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ABSTRACT

Real-time monitoring, condition assessment, and control of structural systems that
experience high-rate dynamics are challenging due to these structures operating at timescales
below 10ms. Examples of structures that may experience high-rate dynamics include
hypersonic vehicles, space crafts, and barriers with active blast mitigation. The real-
time monitoring systems used on these structures could greatly benefit from a robust
and effective high-rate state estimation methodology that would enable the state of the
structure at any unobserved location to be estimated. Any methodology designed for
these high-rate systems must account for the challenges associated with data measure-
ment and processing at the considered timescale. This work presents and experimentally
validates a methodology for enabling the real-time state estimation at unmonitored lo-
cations on a dynamic system that undergoes system level changes (i.e. damage). In this
work, the DROPBEAR experimental test bed at the Air Force Research Laboratory is
used to validate the proposed methodology for a one-degree-of-freedom system excited
with an impact load where a system level change is realized through the dropping of a
magnetically attached mass during testing. Results show that the proposed methodology
is capable of accurately estimating the levels of acceleration experienced at two unob-
served locations in real-time both before and after the mass is detached. A time interval
between state estimations of 7.1 ms was achieved during testing.

INTRODUCTION

High-rate dynamics are defined as the dynamic responses from a structure that ex-
periences an acceleration of over 100 g (high-amplitude) caused by an event that occurs
on the timescale of less than 100 ms (high-rate) [1]. A Structural system experienc-
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Figure 1. Flowchart of the proposed methodology for obtaining real-time state estimations at
unobserved locations of a structure.

ing high-rate dynamics will contain complex inputs and responses, of which the key
characteristics can be summarized as: 1) large uncertainties in the system inputs; 2)
high levels of non-stationarities and heavy disturbances; and 3) unmodeled dynamics
resulting from changes in the structural system [2,3]. A structural system operating in
a high-rate dynamic environment can experience sudden and unmodeled plastic defor-
mation of the structure that may lead to damaged electronics, sensors, and/or delicate
payloads. Furthermore, the locations of payloads or electronic packages may prevent
the direct monitoring of the structure at key locations. Therefore, a topic of interest is
the formulation of a state-estimation methodology that can track these complex dynamic
events at unmonitored locations in real-time. This paper proposes and experimentally
validates a state estimation methodology that first trains a neural network on experimen-
tal data in real-time and then uses this trained network to estimate the accelerations at
unmonitored locations using a numerical model.

State estimation of structures experiencing high-rate dynamics is necessitated when
the states of the structures cannot be directly measured [1]. Researchers have investi-
gated various state-estimation techniques [4-6]. Advances in computer science, along
with the corresponding advances in control theory, have enabled the development of
quickly converging, robust observers. These observers have the potential to produce in-
telligent structural systems that can respond to dynamic events in real-time. This paper
introduces a methodology leverages recent advances in data-based observers, surrogate
modeling, and real-time computing hardware to generate estimations of structural re-
sponses (i.e. acceleration) at unmonitored locations of a structure. In brief, the method-
ology is as follows. First, a data-based observer is used to obtain a state-estimation of
the monitored system, thereafter, a pre-constructed surrogate model of the system is used
to obtain a numerical model of the system. This numerical model is then used to esti-
mate the response of the structure at unobserved locations. The proposed methodology
was experimentally verified in real-time at the Munitions Directorate of the AFRL using
the DROPBEAR (Dynamic Reproduction of Projectiles in Ballistic Environments for
Advanced Research) test bed to simulate a high-rate dynamic event [7].

3376



electromagnet

power supy I 255 mm | 250 mm |

acc-4 acc-3  acc-2  acc-1 clamp
& / / roller
1] i} i} (1] .

electromagnet
and mass

E\ electromagnet ' beam/

mass

(a) (b)

Figure 2. The DROPBEAR test bed used for validation showing: (a) a picture of the test bench
(without the rollers installed) with the key components annotated; and (b) schematic of the
cantilever beam as tested showing the locations of the rollers, which restrain the cantilever beam
in the vertical direction, and the four accelerometers.

METHODOLOGY

The proposed methodology is presented in figure 1 and detailed as follows. First, a
data-based observer is used to obtain a state-estimation of the monitored system. The
data-based observer used in this work is based on a simple batch trained neural net-
work with multiple hidden layers using a sigmoid activation function. This observer
architecture was chosen for this preliminary work due to its simplicity to implement on
field programmable gate arrays (FPGA) and relatively fast training duration. However,
other data-based observers including variable input space observer presented by Hong et
al [8] and a hybrid model- and data-based observer where a neural network was used to
estimate complex nonlinear dynamics presented by Hu et al [9], could also be used. A
data-based observer, in comparison to other model based observers [10,11], was selected
to develop a mathematical mapping of the structure because of its ability to observe the
structure’s state without knowledge of system dynamics or the high-rate event that the
structure is experiencing. The neural network can be trained using measurable state pa-
rameters through backpropagation. Once a mathematical mapping function (the trained
neural network) has been obtained, this function can be used to propagate a surrogate
model with state-estimations. Thereafter, this surrogate model can be used to provide
estimates of the structural system at unmonitored locations.

