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Proposed NMR-based Water Quality 
Monitoring System
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• Control handled by LabVIEW program and NI-PXI chassis

• All electronics (barring two amplifiers) housed on a single PCB

• GUI developed for easy data acquisition and export

ARTS-Lab Desktop NMR System
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Flow-through NMR
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Future Goal: Distinguish Contaminants
• Provide data for multiple contaminants

• Incorporate a ML model with physics-based understanding on 

magnetic behavior

• Identify and quantify different contaminants using ML based on 

T2, water quality, and time series data
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Open-source NMR Hardware
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Our NMR Development Path
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Permanent Magnet Array

• 0.565 T strength at 23⁰C
o -800 ppm/K gradient

• Larmor (operating) frequency:
o 𝑓𝐿𝑎𝑟𝑚𝑜𝑟 = 𝛾𝐵 = 42.58

𝑀𝐻𝑧

𝑇
0.565 𝑇 ≈ 𝟐𝟒 𝑴𝑯𝒛

• 150 ppm homogeneity

• 4.4 lbs

Sample 

location

N42 magnet

N42 magnet

Fully assembled
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• A single 24 V DC power supply required 

• Impedance of all cables and PCB traces matched to 50 Ω

• Waveform generator → sine wave at Larmor frequency

• Pulse generator → follows CPMG pulse train

• Duplexer (crossed diodes) isolates probe and LNA

General flow

excitation
NMR 

response
amplification mixing filtering

RF Electronics
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• NI PXI chassis

o Arbitrary waveform generator

o Pulse train generator

o 16-bit digitizer

• Carr-Purcell-Meiboom-Gill (CPMG) pulse 

sequence

o 90∘ pulse duration is 7 μs

o 𝜏 = 1.25 ms

Signal Generation and Control
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• LabVIEW GUI serves as front end

• Each test comprises 5 scans (averages)

• Time for 𝑇2 curve acquisition < 10 seconds

• Thermocouple used for frequency 

calibration

user adjustable parameters

current scan outputs

averaged relaxation data

Data Acquisition
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• 𝑇2 relaxation modeled as 𝑀xy(𝑡) = 𝑀0exp(−𝑡/𝑇2)

• Relaxation rate is the reciprocal of relaxation time (i.e., 𝑅2 = 1/𝑇2)

• Linear relationship between 𝑅2 and MP concentration well established

TD-NMR Signals and MP Content
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The Quantum Physics of Precession
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Particles in a magnetic field, B0

• Start with the population of nuclei in thermal 
equilibrium

• Degenerate nuclear spin states

• Random orientation

• The microcanonical ensemble perspective 
tells us that in an unaligned field, there is no 
net magnetic field. 
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Boltzmann distribution (classical 
mechanics)

• Higher energy states less likely to 

be occupied

• More nuclei aligned with B0 than 

anti-aligned

• Results in net magnetization B0
M
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Quantum mechanics view

• If each magnetic moment’s direction is known, Sz is known

• Knowing SZ means Sx and Sy are also known

• Violating uncertainty

• Each magnetic moment is off-axis

• Resultant net magnetization makes NMR possible

B0
M
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Nuclear Magnetic Resonance (NMR)
• Excites nuclei by applying an 

oscillating magnetic field via 

a coil with alternating current

• Measure the diminishing 

response over time: T2 

Curve

• Calculate the exponential 

decay constant: T2 

• Can measure a reference 

isotope and paramagnetic 

material in the sample18

Janvrin et al. Open-Source Compact Time-Domain Hydrogen (1h) NMR System for Field Deployment (2025)



Use Case: Wildfire Ash
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Why Monitor Magnetic Contents of 
Wildfire Ash?

• Effects on topsoil

o Ash deposits enhance magnetic content in soil

o Magnetic properties are closely related to climate & 
rainfall

• Deposition through runoff water

o Nearby bodies of water accumulate magnetic content

o Nanoscale magnetite is linked to brain disease

• Understand fire severity and the reaches of 
magnetic deposition

USGS, “How wildfires threaten U.S. water supplies,” Water Data Labs, 06-

Nov-2020. [Online]. Available: 

https://labs.waterdata.usgs.gov/visualizations/fire-hydro/index.html#/. 

[Accessed: 28-Oct-2022]. 

Topsoil

 deposition

Runoff

 deposition
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NMR Relaxometry with MPs

• 10 total ash samples 

• 20 mg in 20 mL of water

• Distilled water used as reference

• R2 extracted via least squares 

regression

o 𝑀𝑥𝑦 = 𝑀0exp(−𝑅2𝑡)
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Real-time In Situ Tracking

• Monitoring Wildland-Urban Interface Fire Ashes and Run off Total iron 

content collected

• 10 surface water samples collected from two inlets to Lake Madrone that 

were subjected to runoff following the North Complex Fire in California
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ML-based Contaminant Monitoring

Patent Pending23



• Natural logarithm of T2 signal allows for the separation of signal and nose

Separating Signal from Noise
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• Visual summary of the interpretable machine learning approach.

Feature-based Classification using 
Interpretable Machine Learning
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TseKiChun, CC BY-SA 4.0 

<https://creativecommons.org/licenses

/by-sa/4.0>, via Wikimedia Commons



• A random forest model is trained with hyperparameter tuning, generating feature importance scores 

that highlight which input variables most influence the prediction of DCN.

Interpretable Machine Learning
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Lab Data Collection for Model Training

27



NMR in Environmental Chamber

• NMR is placed in an environmental 

chamber for temperature control.

•  Long-term, an environmental 

chamber would not be easy if the 

magnet is calibrated over a 

temperature range.

• Over-sized chamber used for 

simplicity.
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Data Collection for Model Training

• Data collection 

method: slowly drip 

Cu(II) solution into 

distilled water to 

provide near-

continuous training 

data

• Remove water at same 

rate to avoid overflow
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Model Training Data 

• Consists of Cu(II) contaminated water from 0mg/L to 1000mg/L

• Stair-step concentration increases to provide model with 

comprehensive ranges
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• Slow and steady 

increase in Cu(II) 

contamination at 

low concentrations 

to provide near-

continuous data



Field Deployment of In Situ NMR system
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Field Deployed 
System 

• Environmental chamber: 

enables temperature control for 

magnet and RF electronics

• Flow-through pumps: enable 

automatic sample collection

• NI PXI-8821: enables remote 

data acquisition with LabVIEW 

software

• Water quality sensor: measures 

pH, temperature, turbidity, and 

conductivity
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Machine Learning 
Model 
• Partial dependence plot: 

indicates low T2 and high 
conductivity cause high 
Cu(II) concentration and 
high T2 and low 
conductivity cause low 
Cu(II) concentration

• Importance plot: shows that 
T2 and conductivity are by 
far the most important

• Together, they indicate the 
model is thinking correctly
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Rocky Branch 
Creek Data

• T2 and conductivity 
data collected in-
situ over 17 hours

• T2 and conductivity 
(within 3σ) stay the 
same

• Model predictions 
agreeing with the 
consistency of data 
collection
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Conclusion

• NMR can be used to quantify magnetic particle concentration 

related to ash contaminated water due to wildfires

• A remote-deployable system has been designed, built, and 

tested with ML functionality to quantify magnetic content based 

on T2, water quality data, and time series parameters

• The system will be further developed to be able to distinguish 

and quantify different contaminants
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