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Abstract. Damage detection of wind turbine blades is difficult due to their complex geometry and large size, for which 
large deployment of sensing systems is typically not economical. A solution is to develop and deploy dedicated sensor 
networks fabricated from inexpensive materials and electronics. The authors have recently developed a novel skin-type 
strain gauge for measuring strain over very large surfaces. The skin, a type of large-area electronics, is constituted from a 
network of soft elastomeric capacitors. The sensing system is analogous to a biological skin, where local strain can be 
monitored over a global area.  In this paper, we propose the utilization of a dense network of soft elastomeric capacitors to 
detect, localize, and quantify damage on wind turbine blades. We also leverage mature off-the-shelf technologies, in 
particular resistive strain gauges, to augment such dense sensor network with high accuracy data at key locations, therefore 
constituting a hybrid dense sensor network.  The proposed hybrid dense sensor network is installed inside a wind turbine 
blade model, and tested in a wind tunnel to simulate an operational environment. Results demonstrate the ability of the 
hybrid dense sensor network to detect, localize, and quantify damage.  

INTRODUCTION 
 

Implementation of a structural health monitoring (SHM) for wind turbine blades is difficult due to their complex 
geometry, large size and the high cost of traditional sensing systems [1]. Such large-scale components, along with 
other mesosystems including aerospace structures, energy systems and civil infrastructures are traditionally inspected 
and maintained via time-based or breakdown-based maintenance strategies. Automated damage detection, 
localization, and prognosis of structural systems or components may lead to strong economic benefits for owners, 
operators, and society. The deployment of condition-based maintenance (CBM) management has shown substantial 
economic benefits [2, 3, 4]. 

 
Cost effective monitoring solutions for mesoscale structures need to be capable of monitoring the structures’ global 

(e.g., changing load paths, loss in global stiffness) and local (e.g., crack propagation) conditions.  However, current 
sensing technologies and practices limit the distinction between localized and global faults on a mesoscale system [5, 
6].  In the case of wind turbine blades, SHM is complicated further by the dependence of sensor signals on local 
environmental conditions such as temperature and humidity [7, 8]. A solution to the global/local condition monitoring 
problem is the placement of sensor arrays over strategic locations [4].  

 
Recent advances in the field of flexible electronics have resulted in increased interest in the use of dense sensor 

networks (DSNs) to solve the local-global monitoring challenge [1, 9] .  These networks, often termed electronic 
artificial skins, e-skins, or sensing skins are thin electronic sheets that mimic the sensing ability of biological skin. 



Electronic skins often consist of rigid or semi-rigid cells mounted on a flexible sheet.  Lee et al. developed and 
demonstrated an artificial skin sensor capable of localizing physical interactions through a flexible capacitive tactile 
sensor.  Experimentally verified using a 16 x 16 array of cells, this artificial skin provided a spatial resolution of 1 mm 
[10].    Shear stress topography and flow separation on the leading edge of a delta-wing structure during wind tunnel 
tests was recently measured using a sensing skin consisting of a 36-sensor array of resistive heating elements on a 
flexible polyimide film [11].  Recently, research has progressed towards the devolvement of microelectromechanical 
systems (MEMS) mounted onto flexible polymer skins without the need for ridged packaging [12, 13].  

 
Deployment of DSNs capable of covering mesoscale systems have also been proposed. Termed large area 

electronics (LAE), these integrated sensing skins enable direct sensing and can be scaled for the monitoring of 
mesoscale systems.  Yao et al. developed a strain sensing sheet for crack detection and localization, based on resistive 
strain gauges (RSGs).  The LAE is capable of detecting cracks (i.e., local condition monitoring) and producing full 
field strain maps (i.e., global condition monitoring) [14].  Additionally, the use of resistance-based thin-film strain 
sensors fabricated with carbon nanotubes has attracted considerable attention. Thin film resistance-based sensors offer 
potential scalability.  Examples of such sensors include a strain sensor fabricated from single-walled carbon nanotubes 
(SWCNT) exhibiting a relatively high gauge factor of 5 [15].  Burton et al. demonstrated an integrated CNT-polymer 
composite deployed onto a flexible polyimide substrate with its associated electronics. A strain resolution of 50µε and 
a gauge factor of 0.77 were experimentally verified [16]. 

