Continuous Water Quality Monitoring using Field Deployable NMR and Explainable AI

Daniel Hancock^{a,b}, David P. Wamai^{a,c}, Md Asifuzzaman Khan^a, Winford Janvrin^a, Austin R.J. Downey^{a,d}, Mohammed Baalousha^e, Thomas M. Crawford^b

^aDepartment of Mechanical Engineering, University of South Carolina, Columbia, SC
 ^bDepartment of Physics and Astronomy, University of South Carolina, Columbia, SC
 ^cDepartment of Computer Science and Engineering, University of South Carolina, Columbia, SC
 ^dDepartment of Civil and Environmental Engineering, University of South Carolina, Columbia, SC
 ^eUniversity of South Carolina, Department of Environmental Health Sciences, Columbia, SC

Molinaroli College of Engineering and Computing

Outline

- Proposed NMR-based Water Quality Monitoring System
- Open-source NMR Hardware
- The Quantum Physics of Precession
- Use Case: Wildfire Ash
- ML-based Contaminant Monitoring
- Lab Data Collection for Model Training
- Field Deployment of In Situ NMR system

Proposed NMR-based Water Quality Monitoring System

ARTS-Lab Desktop NMR System

- Control handled by LabVIEW program and NI-PXI chassis
- All electronics (barring two amplifiers) housed on a single PCB
- GUI developed for easy data acquisition and export

Flow-through NMR

Future Goal: Distinguish Contaminants

- Provide data for multiple contaminants
- Incorporate a ML model with physics-based understanding on magnetic behavior
- Identify and quantify different contaminants using ML based on T2, water quality, and time series data

Open-source NMR Hardware

Our NMR Development Path

Permanent Magnet Array

- 0.565 T strength at 23°C
 -800 ppm/K gradient
- Larmor (operating) frequency:

$$\circ f_{Larmor} = \gamma B = \left(42.58 \frac{MHz}{T}\right) (0.565 T) \approx 24 MHz$$

- 150 ppm homogeneity
- 4.4 lbs

N42 magnet

Sample location

Fully assembled

9

RF Electronics

- A single 24 V DC power supply required
- Impedance of all cables and PCB traces matched to 50 Ω
- Waveform generator \rightarrow sine wave at Larmor frequency
- Pulse generator \rightarrow follows CPMG pulse train
- Duplexer (crossed diodes) isolates probe and LNA

Signal Generation and Control

- NI PXI chassis
 - o Arbitrary waveform generator
 - o Pulse train generator
 - o 16-bit digitizer
- Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence
 - $\circ~90^\circ$ pulse duration is 7 μs
 - $\circ \tau = 1.25 \text{ ms}$

Data Acquisition

- LabVIEW GUI serves as front end
- Each test comprises 5 scans (averages)
- Time for T_2 curve acquisition < 10 seconds
- Thermocouple used for frequency calibration

Extracted T2 Decay - Current Scan Pulse Echos - Corrent Sci 800m -850m 700m 600m 600m 400mt S 500m 200m 400m 191124-01 5 300ml--200m 200m--400m 100m -600m 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005 Time (s) Time (x) 计图的 十周的 Plot @ veraged T2 Decay Pulse Train File RDD-700m DIVPulse Train - 4s Duration, 3170 Pulses, 1.25ms Tau.txt averaged relaxation data 600m 500m Scan Number Number of Scani user adjustable parameters 400m Write Output to File? 300m-Signal Intensity (integral 200m Lannior Frequency 100m 24.0290M 0.6024 Time (s)

current scan outputs

Flet 0

4周初

Plet 0

TD-NMR Signals and MP Content

• T_2 relaxation modeled as $M_{XY}(t) = M_0 \exp(-t/T_2)$

13

- Relaxation rate is the reciprocal of relaxation time (i.e., $R_2 = 1/T_2$)
- Linear relationship between R_2 and MP concentration well established

The Quantum Physics of Precession

Particles in a magnetic field, B₀

- Start with the population of nuclei in thermal equilibrium
- Degenerate nuclear spin states
- Random orientation
- The microcanonical ensemble perspective tells us that in an unaligned field, there is no net magnetic field.

