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ABSTRACT
Full Abstract

The authors have recently proposed a hybrid dense sensor network consisting of a novel, capacitive-based
thin-film electronic sensor for monitoring strain on mesosurfaces and fiber Bragg grating sensors for enforcing
boundary conditions on the perimeter of the monitored area. The thin-film sensor monitors local strain over a
global area through transducing a change in strain into a change in capacitance. In the case of bidirectional in-
plane strain, the sensor output contains the additive measurement of both principal strain components. When
combined with the mature technology of fiber Bragg grating sensors, the hybrid dense sensor network shows
potential for the monitoring of mesoscale systems. In this paper, we present an algorithm for the detection,
quantification, and localization of strain within a hybrid dense sensor network. The algorithm leverages the ad-
vantages of a hybrid dense sensor network for the monitoring of large scale systems. The thin film sensor is used
to monitor strain over a large area while the fiber Bragg grating sensors are used to enforce the uni-directional
strain along the perimeter of the hybrid dense sensor network. Orthogonal strain maps are reconstructed by
assuming different bidirectional shape functions and are solved using the least squares estimator to reconstruct
the planar strain maps within the hybrid dense sensor network. Error between the estimated strain maps and
measured strains is extracted to derive damage detecting features, dependent on the selected shape functions.
Results from numerical simulations show good performance of the proposed algorithm.

Keywords: structural health monitoring, capacitive-based sensor, soft elastomeric capacitor, flexible membrane
sensor, sensor network, signal decomposition, damage detection, damage localization, data fusion.

1. INTRODUCTION

Localization of damage on mesostructures including civil, aerospace and wind turbine blades, offer a substantial
challenge to the advancement of structural health monitoring (SHM) due to their complex geometry and large
size. Effective monitoring solutions for mesoscale structures need to be capable of monitoring the structures global
(e.g. changing load paths, loss in global stiffness) and local (e.g. crack propagation, composite delamination)
conditions. However, current sensing technologies and practices limit the distinction between localized and
global faults on a mesoscale system.1,2 Of particular interest to the authors is SHM and prognostics and health
management (PHM) of wind turbine blades, where condition based maintenance (CBM) has demonstrated cost
savings.3–5 Additionally, the use of PHM can enable smart loads management for damaged wind turbine blades,
resulting in increased blade life and a higher rate of return for wind turbine operators.6

Traditional approaches for SHM of wind turbine blades have focused on the global monitoring of structures
using a limited number of sensors and applying a variety of post-processing techniques.7–9 These techniques
often lack the ability to localize damage and distinguish local failures from global events. Additionally, the
large amounts of data collected and retained for many post-processing techniques can add unacceptable data
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storage costs.10 The authors have recently proposed a solution to local/global detection problems with the
concept of a hybrid dense sensor network of thin-film strain sensors combined with state-of-the-art strain gauges,
where the thin-film sensors are used to cover the large area of the blade and state-of-the-art strain gauges (e.g.,
resistive strain gauges or fiber Bragg grating) for the purpose of updating boundary conditions.11 The problem
of optimized sensor placement within the HDSN has also been addressed.12 This work purposes a data fusion
technique that integrates data from the HDSN into a damage detection feature that is specially formulated for
use in the SHM of mesoscale systems.

The goal of data fusion is to integrate sensor data from a multitude of sources in order to make a useful
representation of the monitored systems that is capable for use in forming a damage detection decision. The
resulting damage detection decision should be precise and less affected by outliers than what is possible through
the monitoring of a single sensor. Additionally, data fusion can greatly reduce the magnitude of data that is
retained for use in PHM. Data fusion may be performed to obtain an engineering parameter such as when relative
information between various sensors is used to obtain mode shapes.13 Additionally, as the main focus of this
paper, data fusion can be used to obtain a feature from multiple sensors. Feature extraction is the process of
building derived values (features) intended to be informative and non-redundant. In the case of SHM, these
features should allow one to distinguish between a damaged and an undamaged state in a structure. Examples
found in the literature are most commonly based on measured dynamic signals such as resonant frequencies, mode
shapes, or properties derived from mode shapes.1,14 The implementation of an SHM system typically produces a
large amount of data; while almost all feature extraction methods compress data through the building of derived
features, the use of features that provide a high level of data compression is important in the monitoring of wind
turbine blades with HDSN due to the high channel count.11,15

