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Purpose

To develop characterization 
methodologies for custom composite 

plates in fixed-wing UAV wing 
applications

Fig. 1. Fixed-wing UAV model (ARTS-Lab, 2025)



Introduction
• UAVs excel in remote field work (Adawy et al., 

2023)

• Composites have increasingly important role in 
aircraft design optimization
– Including structural batteries (Jin et al., 2023)

• Aircraft are subject to extensive testing to 
uphold flight standards (Blasi et al., 2021) 

• A characterization protocol will create a GFRP 
property database



Background: Composites

• Currently, aerospace composite work is 
focused on carbon fiber (CFRP)

• Fiberglass (GFRP) composites offer 
similar properties, but are lower cost and 
easier to assemble (Ashrith et al., 2023)

• Structural battery composites further aid 
in design optimization (Jin et al., 2023)



Background: Static Characterization

• Various loading tests done on across wing 
(Sullivan et al., 2006)
– hydraulic actuator
– whiffletree



Methods: Static Characterization
Measure load vs deflection

● Suspend a series 
of weights from 
the free end

● Measure 
corresponding 
deflections

Generate y=k*x
(least squares)

● Fit data using 
least squares 
estimation 
method

● Least squares 
forces an origin of 
0

Identify stiffness, k

 

Calculate natural 
frequency, f

Fig. 2. Static characterization set up

(Amrita, 2011)



Background: Dynamic Characterization

• General dynamics
– Ironbird (Blasi et al., 2021)

• Modal
– Originally, Impact Hammer Test (Saheb & 

Deepak, 2023)
– Recently, Ground Vibrations Test (GVT)
– Shake table (Sullivan et al., 2006)



Methods: Dynamic Characterization
Apply sine wave sweep to 

shake table

● Manually applied 
between a range 
of 1 to 20 Hz

Record accelerations

● Accelerometer 
located at the 
base

● Accelerometer 
located at 
specimen tip

Analyze FFTs

● Analyze 
individually

● Create a FFT ratio 
(tip/base) to 
further identify 
frequency 

Compare theoretical 
and experimental 

values

● Experimental 
(peak(s) on FFT) 
vs theoretical 
(calculated from 
static results)

Fig. 3. Dynamic characterization set up



Preliminary Results

Error of 7.7%!

Fig. 5. FFT ratio of plexiglass modal data

Fig. 4. Graphical least squares estimation of data



Methods: Overall

works together!

DYNAMIC 
CHARACTERIZATION

Apply sine wave 
sweep to shake table

Record base and tip 
accelerations

Analyze FFTs for 
natural frequency, f

Compare 
experimental vs 
theoretical value

STATIC 
CHARACTERIZATION

 Take weights and 
measure tip 
deflections

Generate y=k*x 
curve using least 

squares

Identify stiffness, k

Calculate natural 
frequency



Composite Characterization: Static

4 times 
decrease

Fig. 7. Stiffness comparison between structural battery and control composite

Fig. 6.  Sequential load in static characterization set up on (a) control composite and (b) structural battery



Composite Characterization: Dynamic

https://docs.google.com/file/d/1QE-tyw4OCfGXqCDsszk0vx3r22qLfd0l/preview


Composite Characterization: Dynamic

Fig. 8 Labeled modal characterization set up



Composite Characterization: Dynamic

Fig. 10. Structural battery composite FFTs showing (a) plate response, (b) 
table response, and (c) their ratio with theoretical comparison

Fig. 9. Control composite FFTs showing (a) plate response, (b) table response, 
and (c) their ratio with theoretical comparison



Conclusion

• Method validated by accurate results

• Groundwork for future testing & UAV design

• Additional testing needed
– Reasons for false peaks, frequency leakage

– Effects of composite composition, delamination



Future Research

• Methodology with improved accuracy
– digital inputs, actuators, hybrid simulation

• Improved composites
– Less delamination

– Even, leveled layers

• Predict flight capabilities

• Build & test custom UAVs



My Experience at Lehigh’s RTMD



Learning Outcomes
TOP TAKEAWAYS:
1. Research takes time
2. Numbers don’t lie
3. Can of worms

NATURAL HAZARD APPLICATION:

• Improve remote field work related to natural hazards

FUTURE PLANS:

• Plans to attend the University of South Carolina for a 
Master of Science in Mechanical Engineering
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