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ABSTRACT

Improvements to processes and materials have led to increased additive manufacturing capabilities using the
fused filament fabrication method in terms of speed, quality, and repeatability. However, there are significant
challenges in guaranteeing the desired output quality due to uncertainties inherent to the printing process.
These include uncertainties in the quality of raw materials across different batches, fabrication environment
(e.g., humidity, temperature), and machine wearing. The widespread adoption of fused filament fabrication
for industrial applications faces considerable challenges in reducing part-to-part variations and assuring the
mechanical properties of a manufactured component. In this paper, an in situ fault detection platform that
considers the structural properties of the printed part is proposed. The presented system uses the optical camera
and a deep learning methodology to detect faults online using training sets developed offline. The performance
of the system is quantified using a variety of metrics. Computational speed for inference computation, minimum
fault-sized detection, and measurement noise in the system are examined in this work.

Keywords: Additive manufacturing, fused filament fabrication, online fault detection, convolutional neural
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1. INTRODUCTION

Additive manufacturing (AM) has been actively utilized in different applications due to the ability to produce
complicated geometries and shapes with low production cost. Fused filament fabrication (FFF), which is also
termed fused deposition modeling (FDM), is one of the fastest-growing, most promising, and widely-used AM
technologies.1 FFF has also been applied to various fields, such as healthcare, biomedical, and automotive.2,3

In the FFF printing process, the extruder cold end motor drives the thermoplastic filament to the hot end. The
filament is heated by the hot end to the molten state, then fed through the nozzle to build up the product layer-
by-layer on the heated build platform until the product is completed. While improvements to AM process have
led to increased manufacturing capabilities, significant challenges remain to guarantee the desired output quality
due to inherent uncertainties in the printing process. More robust product validation procedures still need to be
developed for FFF technology to have widespread adoption.4 Product faults are generated by abnormal printing
situations, such as nozzle temperature variation, excessive vibration, and anomalous extrusion. Previous statistics
showed that for the users who are unfamiliar with the FFF process, there would be a 20% failure during the
printing.5 To ensure printing products with high-quality, a real-time fault detection system is needed, especially
for applications that require high product quality or specific mechanical properties.

Machine learning (ML) has proven to be an effective way to monitor product quality and detect faults in the
FFF process.6 Moreover, ML can offer new insight into the FFF process due to its ability to discover implicit
knowledge and build the relationship between printing parameters and product quality.7 Researchers have built
different fault detection systems to be used with the FFF printing process. For example, Jin et al. utilized the
camera fixed on the 3D printer to monitor printing component quality.8 The printing images were fed into a
ResNet 50 architecture Convolutional Neural Network (CNN) classification model. After that, real-time printing
condition monitoring can be achieved by inputting real-time images into the fully trained classification model.
Wu et al. presented a method to detect 3D printing product’s malicious infill faults by using a classification-based
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Figure 1. A flow chart for the fault detection approach in the FFF printing process.

ML approach, which analyzes printing process images from the camera.9 The result shows that both naive Bayes
classifier and J48 decision trees have satisfactory infill faults prediction accuracy. Narayanan et al. presented
an automated structure fault detection approach.10 This proposed approach could identify fault occurs during
the products printing process with the printing component structure images. A real-time monitoring system
for 3D printing was built by Delli et al.11 By combining image processing with supervised machine learning,
the proposed system can detect abnormal failures, such as filament running out, abnormal printing stops, and
abnormal product structure or geometrical. Most of the previous research focused on physical fault detection
for the FFF printing process. CNNs are one of the most commonly used deep learning algorithms in fault
image-based detection of additively manufactured parts. They are well suited to the task due to their capability
to process and learn the spatial hierarchies of features in an image, while other classification methods often
lose this information. Moreover, numerous numerical models have been built around CNNs, including LeNet,12

VGGNet,13 AlexNet,14 Residual Network (ResNet),15 etc.

Prior research has focused on finding surface, and sometimes infill, faults in the printing process. However,
the fault effect on functional product quality is often more critical than easy-to-spot surface faults. Therefore,
effective real-time fault detection integrated with product structure quality validation for FFF is needed. The
proposed system should not only detect visible faults but also diagnose faults in functional product qualities
(i.e. structural performance) caused by variations in the printing process (i.e. variations in print temperature).
In this paper, an online ML-based product fault detection approach is proposed that is capable of inferring
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Figure 2. Defect detection platform and specimen for the FFF printing process: a) the fault detection platform; b) the
good quality printed specimen from the optical camera; c) the printed specimen with fault from the optical camera; and
d) the specimen’s dimension.

structural quality rather than just surface defects. The ML-based product fault detection approach uses the
convolutional neural network (CNN) algorithm to achieve this purpose. After finishing the pre-training pro-
cess with the obtained images from the printing process and the corresponding structural testing results. The
system can perform online printing fault detection with good accuracy. The unique contribution of this fault
detection approach is the consideration of the printed parts mechanical performance in the online fault detection
methodology.

2. METHODOLOGY

The fault detection approach for the FFF printing process proposed in this work is diagrammed in Fig. 1. Online
fault detection is a two-part process that consists of offline training and online inference. For offline training, a
dataset is built that consist of images taken in situ during manufacturing (the input, commonly denoted as “x”)
and the failure locations of the specimen subjected to mechanical loading (the output, commonly denoted as
“y”). For the input data, images are obtained for each layer of the print then this set of images is labeled with
the failure location obtained during mechanical testing. In this introductory work, a tensile test16 was used for
the mechanical loading. After image pre-processing, the labeled images are fed into the ML algorithm to build
a fault detection model for the FFF printing process. The model is trained until convergence in the training
accuracy is achieved. The fully trained CNN model will then deployed for online inference. Thereafter, printing
faults can be detected online for subsequently printed parts.