 
Capacitive-based sensing skins have also been studied for monitoring strain [17], pressure [18], triaxial force [19], 

and humidity [20]. Within the same framework of LEAs described above, the authors have developed a soft 
elastomeric capacitor (SEC) suitable for use in the monitoring of mesoscale systems. The proposed SEC is inexpensive 
and offers a simple manufacturing process. The SEC was developed around an inexpensive nanocomposite based on 
a styrene-co-ethylene-co-butylene-co-styrene (SEBS) block co-polymer matrix filled with titania for the dielectric and 
carbon black for the electrodes.  The SEC is customizable in shape [21, 22], and its static [22] and dynamic behaviors 
[23, 1] have been characterized, including damage detection applications in wind turbine blades [24] subjected to 
random wind loadings [25].  The effectiveness of a DSN consisting of SECs for detecting fatigue cracks has been 
demonstrated [26]. 

 
A particular feature of the SEC is its ability to measures additive in-plane strain. When deployed in a DSN 

configuration, the SEC is able to monitor local additive strain over large areas. The sensors’ signals can be used to 
decompose additive strain maps into linear strain components along two orthogonal directions provided certain 
boundary conditions are known.  The authors presented an algorithm in [27] designed to leverage a DSN configuration 
to enable strain field decomposition. The algorithm fits linear strain components with a prescribed shape function 
assuming the validity of the classical Kirchhoff  plate theory, and the coefficients of the shape function can be 
computed using a least squares estimator (LSE).  This work was further enhanced through the introduction of RSGs 
into the DSN to form a hybrid dense sensor network (HDSN) were the RSGs are used to enforce the algorithm’s 
boundary conditions [28].  Numerical simulations and experimental results showed promise of the algorithm.  

 
In this paper, the use of an HDSN consisting of an array of SECs and RGSs is experimentally verified for damage 

detection and localization on a model wind turbine blade. The HDSN is installed inside a wind turbine blade model 
and tested in a wind tunnel to simulate an operational environment. The paper is organized as follows. First, the 
background on the SEC sensor in introduced, along with the strain decomposition algorithm. Second, the test 
methodology for the experimental validation is presented, which includes the algorithm formulation specialized for 
the model wind turbine blade. Third, a validation of the HDSN’s capability to detect, localize and quantity damage is 
presented. Finally, a summary of the results concludes the paper.   

BACKGROUND 

The SEC provides direct capacitance to strain signal. The electromechanical model mapping a change in the SEC 
capacitance Δ𝐶𝐶 to a change in its strain is written [28] 
 



 
 Δ𝐶𝐶

𝐶𝐶0
=

1
1 − 𝜈𝜈

(𝜀𝜀𝑥𝑥 + 𝜀𝜀𝑦𝑦)     
(1) 

 
 𝐶𝐶0 = 𝑒𝑒0𝑒𝑒𝑟𝑟𝐴𝐴/ℎ𝑑𝑑   (2) 

   
 
where 𝜀𝜀𝑥𝑥 and 𝜀𝜀𝑦𝑦 are the in-plane strains as shown in fig. 1, 𝜈𝜈 ≈ 0.49 is the Poisson ratio of the polymer, 𝑒𝑒0 is the 
vacuum permittivity, 𝑒𝑒𝑟𝑟 is the polymer relative permittivity, 𝐴𝐴 = 𝑤𝑤 ⋅ 𝑙𝑙 is the initial sensor area of initial width 𝑤𝑤 and 
length 𝑙𝑙, and ℎ𝑑𝑑 is the initial height of the dielectric. The gauge factor 𝜆𝜆 can be approximated as 𝜆𝜆 = 1/(1 − 𝜈𝜈) ≈ 2. 
This formulation assumes that the material is incompressible and under plane stress (𝜎𝜎𝑧𝑧 = 0). 
 

Strain Decomposition Algorithm 

As discussed above, the SEC signal comprises the additive in-plane strain components.  The algorithm for surface 
strain reconstruction proposed by Wu et al. consists of assuming a shape function, enforcing the boundary conditions, 
and computing the coefficients of the shape function using an LSE [27].  Downey et al. presented an enhanced LSE 
strain decomposition algorithm where RSGs are used to directly measure boundary conditions within a network of 
SEC sensors. The combination of RSGs with an SEC network formed an HDSN [28].  Additionally,    the enhanced 
strain decomposition algorithm introduced virtual sensor nodes at key locations where strain is known, or can be 
assumed within a relatively high degree of certainty.   
 
