoretical (calculated from static results)

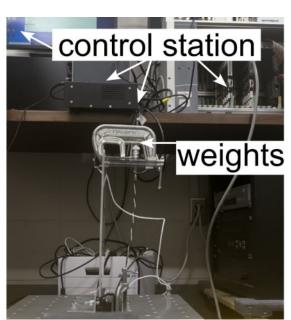


Fig. 3. Dynamic characterization set up

Preliminary Results

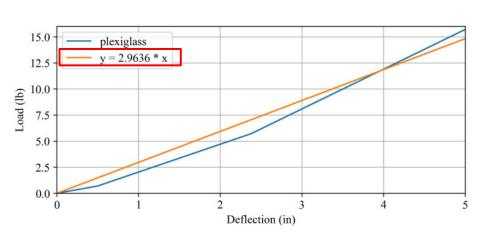


Fig. 4. Graphical least squares estimation of data

Error of 7.7%!

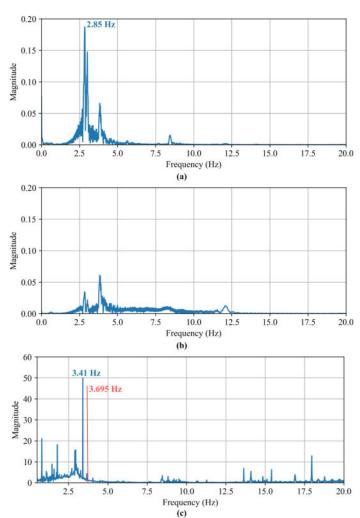
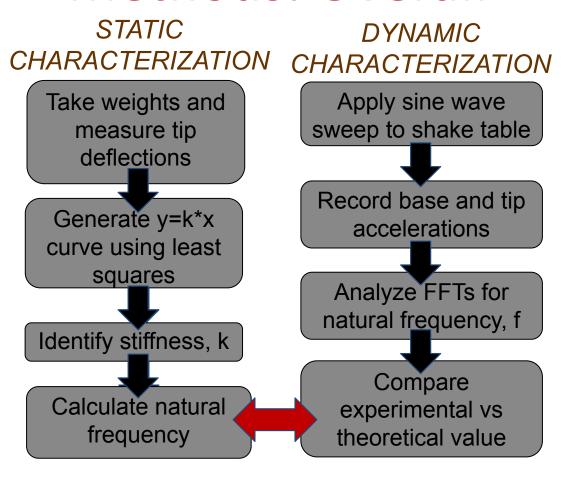



Fig. 5. FFT ratio of plexiglass modal data

Methods: Overall

works together!

Composite Characterization: Static

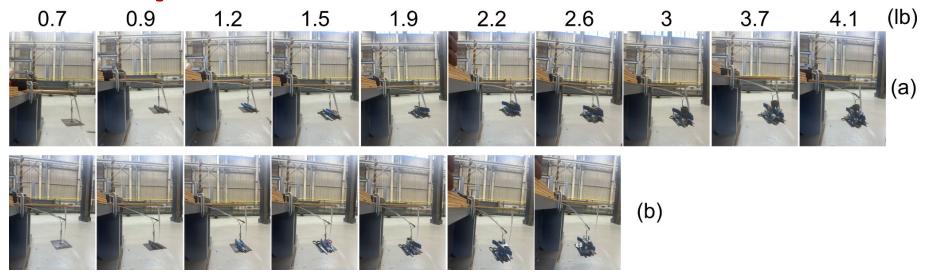


Fig. 6. Sequential load in static characterization set up on (a) control composite and (b) structural battery