In this project, all products are printed by a Creality Ender 5 printer with Polylactic Acid (PLA) filament.
Fig. 2 presents the experimental setup. As shown in Fig. 2a), an optical camera (JAI CV-M4+ CL) is mounted
on a frame above the extruder to collect the printing images. The test specimen’s G-code was modified, so when
one layer is finished, the printing head moves to a fixed position that is out of the cameras’ field of view. At this
time, the camera is activated through a LabVIEW code to capture an image of the specimen. For simplicity in
this introductory work, the infill configuration was modified such that the infill was 100% printed horizontally
to the main direction of the specimen. The physical fault in the project is a 1 mm × 1 mm notch printed into
the side of the specimen, as shown in Fig. 2c). The specimen dimension is shown in Fig. 2d). The thickness of
the specimen is 5 mm, while the layer thickness is set to 0.2 mm. Therefore, for one specimen, 15 optical images
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Figure 3. Printed sample tensile test: a) the tensile test setup; b) the broken good quality specimen; and c) the broken
specimen with fault.

are being taken. As shown in Fig. 2d), the 30 mm can be divided into 30 notches with a 1 mm × 1 mm size.
Therefore, there are 31 categories (30 for fault and 1 for good quality) for the printed specimen. Mechanical
validation is performed using ASTM D63816 on a MTS Exceed E43 electromechanical load frame, as shown in
Fig. 3a). In Fig. 3b) and c) shows the broken specimens after the mechanical testing. Following mechanical
testing, all the images are labeled with the location of the ultimate failure point or as no-fault.

As the printed specimen is always in the same position relative to the camera and only takes up a part of the
camera’s field of view, to reduce computational time and memory, the image is cropped such that the specimens
are centered in the image with a limited border around the outside. To accelerate the training process, the
resolution of the optical images is reduced by resizing to 224 × 224 pixels before being input into the model.
Therefore, for both offline training and online prediction in Fig. 1, the image pre-processing is a two-step method
that involves image cropping and image resizing. What needs to be pointed out is that all the specimen images
shown in this paper are obtained after image cropping without resizing.

The CNN model in this project is built with three convolutional layers, three max-pooling layers, two fully
connected hidden layers, and one output layer. This graph is modeled off of lenet5,12 as shown in Fig. 4. The
adopted convolutional kernel size is 3 × 3, the filters are 32, and the stride is 1. All the activation functions
are RELUs, except a softmax for the last output layer. The output feature map size is 222 × 222 after the first
convolution operation is performed on the input image. A max-pooling layer with a 2 × 2 kernel size is followed
after the first convolutional layer. The feature map after downsampling is 111×111. By applying the subsequent

Figure 4. Designed CNN model structure.
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convolutional and downsampling layers twice, the output feature map size is 26 × 26. After flattening all the
feature maps, two fully connected hidden layers are utilized to represent the whole image’s feature map by a
one-dimensional vector, which changes the size from 86528 to 128. The last output layer is also a fully connected
layer with a total of 31 nodes. The output nodes represent the algorithm’s prediction categories where each
node correlates to potential damage location on the test specimen, as annotated in Fig. 2d). The CNN model is
trained offline using Keras and Tensorflow using the Adam optimizer.17

3. RESULTS

Figure 5. Training results for the fault detection CNN model: a) training and validation accuracy result; and b) training
and validation loss result.

The final dataset contains 1860 images. After all sample images are prepared and labeled, 70% of labeled
images are randomly picked as training data, and the rest are treated as validation data. After 300 epochs of
training, the final training result shows in Fig. 5. As shown in the figure, after 100 epochs of training, all the
accuracies are over 95%. Moreover, for this investigation, the loss values quickly decrease and converge to near
zero. The final training and validation accuracy is 100% and 96.11% separately. The training and validation
result shows that the CNN architecture model is appropriate for the considered problem and that it performs
well for the considered validation cases.

Figure 6. Specimen quality prediction result: a) prediction result for the good quality specimen; and b) prediction result
for the specimen with fault.

Selected specimens are used to test the prediction accuracy with the fully trained CNN model. Here two
specimens (i.e., good quality and fault at location 16) prediction results are shown in Fig. 6. For the good
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quality specimen, as there is no fault, so the fault prediction result is all zero, and the final prediction label is
“good quality”, as shown in Fig. 6a). In Fig. 6b), the specimen with a notch fault occurring at location 16,
the prediction label here is close to 1, which means the fault happens at this location. The final prediction
probability for this notch is 99.31%, and the prediction probability for the adjacent notch is 0.48% and 0.20%
separately. On the test dataset, the trained CNN model has been shown to have an accuracy of 96% (F1-score)
to predict good quality or the presence of a fault and its location.

4. CONCLUSION AND FUTURE WORK

This paper presented an online methodology for detecting structural faults in additive manufactured components
built up using the fused filament fabrication (FFF) method. In contrast to previous works in the literature, this
work integrates the product structure validation into the online fault detection, rather than just focusing on
surface faults. The specially designed FFF printer integrates an optical camera that can capture the product’s
printing process images used to train a convolutional neural network (CNN) model. After training, this method is
capable of detecting structural faults online for the printing components. Results have shown that the proposed
fault detection approach has a promising accuracy. Therefore, this approach is verified to be a feasible method for
fault detection in the FFF method. Future work will include an investigation of printing temperature variation
effects on product quality.
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