The enhanced LSE algorithm is diagramed in fig. 2, and derived in [27] and [28]. Briefly, the algorithm consists of 
assuming a parametric displacement shape function.  For simplicity consider a cantilever plate in the x-y plane with a 
thickness c, and fixed along one edge (x = 0).  An nth order polynomial is selected due to its mathematical simplicity 
to approximate the plate’s deflection shape.  The deflection shape w(x,y) is expressed as 
 

𝑤𝑤(x,y) =  � 𝑏𝑏𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖
𝑛𝑛

𝑖𝑖=1,𝑗𝑗=0

  
(3) 

 
where bij are regression coefficients, with i > 0 to satisfy the displacement boundary condition on the clamped edge 
(w(0,y) = 0). Considering a network with m sensors and collecting displacements at sensors' locations in a vector W, 
equation (3) can be written 
 

Figure 1. Schematic representation of an SEC 

 



𝐖𝐖 = [𝑤𝑤1 … 𝑤𝑤𝑘𝑘 … 𝑤𝑤𝑚𝑚]𝑇𝑇 = 𝐇𝐇𝐇𝐇                                                                     (4) 
 
where H encodes the sensor location information and B is the regression coefficients matrix.  The H matrix is 
developed from quantities contained in equation (3) 

 

𝐇𝐇 =  �𝐇𝐇𝑥𝑥|𝐇𝐇𝑦𝑦� = �
𝑤𝑤(𝑥𝑥,𝑦𝑦),1 𝑤𝑤(𝑥𝑥,𝑦𝑦),1

⋮ ⋮
𝑤𝑤(𝑥𝑥,𝑦𝑦),𝑚𝑚 𝑤𝑤(𝑥𝑥,𝑦𝑦),𝑚𝑚

�                                                    (5) 

 
 

𝐁𝐁 =  �𝐇𝐇𝑥𝑥 | 𝐇𝐇𝑦𝑦� = �𝛽𝛽10 … 𝛽𝛽𝑖𝑖𝑖𝑖 … 𝛽𝛽𝑛𝑛𝑛𝑛�                                                               (6) 
 
 
where Hx, Hy, Bx and By are subsets of H and B, respectively.  Linear strain functions εx and εy along the x and y 
directions, respectively, can be obtained from equation (3) assuming Kirchhoff’s plate theory as: 
 

𝜀𝜀𝑥𝑥 =  𝑐𝑐
2

 𝜕𝜕
2𝑾𝑾
𝜕𝜕𝑥𝑥2

= 𝑯𝑯𝑥𝑥𝐁𝐁𝑥𝑥                                                                           (7) 
 

𝜀𝜀𝑦𝑦 =  𝑐𝑐
2

 𝜕𝜕
2𝑾𝑾
𝜕𝜕𝑦𝑦2

= 𝐇𝐇𝑦𝑦𝐁𝐁𝑦𝑦                                                                           (8) 
 
and written in terms of sensors’ signals;  
 

𝐒𝐒 = [𝑠𝑠1  … 𝑠𝑠𝑘𝑘  … 𝑠𝑠𝑚𝑚]𝑇𝑇  =  𝜀𝜀𝑥𝑥  +  𝜀𝜀𝑦𝑦  =  𝐇𝐇𝑠𝑠𝐀𝐀𝑠𝑠                                                       (9) 
 
where sk is expressed as; 
 

𝑠𝑠𝑘𝑘 =  ∆𝐶𝐶𝑘𝑘
𝜆𝜆𝜆𝜆𝑘𝑘

=  𝜀𝜀𝑥𝑥,𝑘𝑘 + 𝜀𝜀𝑦𝑦,𝑘𝑘                                                                     (10) 
 
as derived in equation (1).  Lastly, the regression coefficient matrix B is estimated using the least squares estimator; 
 

𝐁𝐁� =  (𝐇𝐇T𝐇𝐇)−1𝐇𝐇𝐇𝐇                                                             (11) 
 
where the hat denotes an estimation. In its unaltered form, 𝐇𝐇 is multi-collinear because 𝐇𝐇x and 𝐇𝐇y share multiple 
columns, and 𝐇𝐇T𝐇𝐇 is therefore singular and non-invertible. To obtain a full rank 𝐇𝐇T𝐇𝐇, boundary conditions on the 
strain map need to be included within 𝐇𝐇. This is done through the introduction of RSG sensors into the H matrix.  The 
RSG signal is assumed to be unidirectional. Therefore, an RSG sensor k is added into Hx,k or Hy,k determined by the 
RSG orientation and nullifying the corresponding row in Hx,k or Hy,k. Due to the high level of precision typically 
provided by RSGs, a higher weight can be applied in the LSE at their respective locations, Hx,k or Hy,k.  Finally, virtual 
sensor nodes are added into the H matrix simulating RSG sensors at locations of know strain, i.e. along boundary 
conditions.    