Boltzmann distribution (classical mechanics)

• Higher energy states less likely to be occupied

• More nuclei aligned with *B*₀ than anti-aligned

• Results in net magnetization

Quantum mechanics view

- If each magnetic moment's direction is known, S_z is known
 - Knowing S_z means S_x and S_v are also known
 - Violating uncertainty
- Each magnetic moment is off-axis

Resultant net magnetization makes NMR possible

Nuclear Magnetic Resonance (NMR)

- Excites nuclei by applying an oscillating magnetic field via a coil with alternating current
- Measure the diminishing response over time: T2 Curve
- Calculate the exponential decay constant: T2
- Can measure a reference isotope and paramagnetic
 material in the sample

Janvrin et al. Open-Source Compact Time-Domain Hydrogen (1h) NMR System for Field Deployment (2025)

Use Case: Wildfire Ash

Why Monitor Magnetic Contents of Wildfire Ash?

- Effects on topsoil
 - $_{\odot}$ Ash deposits enhance magnetic content in soil
 - Magnetic properties are closely related to climate & rainfall
- Deposition through runoff water
 - $_{\odot}$ Nearby bodies of water accumulate magnetic content
 - $_{\odot}$ Nanoscale magnetite is linked to brain disease
- Understand fire severity and the reaches of magnetic deposition

USGS, "How wildfires threaten U.S. water supplies," Water Data Labs, 06-Nov-2020. [Online]. Available: https://labs.waterdata.usgs.gov/visualizations/fire-hydro/index.html#/. [Accessed: 28-Oct-2022].

NMR Relaxometry with MPs

- 10 total ash samples
- 20 mg in 20 mL of water
- Distilled water used as reference
- R₂ extracted via least squares regression

$$\circ \ M_{xy} = M_0 \exp(-R_2 t)$$

Real-time In Situ Tracking

- Monitoring Wildland-Urban Interface Fire Ashes and Run off Total iron content collected
- 10 surface water samples collected from two inlets to Lake Madrone that were subjected to runoff following the North Complex Fire in California

ML-based Contaminant Monitoring

Patent Pending

Separating Signal from Noise

• Natural logarithm of T2 signal allows for the separation of signal and nose

24

Feature-based Classification using Interpretable Machine Learning

• Visual summary of the interpretable machine learning approach.

Interpretable Machine Learning

• A random forest model is trained with hyperparameter tuning, generating feature importance scores that highlight which input variables most influence the prediction of DCN.

Lab Data Collection for Model Training

NMR in Environmental Chamber

- NMR is placed in an environmental chamber for temperature control.
- Long-term, an environmental chamber would not be easy if the magnet is calibrated over a temperature range.
- Over-sized chamber used for simplicity.

Data Collection for Model Training

- Data collection method: slowly drip Cu(II) solution into distilled water to provide nearcontinuous training data
- Remove water at same rate to avoid overflow

Model Training Data

- Consists of Cu(II) contaminated water from 0mg/L to 1000mg/L
- Stair-step concentration increases to provide model with comprehensive ranges
- Slow and steady increase in Cu(II) contamination at low concentrations to provide nearcontinuous data

Field Deployment of In Situ NMR system

31

Field Deployed System

- Environmental chamber: enables temperature control for magnet and RF electronics
- Flow-through pumps: enable automatic sample collection
- NI PXI-8821: enables remote data acquisition with LabVIEW software
- Water quality sensor: measures pH, temperature, turbidity, and conductivity

Machine Learning Model

- Partial dependence plot: indicates low T2 and high conductivity cause high Cu(II) concentration and high T2 and low conductivity cause low Cu(II) concentration
- Importance plot: shows that T2 and conductivity are by far the most important
- Together, they indicate the model is thinking correctly

Rocky Branch Creek Data

- T2 and conductivity data collected insitu over 17 hours
- T2 and conductivity (within 3σ) stay the same
- Model predictions agreeing with the consistency of data collection

Conclusion

- NMR can be used to quantify magnetic particle concentration related to ash contaminated water due to wildfires
- A remote-deployable system has been designed, built, and tested with ML functionality to quantify magnetic content based on T2, water quality data, and time series parameters
- The system will be further developed to be able to distinguish and quantify different contaminants

Acknowledgement

This material was sponsored by the National Science Foundation, United States under Grant Nos. CMMI-2152896, CPS-2237696 and ITE-2344357. The views and conclusions contained within this document are those of the authors and should not be interpreted as representing the official policies of the NSF or the U.S. Government.

