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• Pollution alters crucial water quality 

parameters like pH, total dissolved solids 

(TDS), & turbidity.

• It is necessary to track these parameters to 

ensure healthy eco system and safeguard 

public health.

• Real-time spatial monitoring can help to 

understand how pollution spreads over time 

and thus helps with pollution source 

tracking

environmentalnote.com/understanding-pollution-causes-effects-and-prevention-strategies



Background

Methodology Experimentation & results ConclusionIntroduction

44

Wildfire runoff 

increases metal 

particles in water 

and increases 

conductivity 

Hurricanes or storms 

increase water turbidity by 

mixing dirt/pollutants in 

water

• Real-time spatial monitoring can help 

to passively track natural disasters like 

wildfires and hurricanes

• A rapidly deployable sensor cluster can 

be helpful in this regard

livescience.com/63689-nasa-hurricane-florence.html

blog.geiworks.com/2018/02/wildfire-part-three.html



Background

• Present standard for water quality testing
• Taking samples manually from waterbodies and 

performing analysis in lab

• Shortcomings
• Requires manual labor

• Poses health-risk

• Doesn’t allow real-time spatial monitoring

• Doesn’t allow rapid testing to track natural 
calamities
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rpsgroup.com/services/laboratories/environmental-analysis/water-analysis
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Proposed Buoy Style Sensor node 

• Designed for autonomous, real time, in-situ monitoring of water quality conditions

• Open-source modular design with off the shelf hardware

• Senses pH, electrical conductivity, turbidity and temperature
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• Equipped with GPS and 

wireless communication 

capabilities

• UAV-deployable package to 

enable deployment in remote 

environments
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Rapidly deployable in water bodies 
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• Allows multiple rapid deployments in large water bodies

• UAV is guided by GPS to deploy in a specified location 

autonomously.

• Transmits data to base station wirelessly

• All sensor nodes connect to the same base station forming a cluster 
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Enables real-time spatial monitoring

• Spatial maps of key water quality parameters using a 

cluster of GPS equipped sensor nodes in conjunction 

with Kriging

• Kriging is a geostatistical interpolation technique used 

for spatially correlated domains like water bodies 
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A numerical simulation of lake 

sampling with kriging

Sensor node cluster in a water body 

marked with red pin

Ground truth 5 samples

15 samples 30 samples
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Components of the sensor node

• The left side represents the 

bottom portion that stays 

submerged in water

• The right side represents the 

top portion that stays above 

water 

• Vertically adjustable Solar buoy 

illustrated in the middle provides 

buoyancy and solar power to 

charge battery

Horizontal view of the fully assembled sensor node. 
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Components of the sensor node

• The cross-section of the top 

portion displaying internal 

electronics and external 

connectors

• The bottom view of the sensor 

node without the protective cap, 

displaying the measurement 

sensors.10
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Embedded system of the node

• Atmega32U4 as the brain of the 

system

• GPS for time and location data

• nRF24L01 for wireless 

communication

• SD card for data backup

• Respective signal conditioning 

modules for pH and conductivity 

sensor

• Powered by 7.4 V 2200 mAh lithium 

polymer battery

• 9 x 184 mW solar panels to charge 

battery at daytime

• Solar power handled by a battery 

charge controller
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UAV deployment mechanism

• Deployed using an Electro-Permanent Magnet (EPM) mounted on the UAV. 
• EPM can retain its magnetization without constant energy input. 
• EPM can be toggled on (magnetized) or off (demagnetized) using electrical pulses.

OpenGrab

EPM V3
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Sensor accuracy validation and power consumption

• A benchtop test was performed to verify the accuracy of the pH, conductivity, and 

temperature sensors. 

• Sensor readings showed deviations of 0.71–4.2% compared to industrial 

reference instruments, indicating high accuracy. 
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• Consumes an overage of 930.254 mW in steady-state operation

• Equipped with 9 x 184 mW solar panels providing a nominal 1656 mW, which is 1.8 

times the average power consumption
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Deployment in an urban creek

• Experiment goal-
• Check water quality 

parameters in local 

creek

• Test variation in 

parameters over time

• Deployment time-
• 4/3/2025 @ 2 pm EST.

• Spring of 2025

• Duration- 17.5 hours

• Location-
• Rocky Branch creek, 

downtown Columbia,

South Carolina, USA.
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Data from urban creek

• Sensor node lasted for 17.5 hours on standalone power (no solar charging)

• Variations in pH, conductivity, turbidity and temperature demonstrates real-time 

changes in water quality detection

• pH, conductivity and 

turbidity exhibit a 

downward trend as 

night falls 

• possibly indicating a 

change in the 

effluents in the water 

as work hours 

conclude. 
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Spatial mapping in an urban pond
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google.com/maps/place/A.C.+Moore+Garden/@33.995149,-81.0248008,133m

M. Burnett et al., ‘Spatial and Temporal In-Situ Water Quality Monitoring 
and Mapping via UAV-Deployable Sensor Nodes’, 2025 (In development)

• Nine-point spatial mapping conducted in A.C. 

Moore Garden pond using UAV-deployable 

sensor nodes

• Collected in-situ measurements of pH, 

temperature, turbidity, and total dissolved solids 

(TDS)

• Spatial distribution analyzed using Kriging 

interpolation, revealing localized variations 

linked to sunlight, algae, and organic matter
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Spatial mapping in an urban pond
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M. Burnett et al., ‘Spatial and Temporal In-Situ Water Quality Monitoring and Mapping via UAV-Deployable Sensor Nodes’, 2025 (In development)

• Sensor package (without solar module) deployment test — buoyant module collecting data in a 

mostly stationary pond, with views of the pond’s inlet and outlet.
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Spatial Results
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M. Burnett et al., ‘Spatial and Temporal In-Situ Water Quality Monitoring and Mapping via UAV-Deployable 
Sensor Nodes’, 2025 (In development)

• Kriging interpolation revealed 

spatial trends in pH, TDS, turbidity, 

and temperature across the pond

• Single sensor package was 

repositioned across sampling 

locations to collect spatially 

distributed data

• Detected gradients linked to 

environmental factors like sunlight 

exposure, algae presence, and 

organic debris



• A water quality sensing node equipped with 
GPS and wireless communication

• That is sustained by solar power

• Within reasonable accuracy compared to 
industrial sensors

• Future works will focus on developing  a 
cluster of such sensing node that enables 
spatial and temporal mapping of large water 
bodies
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