 

METHODOLOGY 

An HDSN consisting of 12 SECs and 8 RSGs was deployed onto the inside surface of a model wind turbine blade.  
The experimental setup is shown in fig. 3, consisting of a 1.3 meter blade modeled after the center third of a full scale 
wind turbine blade. The model (fig. 3(a)) consisted of 10 airfoil sections mounted onto an aluminum spar.  A fiberglass 
composite skin was attached to the second and third airfoil sections counted from the blade root.  Damage was induced 
into the fiberglass composite skin in the form of a cut, shown in fig. 3(b), to simulate a surface crack in the blade. 
Various damage cases were induced into the fiberglass substrate by cutting along the horizontal line in fig. 3(b), from 
the center outwards. A damage case of 2 cm is shown in fig. 3(b).  Data was collected for the undamaged condition, 



as well as from crack lengths varying from 2 cm to 13 cm, in 1 cm step increment. The induced cut is 2 mm wide and 
goes completely through the fiberglass substrate. 

 
This setup provided an experimental platform for the validations of an HDSN in a simulated wind turbine 

environment. The model was mounted vertically with the blade root up in the Aerodynamic and Atmospheric 
Boundary Layer (AABL) wind and gust tunnel located in the Wind Simulation and Testing Laboratory (WiST Lab) 
in the Department of Aerospace Engineering at Iowa State University.  The wind tunnel has an aerodynamic test 
section of 2.44 m width by 1.83 m height, an atmospheric boundary layer test section of 2.44 m width by 2.21 m 
height, and a design maximum wind speed of 53 m/s in the aerodynamic test section. Vibrations were induced by 
forcing two parallel thin-plates (with rounded edges at a fixed spacing), mounted vertically upstream of the model, to 
oscillate at a characteristic frequency of 3.1 Hz, thereby creating a sinusoidal buffeting (turbulence-induced) load (lift 
and moment) along the span of the blade.  The blade root was restrained in all 6 degrees-of-freedom, while forces at 
the root were monitored via force transducers. Two Transducer Techniques model MDB-50 were used to monitor lift 
and moment, and a MDB-25 was used to measure drag forces at the root. Lastly, the model was instrumented with 7 
accelerometers, PCB model #352C65 , mounted on the inside of the model.   

 
The HDSN implemented for this test consisted of 12 3x3cm square SECs and 8 unidirectional RSGs, TML model 

#FCA-2. The sensor layout is illustrated in fig. 4(a).  Figure 4(b) is a picture of the fiberglass panel that was attached 
to the blade model with 12 SECs and 4 of the 8 RSGs mounted. The remaining 4 RSGs were added after the panel 
was attached to the model. The SEC data acquisition consisted of three custom built microcontrollers, Atmel P328, 
each with a 24 bit 4 channel capacitance to digital (CDC) convertor. RSG measurements were recorded using a 
National Instruments 24-bit 350 Ω quarter-bridge modules (NI-9236).  SEC and RSG data were collected using 
LabVIEW and sampled at 22 and 2000 Hz, respectively.  

 
 Interference between the SEC data acquisition microcontrollers required that only one microcontroller be 

operating at any given time. Therefore, experimental data was obtained over 3 individual test runs, each test recording 
4 SECs and all eight RSGs.  Final experimental data were compiled using the RSG signal as a reference to obtain the 
SEC signals for each damage case.  Sensor signals were filtered as follows.   First, a low pass Weibull filter with a 
cutoff frequency of 5 Hz was implemented on both the SEC and RSG signals.  Second, a principal component analysis 
(PCA) decomposition was applied on the SEC signals, retaining the first four eigenvalues. The SEC signal was then 
resampled to 100 Hz using a spline interpolation.  Third, the RSG signal synchronized with the 100 Hz SEC signal, 
resulting in the common time stamp needed for the implementation of the enhanced LSE algorithm.  
 
 

Figure 2. LSE strain reconstruction algorithm 

 



 
Figure 3. Experimental setup: (a) wind turbine blade mounted in wind tunnel; and (b) composite section, with a crack length of 2 

cm, mounted on the model.  

 

Algorithm Properties 

A sixth order polynomial function (Eq. 3) for the deflection shape was selected to improve the ability of the strain 
decomposition algorithm in capturing the complex strain features present in the experimental test while still requiring 
low computational time. A displacement field (𝐰𝐰) was constructed such that 

𝑤𝑤(x,y) =  � 𝑏𝑏𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖
6

𝑖𝑖=1,𝑗𝑗=0

  
(12) 

 
All eight RSGs were used to enforce boundary conditions within the HDSN.  RSGs were introduced into the H matrix 
as unidirectional sensors.  A unity weight was applied to the RSGs in the current formulation.  Therefore, the LSE 
algorithm uses equal weights for both the RSG and SEC data when fitting the reconstructed strain maps.     
 