Thank You for Your Time

GitHub Repository

https://github.com/ARTS-Laboratory/Paper-2025-Continuous-Water-Quality-Monitoring-using-Field-Deployable-NMR

Name: Austin R. J. Downey Title: Associate Professor Email: austindowney@sc.edu Lab GitHub: github.com/arts-laboratory

Molinaroli College of Engineering and Computing UNIVERSITY OF SOUTH CAROLINA

References

[1] Anzai, Y. and Moy, L., "Point-of-care low-field-strength MRI is moving beyond the hype," Radiology 305, 672–673 (Dec. 2022).

[2] Gottlieb, H. E., Kotlyar, V., and Nudelman, A., "NMR chemical shifts of common laboratory solvents as trace impurities," 62(21), 7512–7515.

[3] Martin, J. S., Downey, A. R. J., Baalousha, M., and Won, S. H., "Rapid measurement of magnetic particle concentrations in wildland-urban interface fire ashes and runoff using compact NMR," 24(6), 7355–7363.

[4] Huggins, P., Martin, J. S., Downey, A. R., and Won, S. H., "Interpretable machine learning for predicting the derived cetane number of jet fuels using compact TD-NMR," Sensors and Actuators B: Chemical 426, 137018 (Mar. 2025).

[5] Bl"umich, B., "Introduction to compact NMR: A review of methods," TrAC Trends in Analytical Chemistry 83, 2–11 (Oct. 2016).

[6] Alnajjar, B. M., Buchau, A., Baumg"artner, L., and Anders, J., "NMR magnets for portable applications using 3D printed materials," Journal of Magnetic Resonance 326, 106934 (May 2021).

[7] Janvrin, W., Martin, J., Hancock, D., Downey, A., Pellechia, P., Satme, J., and Won, S. H., "Open-source compact time-domain hydrogen (1h) NMR system for field deployment," (01 2025).

[8] Bl"umler, P. and Soltner, H., "Practical concepts for design, construction and application of Halbach magnets in magnetic resonance," Applied Magnetic Resonance 54, 1701–1739 (Oct. 2023).

[9] Putte, K. P. A. M. v. and Enden, J. v. d., "Pulse NMR as a quick method for the determination of the solid fat content in partially crystallized fats," 6(9), 910–912.

[10] Briggs, K. T., Taraban, M. B., and Yu, Y. B., "Sedimentation behavior of quality and freeze-damaged aluminum-adjuvanted vaccines by w NMR," 19(2).

[11] Singh, V., Singh, N., Rai, S. N., Kumar, A., Singh, A. K., Singh, M. P., Sahoo, A., Shekhar, S., Vamanu, E., and Mishra, V., "Heavy metal contamination in the aquatic ecosystem: Toxicity and its remediation using ecofriendly approaches," Toxics 11, 147 (Feb. 2023).

[12] Sudarningsih, S., Pratama, A., Bijaksana, S., Fahruddin, F., Zanuddin, A., Salim, A., Abdillah, H., Rusnadi, M., and Mariyanto, M., "Magnetic susceptibility and heavy metal contents in sediments of Riam Kiwa, Riam Kanan and Martapura rivers, Kalimantan Selatan province, Indonesia," Heliyon 9, e16425 (June 2023).

[13] Hancock, D., Wamai, D. P., Khan, M. A., Downey, A. R., Baalousha, M., and Crawford, T. M., "Paper2025-continuous-water-quality-monitoring-using-field-deployable-nmr." GitHub (2025).

[14] Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., and Lee, S.-I., "From local explanations to global understanding with explainable AI for trees," 2(1), 56–67.