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Background
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Structural Health Monitoring

Structural Health Monitoring (SHM) is the 

process of assessing the integrity of structures in 

real time. It has the following benefits:

• Enables early warning for structural failure

• Provides insights into how the structure 

responds to changing conditions

• Collects data to inform future designs
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UAV-Deployable Sensor Package

Brooklyn SHM sensing node features:

• Architecture: 1x Arm Cortex-M7 at 

600MHz with FPU, 1024 KB memory

• Sensors: MEMS accelerometer for 

vibration sensing

• Deployment: Magnetic base enables it 

to be attached to the structure using a 

drone
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Sensor deployment and retrieval mission
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Vibration Signal Compensation

Challenges facing SHM sensing nodes:

• Transmissibility loss: low-frequency 

vibration information may struggle to reach 

the sensing node through the attachment 

point.

• Cost: SHM nodes need to be cost-effective, 

leading to sensor quality compromises

LSTM-based signal compensators have been 

shown to be effective at mitigating these 

problems.
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Edge Machine Learning

Why process data at edge?

• Efficiency: IoT devices like SHM sensing 
nodes are responsible for producing much of 
the world's data. Off-line processing puts a 
strain on cloud computing infrastructure.

• Reduce transmission: SHM sensing nodes 
have limited battery capacity. Processing 
data on edge saves power by minimizing 
radio use.

• Location: Some sensing nodes need to be 
placed in areas where constant 
communication is not possible.
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Model Compression
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Why compression is important:

• Memory footprint: Edge devices are often 

equipped with minimal memory, making the 

savings provided by compression essential.

• Latency: Compression may allow inference 

to be completed faster.

• Complexity: Compression enables models 

initially too complex for constrained edge 

devices to be deployed.



Long Short-Term Memory

• LSTM is a form of recurrent neural network 
that uses a gated structure to determine what 
information to retain and “forget”.

• The complex structure of LSTM makes it an 
ideal candidate for model compression.
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𝑓: forget gate

𝑖: input gate

𝑜: output gate

𝑐: carry state

ℎ: hidden state /

inference output

∘: element-wise     

multiplication

𝜎: sigmoid activation 

function



Long Short-Term Memory

• Typical LSTM inference requires four separate 

weight matrices (assuming 𝑊 and 𝑈 are 

concatenated) – one for each gate. This leads 

to four separate matrix-vector multiplications 

being required for inference.

• These weight matrices can be combined to 

enable inference to be performed in a single 

matrix-vector multiplication.

• The consolidated weight matrix simplifies the 

model compression process, as only one 

matrix has to be compressed.
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The Driving Challenge 

• The matrix-vector product Wy is the driving 

computation in the LSTM in terms of cost.

• We can make LSTMs fit on smaller 

processors and run faster if we can reduce 

the complexity of this matrix-vector multiply. 
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Quantization

Quantization is the process of converting 

floating-point values to lower-precision fixed-

point values.

Advantages:

• Significant reduction in memory footprint

• Preserves dense matrices

• May improve latency if platform lacks a 

performant FPU

Disadvantages:

• Inference still takes the same amount of 

adds and multiplies

• For non-parallel architectures with a 

performant FPU, latency is not improved
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Pruning

Pruning is the process of eliminating weights 

close to zero.

Advantages:

• Control over error threshold

Disadvantages:

• Sparse matrices are less efficient on 

general-purpose computers due to cache 

issues

14

By CrumpledBenito - Own work, CC BY-SA 4.0, 

https://commons.wikimedia.org/w/index.php?curid=

93525159



Low-Rank Approximation
Low-rank approximation is the process of 

representing the information in a matrix with 

another matrix of a lower rank.

Advantages:

• Preserves dense matrices

• Control over error threshold

• Both saves space and improves latency

Disadvantages:

• Direct use of singular value decomposition 

(SVD) only provides benefits after over half 

the ranks are removed, which may not be 

possible
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Methodology



Stating the Challenge 

Problem: In traditional low-rank approximation, the 

truncated SVD is used directly for inference. This means 

we only save space after more than half the ranks of W in 

the LSTM are removed, which may be impractical.

Question: Can we create a more efficient way to store 

the information in W, enabling the deployment of LSTMs 

on smaller edge devices?
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Degrees-of-Freedom Decomposition

Mathematical Reasoning:

• For a matrix with rank r<min(m,n), all rows exist in the span of only r ‘basis’ rows

• The remaining m−r rows may be written as a transform of these ‘basis’ rows.

Using this information, we construct the following two-step process:

𝐴𝑥1 = 𝐵𝑥,
𝐴𝑥2 = 𝐶𝑥1,

𝐴𝑥 = 𝑃
𝐴𝑥1

𝐴𝑥2

Here, B is an r×m matrix, C is (n−r)×r, and P is a permutation matrix used to chose the r 

basis rows. Now, instead of storing U, Σ, and VT , we only need to store 𝐵 and 𝐶.
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Degrees-of-Freedom Decomposition

Computing B and C

Split 𝑈 into 
𝑈1

𝑈2
, where 𝑈1 is 𝑟 × 𝑟,

𝐵 = 𝑈1Σ𝑉T,

𝐶 = 𝑈2𝑈1
−1.

Weights stored: 𝑟 × 𝑚 + 𝑛 − 𝑟 × 𝑟

Multiplies: 𝑚𝑛 − (𝑚 − 𝑟)(𝑛 − 𝑟)

Adds: (𝑚𝑛 − 𝑛)  − (𝑚 − 𝑟)(𝑛 − 𝑟)
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Using the DoF Decomposition, we see both memory and 

computational savings immediately, rather than after a set 

number of reductions.



Collecting Training Data                                                                                                     

• A function generator is connected to 

an electromagnetic shaker.

• The sensor package is attached to a 

higher-quality reference 

accelerometer.

• The electromagnetic shaker was 

excited with frequency sweeps from 

1-10 Hz.

• Phase between the two signals was 

aligned through interpolation.
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Bench top experiment
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• Chirp excitation is fed into the 

electromagnetic shaker using an analog 

output module

• A data acquisition is used to record 

reference acceleration

• A digital trigger is set to synchronize 

both the reference accelerometer and 

sensor package

• Various dynamic ranges were used to 

expand the training range of the LSTM 

model



Training the Model

• Model hyperparameters: 50 unit, 1 

input LSTM connected to a dense 

layer.

• Package data is fitted to the 

reference data in the time domain.

• Windowing is employed to reduce 

overfitting.

• Validated on a testing dataset.
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Rank Reduction

• To prove the efficacy of the DoF 

decomposition, we employ the 

truncated SVD for rank selection.

• Weight matrix rank was reduced to 41 

from 51.

• The B and C matrices for the DoF 

decomposition were then calculated.
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Results and Discussion



Model Performance

• SNR remained acceptable

• TRAC remained high, indicating 

strong similarity between the 

reference signal and the signal 

generated by the compressed model

Note: Should more accuracy be 

desired, the DoF decomposition allows 

less ranks to be removed while still 

providing memory and computational 

savings over the uncompressed model.
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Future Work

• Edge Deployment: We seek to apply 
this work to the first known 
deployment of a signal compensation 
model on an SHM sensing node.

• Data Alignment: Better techniques 
for aligning accelerometer signals for 
training will be explored.

• Learning Rank Reductions: Error-
aware strategies for reducing ranks 
can provide better approximations for 
machine learning models than the 
truncated SVD.
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