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LASER POWDER BED FUSION (LPBF)

1. https://www.bcn3d.com/introduction-fff-3d-printing-technology-additive-manufacturing-basics/

Laser Powder Bed Fusion (LPBF)

• Make complex parts

• High precision

• Material efficiency

• Wide material compatibility
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DEFECTS IN LPBF MANUFACTURING

PorosityKeyhole Surface roughness Distortion
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CHALLENGES IN LPBF MONITORING

Drawbacks:

• Post-processing

• Lack of real time results

• Costly and time-consuming
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Surface Roughness

• Key indicator of LPBF part quality affecting 

mechanical performance

• Driven by melt pool instability and spatter formation

• Low power leads to discontinuities; high power 

causes humps and spatter

• Improved through real-time monitoring and optimized 

process parameters
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Melt Pool Stability and Spatter on Surface Quality

Smooth surface roughness challenge:

• Melt pool stability and spatter control are crucial for 

achieving a smooth surface roughness.

• Unstable melt pools and excessive spatter increase 

surface roughness.
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Impact of Laser Power on Surface Roughness

• Top surface roughness is 

dominated by melt pool 

discontinuity and valleys between 

melt tracks at 260 W condition.

• With power increasing, the 

disappear of melt pool 

discontinuity and valley leads to 

the smoother top surface (lower 

Sa and Za).

• Top surface roughness is 

dominated by hump and spatter at 

620 W condition.

Eliminating melt pool discontinuities, valleys, and spatter improves the top surface quality.
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Relationship Between Printing Defects and 
Process Conditions

Correlation between defect and printing 

information:

• Melt pool: too little causes porosity 

                       too big leads keyholing

• Plume: affects laser absorption, excessive 

formation causing unstable melting

• Spatter: redistributes molten particles, 

leading to roughness and porosity
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EXPERIMENTAL SETUP FOR LPBF PROCESS

Experiment setup:

part: 10 mm x 10 mm

material: 316L stainless steel powder

printing parameters:

power: 200 W

speed: 100 mm/s

laser spot: 100 μm

hatch distance:100 μm
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High-Speed Imaging of LPBF Welding Process
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• Captured using a FLIR Blackfly USB 

optical camera (1440 × 1080 resolution, 

100 fps).

• Tracks melt pool, plume, and spatter 

dynamics in real-time.

• MidOpt BP660 bandpass filter (640-680 

nm) enhances imaging clarity.

• Provides critical insights into process 

stability and defect formation and 

abnormal printing conditions.



DATA PROCESSING WORKFLOW
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• Optical images captured during printing are pre-

processed using Gaussian blurring.

• Key features—melt pool, plume, and spatter—are 

isolated through image segmentation.

• Principal Component Analysis (PCA) reduces feature 

dimensionality, highlighting essential process 

variations.

• DBSCAN clustering identifies anomalies without 

labeled training data, distinguishing normal and 

abnormal printing conditions.



Supervised vs Unsupervised learning

[1] Ma, Y., Liu, K., Guan, Z., Xu, X., Qian, X. and Bao, H., 2018. Background augmentation generative adversarial networks (BAGANs): 

Effective data generation based on GAN-augmented 3D synthesizing. Symmetry, 10(12), p.734.
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• Unsupervised Learning:

• Learns from input data without labels.

• Groups similar data together, identifying natural clusters.

• Supervised Learning:

• Learns from labeled input data (annotations).

• Makes predictions based on previously learned 

examples.

• Application in LPBF:

• Unsupervised: Identifies defects without labeled 

examples (anomaly detection).

• Supervised: Predicts specific defects when labeled 

training data is available.



K-MEANS CLUSTERING

K-means clustering disadvantages:

• K-Means is a common clustering algorithm that 

requires selecting the number of clusters (k).

• The Elbow Method helps determine the optimal k, but 

it assumes well-separated, spherical clusters.

• LPBF process data is highly irregular, with 

overlapping and non-uniform distributions.

• DBSCAN is preferred as it identifies arbitrary-shaped 

clusters and effectively isolates outliers.
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Density-Based Spatial Clustering of Applications 
with Noise (DBSCAN)

[1] https://medium.com/@jayaramganesh238/dbscan-clustering-dea27873ed30

• Unlike K-Means, DBSCAN does not require 

predefining the number of clusters and can identify 

arbitrarily shaped groups.

• It separates dense regions (clusters) from sparse points 

(outliers), making it ideal for detecting anomalies in 

LPBF data.

• This method is particularly useful for automated defect 

detection, as it isolates process instabilities without 

prior labeling.
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DD Visualization of DBSCAN Clustering in LPBF 
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• 445 frames analyzed from the last printed layer 

using DBSCAN clustering.

• Blue dots indicate normal printing conditions.

• Red dots represent detected outliers linked to 

potential defects.

• 2D and 3D visualizations clearly distinguish 

normal frames from anomalous ones.

• Key insight: Clustering identifies process 

instabilities, improving real-time defect detection.



Outliers Identified using DBSCAN

The clustering frames from DBSCAN: a) the normal printing frame and b) seven outliers from the DBSCAN.
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Detailed Result
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• Normal frames provide a baseline for comparison.

• Outliers 1 & 7: Smaller melt pool, plume, and spatter areas with lower intensity 

(insufficient energy).

• Outlier 4: Larger melt pool, plume, and spatter areas but similar intensity (excessive 

heat).
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Conclusion and future work

1. This paper presented a study of online 

methodology of melt pool, plume, and spatter 

tracking.

2. The DBSCAN approach successfully identified 

process anomalies without requiring labeled 

training data. 

3. These clustered outliers suggest unstable process 

conditions that may lead to porosity, lack of fusion, 

or surface irregularities. 

4. A key next step is to validate clustered outliers 

using post-process like X-ray computed 

tomography to link internal defects directly to 

process anomalies.

5. Additionally, integrating multi-modal sensing, such 

as thermal imaging and acoustic monitoring, could 

improve defect prediction accuracy
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