Experimental validation of the proposed methodology was performed in real-time
using the DROPBEAR test bed located at the AFRL Munitions Directorate [7]. Figure
2(a) presents the DROPBEAR test bed while the as-tested configuration is detailed in
figure 2(b). The test bed consists of a large aluminum base fastened securely to a table
with an aluminum block used to clamp a steel cantilever beam. The steel beam is 51 mm
wide with a free length of 505 mm and a thickness of 6.4 mm. The mass of the beam in-
volved in bending is 1.29 kg. A detachable electromagnet was used to add an additional
0.687 kg (electromagnet plus three brass plates) to the tip of the beam. The electro-
magnet can be disengaged quickly to simulate a high-rate dynamic event (e.g., a sudden
detachment of a system component). This test used four accelerometers (PCB-353B17),
labeled acc-1 through acc-4, spaced evenly along the beams span, as annotated in figure
2(a). Data collection, computations, and storage were performed using a Windows-based
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Figure 3. Experimental results showing the temporal results for all four accelerometers.

National Instruments controller (PXIe—-8133) with two 14-Bit analog input cards (PXI-
6133). One data acquisition card was used to measure the accelerometer response while
the other was used to obtain the moment that the electromagnet detaches from the beam,
this was obtained through measuring the electrical conductivity between the beam and
the electromagnet case.

For the experimental conditions considered here, the data-based observer is formu-
lated as follows. First, ten samples are simultaneously taken from acc-1 and acc-4 at a
sampling rate of 12,500 samples per second. Of these ten points, ten are used to batch
train the neural network, and the tenth is used as an input to the train network to obtain
final prediction(s). As the data must be collected before it is used to train the neural net-
work, the data collection is not continuous and data is only obtained in batches before
being feed to the data-based observer. Thereafter, a single hidden layer neural network
with 25 nodes is used to build a mapping from acc-1 to acc-4. The network is trained
using backpropagation over 50 iterations. Once the mapping is developed, a tenth data
point for acc-4 is predicted using the tenth data point from acc-1. Thereafter, this re-
sponse predicted using the mapping function is applied to a numerical model to produce
estimated accelerations at the unmeasured locations. For the simple case of the can-
tilever beam considered here, a simple linear model is used as the surrogate model. This
process is then repeated for the next time step.

ANALYSIS

Acceleration results obtained during testing are presented in figure 3. The test was
initiated with a hammer impact and the mass was released from the beam at approxi-
mately 0.74 seconds. In total, the test was allowed to vibrate for 30 seconds, however,
only the first three seconds are presented in figure 3. Figure 4 reports the data points
for the first positive acceleration peak following the mass drop. The time gap between
the sets of data points is allocated to the training of the data-based observer. A visible
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Figure 4. Acceleration data for four prediction cycles showing the data acc-1 and acc-4, as well
as the predicted value for acc-4, where the arrow represents the data used in predicting the tenth
data point for acc-4.

difference of successive time gaps can be seen in figure 4, these variations are assumed
to be cause by background tasks running in the operating system of the hardware, and
variations in the complexity of the neural network. In addition to the measured data,
figure 4 also reports the value predicted for the tenth data point of acc-4, using the tenth
input from acc-1, as a red triangle. Overall, the predicted value was found to be closely
correlated with the real value at the time stamp of interest. For the data presented in fig-
ure 4, the proposed system was found to be capable of obtaining a new state estimation
for the accelerations at acc-2 and acc-3 every 6 to 9 ms. Over the course of the entire
test, an average cycle time of 7.1 ms was observed.

Figure 5 reports both the measured (figure 5(a)) and predicted (figure 5(b)) acceler-
ation data. The measured results for the sensors (acc-1 and acc-4) used in training the
neural network immediately before and after the mass is dropped from the cantilever
beam are presented in figure 5(a). Note the increase in the maximum acceleration and
decrease in frequency that occurs after the mass is released from the cantilever beam. In
conjunction, figure 5(b) reports the estimated accelerations at acc-2 (orange circles) and
acc-3 (green squares) along with the measured accelerometer responses. The data-based
observer was found to be capable of tracking the dynamic system through this high-rate
dynamic event (mass dropping), a key advantage of the data-based observer over model-
based observers. Due mainly to the time delay in training the neural network, a state
estimation at an unobserved location was obtained on average 6.1 ms after the data was
measured at the observed location. This time lapse could be greatly reduced if the neu-
ral network was not retrained at every successive step, however, the reuse of previously
trained neural networks was not considered in this introductory work.
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Figure 5. Results showing: (a) responses from acc-1 and acc-4 immediately before and after the
mass is dropped; and (b) estimated and measured accelerations at acc-2 and acc-3.

CONCLUDING REMARKS

This work presented a methodology for real-time state estimation at unobserved lo-
cations in a structural system experiencing high-rate dynamics. Experimental results
demonstrated that, when implemented on a Windows-based National Instruments con-
troller, the proposed method was capable of operating at 141 Hz. Overall, the proposed
methodology was found to be capable of producing accurate real-time state estimation
with an error of 1.5%. Future work will develop a feed-forward algorithm to allow the
observer to learn from its previous states and create numerical models for the modeling
of more complex structures.
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