This work introduces a computationally efficient, data-driven damage detection, quantification, and local-
ization technique that is capable of monitoring mesostructures without associated models or historical datasets.
More specifically, the proposed algorithm, termed NeRF (Network Reconstruction Feature), is capable of classi-
fying HDSN sections into healthy or potentially damaged elements. This work uses HDSNs consisting of SECs
for covering a large areas, and Fiber Bragg grating (FBG) sensors for the enforcement of boundary conditions
and the separation of the area into sections. The SEC is used throughout this work as a large area electronic
(LAE) strain transducer. Nevertheless, similarly developed LAEs optimized for strain measurements could also
be used.16–18

The NeRF algorithm works through comparing an individual sensor state to an estimated response that is
constructed through the fusion of multiple sensors arranged in an HDSN configuration. The estimated strain
response is built by first assuming a shape function and using a least squares estimator (LSE) to approximate
uni-directional strain maps within the HDSN. Thereafter, an error function is defined as the mean square error
(MSE) with units of ε2 between the measured and estimated strains at sensor locations. Features are defined as
the change in error associated with a given increase in the shape function’s complexity. This technique works to
fuse the SEC and FBG strain data into a single damage detection feature, providing a simple and robust method
for inspecting large numbers of sensors without the need for a complex model-driven approaches.

The contributions of this work are threefold: 1) a damage detection feature that integrates data from an HDSN
into a single detection value; 2) a demonstration of the damage detection feature’s ability to detect, quantify and
localize damage; and 3) the evaluation of the damage detection feature’s capabilities without relying on models
or historical datasets. This paper is organized as follows. Section 2 introduces the SEC along with relevant
background including the strain decomposition algorithm previously developed. Section 3 introduces simulations
of the NeRF algorithm used for validation. Section 4 discusses simulation results. Section 5 concludes the paper.

2. BACKGROUND

This section provides the background on the SEC sensor, including its electro-mechanical model, along with the
enhanced LSE-based algorithm for strain map decomposition.
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2.1 Soft Elastomeric Capacitor

The SEC is a highly elastic thin-film sensor that transduces a change in its geometry (i.e., the monitored
substrate’s strain) into a measurable change in capacitance. It is fabricated from an SEBS block co-polymer
matrix where the dielectric is filled with titania to increase both its durability and permittivity, while the
conductive plates are fabricated from an SEBS filled with carbon black particles. The fabrication process of the
SEC is documented in.19 The SEC utilizes commercially available and inexpensive materials and is based on
simple fabrication processes in its manufacturing, making the technology highly scalable.

Figure 1: HDSN technology: (a) annotated SEC sensor with reference axes; and (b) HDSN section consisting of
FBG sensors enforcing strain boundary conditions and SECs providing large area sensing coverage.

An SEC is adhered to the monitored substrate using a commercial two-part epoxy and is applied under
tension to improve performance under compression. The SEC measures in-plane strain (x−y plane in Fig. 1(a)).
Assuming a low sampling rate (< 1 kHz), the SEC can be modeled as a non-lossy capacitor with capacitance C,
given by the parallel plate capacitor equation,

C = e0er
A

h
(1)

where e0 = 8.854 pF/m is the vacuum permittivity, er is the polymer relative permittivity, A is the overlapping
area of the conductive electrodes and h is the thickness of the dielectric.