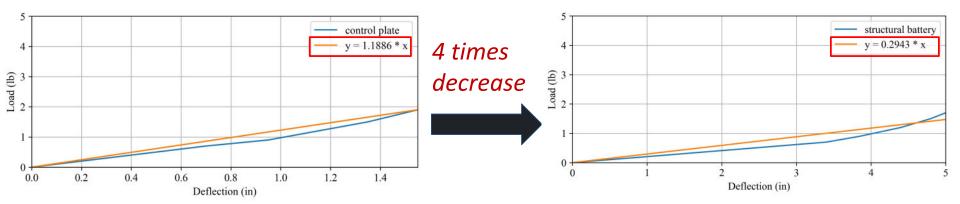
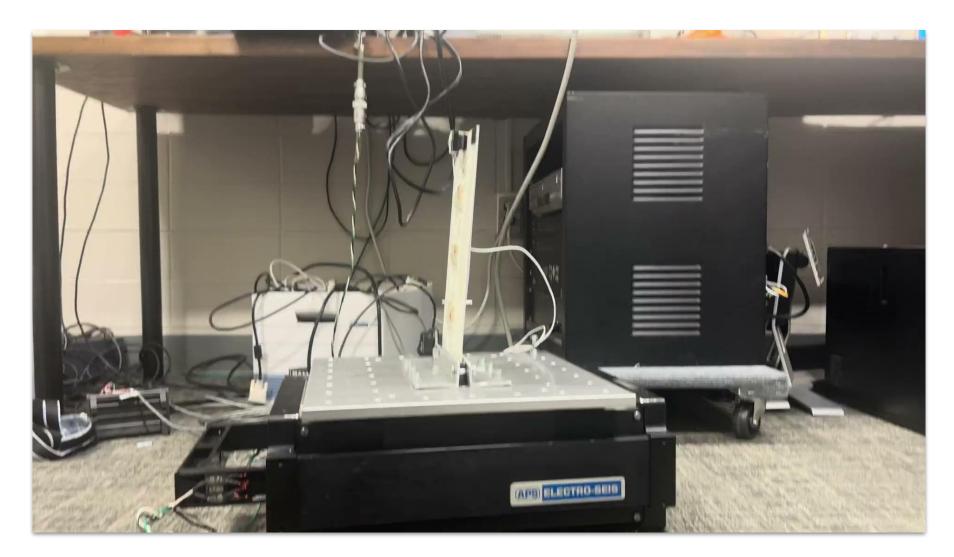



Fig. 7. Stiffness comparison between structural battery and control composite

Composite Characterization: Dynamic

Composite Characterization: Dynamic

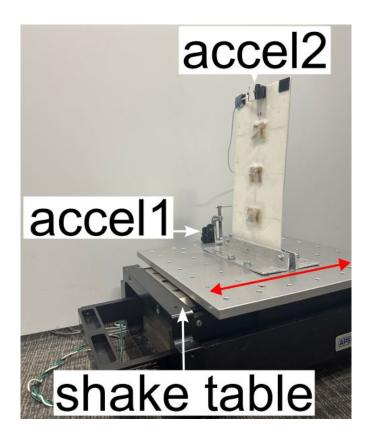
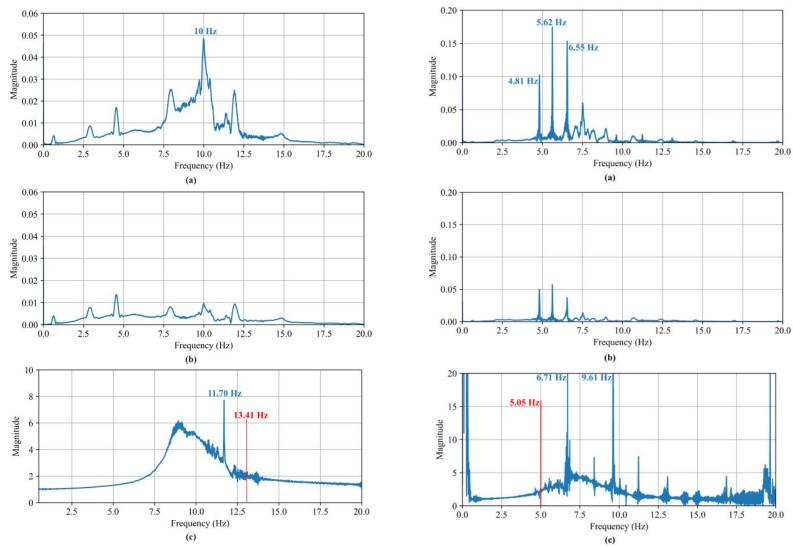
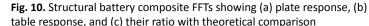