Virtual sensing nodes were deployed where strain in principal directions is known or can be assumed with a high level 
of accuracy to be zero.  These positions are diagramed in fig. 4(a) with blue squares representing boundary conditions 
where is εx = 0, and red circles represent locations where the condition εy = 0.  Virtual sensors were not placed at 
corners to allow for the presence of high concentrations of strain in the reconstructed strain maps.    
 



 

 
Figure 4. Experimental HDSN configuration: (a) schematic, where dashed squares represent SECs and crosses represent two 

RSGs measuring strain in orthogonal directions; virtual sensors in the x and y directions are denoted with blue squares red circles, 
respectively; and (b) picture of the HDSN (RSGs under wires) view from inside the blade model. 

 

VALIDATION 

The ability of the HDSN to function as a sensing skin capable of detecting, localizing, and quantifying damage is 
validated.  Figure 5 shows the decomposed strain maps (µεx and µεy) for the healthy and three individual damage cases 
(2 cm, 8 cm and 18 cm).  Each strain map is computed from data taken when the strain is at its maximum i.e. when 
the tip of the model is at its maximum displacement.  The reconstructed decomposed strain maps for the undamaged 
test case are presented in fig. 5(a).  As expected, the majority of the strain energy is present in the middle of the 
fiberglass skin that connects the two separate airfoil sections.  The deployed HDSN is capable of  

Figure 5. Reconstructed strain maps µεx and µεy: (a) healthy skin condition; (b) 2 cm cut; (c) 8 cm 
cut; and (d) 13 cm cut, damage maps are relative to the undamaged strain maps. 



 
 

 
 
 
 

reconstructing the relatively complex strain fields such as the torsional motion of the blade model as represented by 
the different parts of the skin being under tension and compression.  The blades’ torsion detected by the strain maps 
was corroborated through accelerometers, force transducers, and video captured during experimental testing.   

 
The comparison of strain maps across different damage cases (fig. 5(b)-(d)) enables the detection of damage 

through a change in the strain flow, where the location of maximum strain shifting away from the center of the 
fiberglass sheet as the crack grows in length.   

 
An advantage of the HDSN combined with the enhanced LSE algorithm is the capability to estimate strain over 

the entire monitored component, which data can be used for condition assessment. For example, fig. 6 shows the 
evolution of the estimated strain at the “inspection point”, depicted in fig. 4(a), situated close to the induced damage. 
Data is presented as the root mean square (RMS) value of strain time history. The evolution of the RMS as a function 
of the cut length at that particular point shows a linearly decreasing strain in the y-direction, while the strain in the x-
direction is approximately constant. The RMS value at that point gives a quantitative measure of damage. It is thus 
possible to utilize the HDSN for damage diagnosis, localization, and quantification. 

 

CONCLUSION 

This paper presented a novel hybrid dense sensor network (HDSN) sensing strategy for monitoring of strain over 
large surfaces. The HDSN was tested on a scale model of a wind turbine blade in a wind tunnel to simulate an 
operational environment. The HDSN consisted of a novel skin-type sensor based on a soft elastomeric capacitor 
combined with resistive strain gauges (RSGs), an off-the-shelf sensing technology. An enhanced least squares 
estimator (LSE)-based algorithm was used to decompose additive strain measurements into unidirectional strain maps. 
The algorithm assumed a shape function, enforced boundary conditions with RSG measurements and virtual sensors, 
and computed regression coefficients using an LSE. 

 
 Experimental results demonstrated the ability to the HDSN to detect changes in strain maps (i.e. damage) resulting 

from damage that provoked a change in load path. Damage quantification was also made possible by investigating the 
change in the root mean square value of strain at a particular point that was known to be located close to the induced 
damage. These results showed the promise of the HDSN technology at monitoring very large structural components. 
Also, given the ability of the HDSN at measuring strain maps, the technology could be used to update physical models 

Figure 6. Reconstructed strain maps µεx and µεy: (a) healthy skin condition; (b) 2 cm cut; (c) 8 
cm cut; and (d) 13 cm cut. 



in real-time, therefore creating high fidelity models that can be used for further research and development on the 
component itself, or the design of highly effective structural health monitoring strategies through the discovery of hot 
spots.  
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