Assuming small, in-plane strain, an expression relating the sensor’s change in capacitance ∆C to the sub-
strate’s surface strain can be expressed

∆C

C
= λ(εx + εy) (2)

where λ = 1/(1− ν) represents the gauge factor of the sensor. For SEBS, ν ≈ 0.49, yielding a gauge factor
λ ≈ 2. The electro-mechanical model is derived in reference.20 Eq. (2) shows that the signal of the SEC varies as
a function of the orthogonal strain components εx + εy. The linearity of the electro-mechanical model has been
validated for mechanical responses under 15 Hz.20 For mechanical responses up to 40 Hz, an altered electro-
mechanical model is presented in21 but is not shown here for brevity. The SEC’s electro-mechanical model has
been validated for both static and dynamic strain and is presented in references.19–21

2.2 Strain Decomposition Algorithm

Orthogonal strain maps can be obtained from the additive strain measured by the SEC, as expressed in Eq. (2),
using a network of sensors in combination with enforceable boundary conditions. Leveraging an HDSN config-
uration, the enforcement of boundary conditions relies on linear strain measurement techniques. In particular,
FBG sensors are used in this work for updating the HDSN at key locations. The algorithm, termed the enhanced
LSE algorithm, is presented in reference11 and summarized in what follows.
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The enhanced LSE algorithm starts by assuming a parametric displacement shape function. A pth order
polynomial is selected as the displacement shape function due to its mathematical simplicity and its ability
to map a wide range of displacement topographies. The shape function is developed for the x-y plane with a
constant plate thickness c, such that the deflection shape w is expressed as

w (x, y) =

p∑
i=1,j=1

bijx
iyj (3)

where bi,j are regression coefficients. Considering an HDSN with m sensors, which includes both SEC and FBG

sensor nodes, displacements at sensor locations can be collected in a vector W =
[
w1 · · · wk · · · wm

]T
=

HB. Matrix H encodes information on sensor locations and vector B contains the regression coefficients such

that B =
[
b1 · · · bf

]T
where bf represents the last regression coefficient.

Appropriately defined diagonal weight matrices Γ are introduced into the H matrix such that H is defined as
H = [ΓxHx|ΓyHy]. Γx and Γy hold sensor weight values, and are formed with scalars γx,k and γy,k associated
with the k-th sensor. For instance, an FBG node k orientated to make strain measurements in the x direction
will take weight values γx,k = 1 and γy,k = 0. The following matrices are developed from quantities contained
in (3):

Hx = Hy =

[
yn1 x1y

n−1
1 · · · xn−11 y1 xn1

ynm xmy
n−1
m · · · xn−1m ym xnm

]
(4)

Linear strain functions εx and εy along the x and y directions, respectively, can be obtained from Eq. (3)
through the enforcement of Kirchhoff’s plate theory as

εx(x, y) = − c
2

∂2w(x, y)

∂x2
= ΓxHxBx (5)

εy(x, y) = − c
2

∂2w(x, y)

∂y2
= ΓyHyBy (6)

with B = [Bx|By]T .

Thereafter, a signal vector S is constructed in terms of the sensors strain signal S =
[
s1 · · · sk · · · sm

]T
where S contains the additive SECs and unidirectional FBGs strain measurements. The regression coefficient
matrix B can now be estimated using an LSE:

B̂ = (HTH)−1HTS (7)

where the hat denotes an estimation. The estimated strain maps are reconstructed using

Êx = ΓxHxB̂x Êy = ΓyHyB̂y (8)

where Êx and Êy are vectors containing the estimated strain in the x and y directions, respectively.

An HDSN without a sufficient number of uniaxial inputs will result in H being multi-collinear because Hx

and Hy share multiple rows, resulting in HTH being non-invertible. Additionally, HTH may lack sufficient
information to be invertible for a given shape function complexity. Therefore, ensuring a sufficient level of input
information in the form of sensor signals or providing a shape function of limited complexity result in HTH
being invertible.
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3. METHODOLOGY

This section presents the proposed NeRF algorithm, along with the simulation parameters used for the validation
of the algorithm performance.