Fig. 8 Labeled modal characterization set up



Composite Characterization: Dynamic

Fig. 9. Control composite FFTs showing (a) plate response, (b) table response, and (c) their ratio with theoretical comparison

Conclusion

- Method validated by accurate results
- Groundwork for future testing & UAV design
- Additional testing needed
 - Reasons for false peaks, frequency leakage
 - Effects of composite composition, delamination

Future Research

- Methodology with improved accuracy
 - digital inputs, actuators, hybrid simulation
- Improved composites
 - Less delamination
 - Even, leveled layers
 - Predict flight capabilities
 - Build & test custom UAVs

My Experience at Lehigh's RTMD

Learning Outcomes

TOP TAKEAWAYS:

- Research takes time
- 2. Numbers don't lie
- 3. Can of worms

NATURAL HAZARD APPLICATION:

Improve remote field work related to natural hazards

FUTURE PLANS:

 Plans to attend the University of South Carolina for a Master of Science in Mechanical Engineering

Acknowledgments

This research is supported by the U. S. National Science Foundation under the NHERI Network Coordination Office Grant No. 2129782 and the Real-time Multi-Directional Natural Hazards Simulation Facility (RTMD) at Lehigh University Grant No. 2037771. Special thanks to Dr. James M. Ricles and Dr. Liang Cao for their expertise and guidance as well as to Dr. Austin R. J. Downey for his continuous support. I'd also like to thank my 2025 NHERI REU cohort.

References

- Adawy, M., et al. 2023. "Design and fabrication of a fixed-wing Unmanned Aerial Vehicle (UAV)." Ain Shams Eng. J. 14 (9), 102094. https://doi.org/10.1016/j.asej.2022.102094
- ARTS-Lab. 2025. "SWIFT-UAV: Scientific Workhorse for In-flight Field Tests UAV," Github. https://github.com/ARTS-Laboratory/SWIFT-UAV
- Ashrith, H. S., T. P. Jeevan, and J. Xu. 2023. "A Review on the Fabrication and Mechanical Characterization of Fibrous Composites for Engineering Applications." MDPI: J. Compos. Sci., Special Issue 7 (6), 252. https://doi.org/10.3390/jcs7060252
- Blasi, L., et al. 2021. "Modeling and Control of a Modular Iron Bird." MDPI: Aerospace, Special Issue 8 (2), 39. https://doi.org/10.3390/aerospace8020039

References Continued

Jin, T., G. Singer, K. Liang, and Y. Yang. 2023. "Structural batteries: Advances, challenges and perspectives." *Mater. Today* 62, pp. 151-167. https://doi.org/10.1016/j.mattod.2022.12.001

Saheb, K., S. Deepak. 2023. "Free vibration analysis of a laminated composite plate using experimental modal testing." In *Proc., Mater. Today, 2nd International Conference and Exposition on Advances in Mechanical Engineering* 72 (3): pp. 1573-1583, edited by S. Lahane et al, 645-1984. https://doi.org/10.1016/j.matpr.2022.09.390

Sullivan, R. W., Hwang, Y., Rais-Rohani, M., & Lacy, T. (2009). (PDF) structural testing of an ultralight UAV composite wing. https://www.researchgate.net/publication/268477156_Structural_Testing_of_an_Ultralight_U AV_Composite_Wing

vlab.amrita.edu,. (2011). Free Vibration of a Cantilever Beam with a Lumped Mass at Free End. vlab.amrita.edu/?sub=3&brch=175&sim=1078&cnt=1

National Science Foundation

The NHERI Network Coordination Office is supported by the National Science Foundation award <u>CMMI 2129782</u>. Any statements in this material are those of the presenter(s) and do not necessarily reflect the views of the National Science Foundation.