3.1 Network Reconstruction Feature (NeRF)

Consider a section of an HDSN, similar to that shown in Fig. 1(b) consisting of FBG sensors along the perimeter
and SECs placed within. To establish the NeRF’s theoretical foundation, consider first the ideal situation
where strain maps are easily approximated through the use of lower order shape functions. The error in the
approximation, calculated at the sensor locations can be determined as:

V =
1

n

n∑
k=1

(Sk − S′k)2 (9)

where V is a matrix of MSE values, Sk is the sensor signal, and S′k is the LSE-estimated sensor signal using the
reconstructed strain maps. The estimated sensor signals for FBG sensors measuring εx and εy are taken from

Êx and Êy, respectively, whereas estimated sensor signals for SECs are taken as the summation of Êx and Êy at
the sensor locations, as shown in Eq. 2. This process is schematized in Fig. 3 where the orthogonal strain maps
are created using the enhanced LSE algorithm outlined in red. The development of features is discussed in the
upcoming subsection.

Figure 2: Network reconstruction feature (NeRF) algorithm.

From the approach presented above, it follows that strain fields with relatively simple strain topology will
result in estimated strain maps that are capable of reconstructing the strain field with low levels of error.
However, the introduction of a damage into the monitored substrate will result in locally more complex strain
topologies resulting in higher levels of error at the measured sensors. The proposed algorithm is capable of
detecting changes in the monitored substrate that are not directly monitored (i.e., covered by an SEC sensor)
through monitoring the structural response around a localized damage case. This technique adds versatility to
the proposed HDSN for monitoring mesoscale structures, such as wind turbine blades, by reducing the number
and density of required sensors.

3.2 Feature extraction

Using the shape function shown in Eq. (3), the damage features for NeRF are taken as the change in sen-
sor error (V that result from adding to the complexity of the shape function. Starting with w (x, y) =∑2

i=1,j=1 bijx
iyj , binomial shape function components are added in symmetric pairs from the outside of Pas-

cal’s triangle and progressing inwards for a given row. Therefore, feature No. 1 becomes the difference in
reconstruction error, V, between the polynomial shape functions w (x, y) =

∑2
i=1,j=1 bijx

iyj and w (x, y) =∑2
i=1,j=1 bijx

iyj + x3 + y3; feature No. 2 is the difference between w (x, y) =
∑2

i=1,j=1 bijx
iyj + x3 + y3 and

w (x, y) =
∑2

i=1,j=1 bijx
iyj + x3 + y3 + x2y + xy2, and so forth. The features used in this study and their

nomenclature are listed in table 1. Note that no deflection displacement boundary conditions are enforced into
the shape function. Instead, all boundary conditions are enforced into strain topography through the use of the
uni-directional FBG sensors. The development of features from each HDSN section provides a high level of data
compression from the fusion of all sensor signals S into a single feature-based scalar.
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Figure 3: Rectangular cantilever plate under tensile loading with an HDSN split into nine sections used for
algorithm validation.

Table 1: Polynominal complexities used for condition assessment features.

No. term added No. term added

1 x3, y3 8 x3y2, x2y3

2 x2y, xy2 9 x6, y6

3 x4, y4 10 x5y, xy5

4 x3y, xy3 11 x7, y7

5 x2 y2 12 x6y, xy6

6 x5, y5 13 x5y2, x2y5

7 x4y, xy4 14 x4y3, x3y4

3.3 Simulations

The NeRF algorithm is validated through simulations of a large cantilever plate under a uniform tensile loading
of 45 kN/m, illustrated in Fig. 3. Nine HDSN sections are used to assess the effectiveness of the proposed NeRF
system at damage detection and localization. The HDSN sections are constructed with networks of 14 SECs
divided by unbroken strands of continuous FBG sensors measuring either εx or εy as denoted in Fig. 3. SECs

are placed on an offset grid to introduce a level of complexity into HTH following preliminary results suggesting
that this configuration may increase the HDSNs ability to detect damage that is not directly monitored by an
SEC. Sensors are positioned with a slight randomness of ±2 cm to account for simulated error in placement and
to add a small amount of non-uniformity to the HDSN to better approximate an in-situ installation. For the
same purpose, FBGs are placed along the x and y axes with a small gap around the edge. Noise is introduced
into the sensors assuming a Gaussian normal distribution with noise levels of 25 ± µε for the SECs (based on
previous study22) and ±5 µε for the FBG nodes, representing a typical low resolution for FBG systems.23

The performance of the algorithm is investigated under three damage cases, illustrated in Fig. 3: I) large
damage in an of area of relativity simple strain topography; II) large damage spanning two HDSN sections; and
III) small damage in an area of relatively complex strain maps that is located between SEC sensors. Damage
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Table 2: HDSN and FEA configurations.

HDSN sections 9 FEA elements shell
SECs 126 integration points 9
SEC size 120 cm2 elements 25372
FBG points 104 density 2 kg/mL
FBG points (εx) 52 Youngs modulus 20 GPA
FBG points (εy) 52 thickness 7 cm

case III was selected to demonstrate the limitations of the NeRFs algorithm. Each damage case consists of a
delamination introduced as a 50% reduction in stiffness for the affected area. A stiffness reduction of 25% was
also introduced for damage case I to determine the ability of the NeRF algorithm to quantify the extent of
damage. Table 2 lists model-specific data relating to the finite element model and the simulated HDSN.

4. RESULTS

This section presents and discusses the simulation results for the validation of the NeRF algorithm. First,
an HDSN section is inspected to develop features from the reconstructed strain maps. Thereafter, damage
quantification results are presented for damage case I, followed by damage location results for cases I-III.

4.1 NeRF features

Consider the HDSN section that contains damage case I for both the healthy and damaged state. Figure 4(a)
denotes the level of error (obtained through Eq. 9) as a function of the features listed in Table 1. The healthy
state (solid black line in conjunction with the left axis) converges after a few added features, demonstrating
that the strain topography can be easily reproduced with a relatively simple shape function. In comparison,
damage case I (dashed red line in conjunction with the right axis) starts with a considerably higher level of
strain and continuously benefits from adding more complexity to the shape functions. In both cases, the shape
function beyond that produced by feature No. 14 became overly complex, whereas HTH becomes non-invertible.
Therefore, solving for higher shape function with greater complexity would require additional sensors be added
into the HDSN section.

The MSE on V and condition assessment feature corresponding to the change in V as a function of polynomial
complexities (table 1) are presented in Fig. 4(a) for the healthy and damage cases. The damaged system results
in higher condition assessment features at higher polynomial complexities. This is to be expected, as the mapping
of strain around damage would typically require a more complex strain shape function. In comparison, mapping
strain for the healthy state can be conducted using lower order polynomials as seen from the higher condition
assessment features.

4.2 Quantification

Condition assessment features can be used to quantify different levels of damage as presented in Fig. 4(b).
Here, features from polynomial complexities No. 3 and 13 are used to distinguish varying levels of stiffness
damage present in damage case I. Feature scatters increase as the damage level increases, as expected given
that the LSE encounters more variation with increase in topology complexity. Feature distance can be any
n-dimensional combination of NeRF. However, a two-dimensional feature distance is shown here for simplicity.
A two-dimensional Gaussian distribution for 2σ, σ being the standard deviation, is plotted over the scatter plot
to provide a level of confidence for the feature extraction.

4.3 Localization

Damage localization is conducted in terms of feature distances. Results shown in Fig. 5 are expressed in terms of
such feature distances, taken as the Euclidean distance between the center of the Gaussian cluster, as illustrated
in Fig. 4(b), derived from feature No. 6, 9 and 11 and the axes origin. Figure 5(a) presents the healthy state
of the plate while Fig. 5(b-d) present damage cases I-III, respectively. Figure 5(a) demonstrates that a more
complex strain topology is located at the fixity of the place. These results are to be expected as the fixity
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Figure 4: NeRF: (a) MSE of V as a function of polynomial complexity; and (b) clustering of features for damage
quantification.

will result in highly curved local strain fields. The non-symmetric relationship is most likely a result of the
slight randomness applied to individual SEC layouts, resulting in non-identical HDSN sections. Damage case I
is presented in Fig. 5(b). Here, the location of a high strain map reconstruction error V is easily detectable as
the error caused by the damage case is significantly higher than that present along the fixed edge. This sharp
increase in error demonstrates the NeRF algorithm’s ability to distinguish between HDSNs that may be damaged
from those that are healthy. This damage case is detectable without the use of historical data or external models
as under the current loading condition, the HDSN section in the middle of the plate should be in close agreement
with its neighbors.

The algorithm’s robustness to multiple damaged sections is presented in Fig. 5(c). Here, damage is introduced
across two HDSN sections (illustrated in Fig. 3). The feature distance results demonstrate that the algorithm is
capable of detecting damage in both HDSN sections. Lastly, a more difficult damage case is introduced. Damage
case III consists of a 50% reduction in stiffness for a 0.2% area of the HDSN section, positioned between SEC
sensors. Feature distances are presented in Fig. 5(d). While the magnitude of the feature distance increased by
approximately 1/3, form 1.95 × 10−9 (ε2) for the undamaged state to 2.97 × 10−9 (ε2) for the damages state
damage, the assessment of damage is difficult because a complex strain topology is already present in the HDSN
section of interest. This demonstrates a limitation of the NeRF. A solution would be to leverage an external
model or historical data to reference the error to damage case III.

NeRF is capable of providing a high level of data compression in the form of features fused from sections
of an HDSN. In the cantilever plate example, each feature or feature distance is the result of data fusion of 34
individual data channels. When extended to the entire plate, and considering that some FBG nodes are shared
between sections, the NeRF algorithm provides a data compression of 246 data points to 9, equivalent to a 96.4%
data reduction. Compression of data allows for faster post-processing, retention of longer historical datasets,
and a reduction in the cost associated with building prognostic datasets.
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Figure 5: Damage localization for the square plate: (a) healthy case; (b) case I; (c) case II; (d) case III.

5. CONCLUSIONS

This work introduced a computationally efficient, data-driven damage detection, quantification and localization
feature extraction technique that is capable of monitoring mesoscale structures such as wind turbine blades,
without associated models or historical datasets. Termed the network reconstruction feature (NeRF), the algo-
rithm allows for the separation of healthy and potentially damaged sections within a hybrid dense sensor network
(HDSN). Specifically designed for use with high-count HDSN, NeRF provides data fusion for sensors within an
HDSN section and outputs a single feature scalar providing a high level of data compression when implemented
over a large structure. The NeRF algorithm works through assuming a shape function and using the LSE to
approximate uni-directional strain maps within the HDSN. An error function, measured by the mean square
error (MSE) between the sensors’ measured and estimated strain is obtained. Features are defined as the change
in error associated with a given increase in the shape function complexity. Data compression provided by the
NeRF algorithm reduces the computational effort and storage space needed to develop and monitor prognostic
datasets for large-scale structures.

Numerical investigations were conducted on a cantilever plate equipped with 126 SECs and 104 FBG nodes,
sectioned into 9 discrete sections. The NeRF algorithm successfully distinguished between damaged and healthy
HDSN sections for three different damage cases. In two damage cases, it was possible to distinguish between
healthy and damaged conditions without the use of historical data. However, it was difficult to detect damage
case III because it was highly localized within a region of high strain complexity. Its detection would likely
require the comparison with the undamaged case (i.e., historical data set). Future investigations are needed to
validate the algorithm for use with an extended library of loading and damage cases. Sensor network design and
partitions, including the number and of SECs within HDSN sections, also needs exploration. This includes the
use of asymmetric sensor networks and the inclusion of SECs of different geometries.

Results presented show the promise of the technology for monitoring large-scale surfaces, such as wind
turbine blades and aircraft wings, by leveraging a hybrid sensor network configuration. For example, the HDSN
data could be used to monitor wind turbine blades in both global and local conditions, whereas the NeRF
algorithm could be used to formulate prognostic datasets to detect changes in structural health over time, reducing
wind turbines operational cost through the use of damage mitigation technology and real-time structural health
management.
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