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Objective life cycle management

Objective

To enable the life cycle management of mesoscale systems through the
use of dense sensor networks (DSN)

Data extracted from a DSN can enable:

Condition Based Maintenance
(CBM)

Smarter load management

Prognostics and health
management (PHM)

Reduced operations and
maintenance (O&M) cost

Creative Commons Attribution 2.0
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Objective life cycle management

Life cycle management of wind turbines
Utilizing DSNs to enable life cycle management of mesoscale systems
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Motivation Continued Growth of Wind Energy

Iowa, a center for wind

US wind energy share of electricity generation during 2015 iowa.gov
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Motivation Continued Growth of Wind Energy

Towards 50% wind energy

Wind XI will add 1000 2-megawatt
machines. slate.com

The project is a big step towards the
companys goal of 100% renewable energy
for all its Iowa customers.
cleantechnica.com
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Motivation Continued Growth of Wind Energy

Taller towers

Iowa has the tallest land-based (US)
wind turbine (115 meter hub height)
Donnelle Eller

Iowa State University is working on the
development of hexagon concrete towers.
news.iastate.edu
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Motivation Continued Growth of Wind Energy

Bigger blades

Enercon 73 meter blade Wind Energy
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Dense Sensor Networks (DSN) Soft Elastomeric Capacitor Based DSN
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Dense Sensor Networks (DSN) Soft Elastomeric Capacitor Based DSN

Soft Elastomeric Capacitor (SEC)
Large area electronics consisting of a strain-sensitive Soft Elastomeric Capacitor (SEC)

SECs of varying size compared to a resistive strain
gauge (RSG).

Highly elastic sensing
membrane.

Laflamme et al., “Robust Flexible Capacitive Surface Sensor for Structural Health Monitoring
Applications”.
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Dense Sensor Networks (DSN) Soft Elastomeric Capacitor Based DSN

Implementation

Deployable inside wind
turbine blades/towers

Retrofit or OEM

Useful for other large
structures, e.g. buildings,
bridges, aircraft.

Inside a 45 meter GE blade Austin
Downey
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Dense Sensor Networks (DSN) Soft Elastomeric Capacitor Based DSN

Damage cases
Typical damage cases found on wind turbine blades

1) fracture; 2-3) edge split; 4) impact. Austin Downey
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Dense Sensor Networks (DSN) Soft Elastomeric Capacitor Based DSN

SEC electromechanical model
Electromechanical for the SEC for converting capacitance to strain

Parallel plate capacitor

∆C = εrε0
∆A

t
(1)

εr is the relative static permittivity and ε0 is the
dielectric constant. Using hooks law;

∆C

C
= λ(εx + εy) (2)

where εx is the strain in the x direction, εy is the
strain in the y direction and λ is the sec’s gauge factor
≈ 2 for mechanical excitation under < 15 hz.

SEC sensor

Laflamme et al., “Dynamic Characterization of a Soft Elastomeric Capacitor for Structural Health
Monitoring”.
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Dense Sensor Networks (DSN) Soft Elastomeric Capacitor Based DSN

Fully integrated SEC-based dense sensor network
A fully integrated SEC-based dense sensor network consisting of sensors, data acquisition, and power
management all preassembled on a polyimide sheet
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Downey, Laflamme, and Ubertini, “Experimental wind tunnel study of a smart sensing skin for
condition evaluation of a wind turbine blade”.
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Dense Sensor Networks (DSN) Soft Elastomeric Capacitor Based DSN

Dense sensor network for fatigue crack detection

Network of SECs for localized fatigue crack damage detection.
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Dense Sensor Networks (DSN) Soft Elastomeric Capacitor Based DSN

Direct damage detection
A DSN of SECs is capable of spatial and temporal damage detection

damage

damage

damage

damage

impact testing Link
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Algorithm Development

Decompose the SEC’s additive strain signal
An algorithm was developed generate unidirectional strain maps

First a model is developed by:

Assuming a shape function
Imposing boundary conditions

then the model is solved by calculating the function parameters via a least squares
estimation

ɛy ɛX

Decomposed strain maps developed for an experimental DSN with 20 SECs and 10 RSGs

Downey, Laflamme, and Ubertini, “Reconstruction of in-plane strain maps using hybrid dense sensor
network composed of sensing skin”.

Wu et al., “Network of flexible capacitive strain gauges for the reconstruction of surface strain”.
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Algorithm Development

Shape function
A two-term polynomial is used to derive εx and εy

schematic representation of cantilever plate
with SEC array

a
x+ y

x2 + xy + y2

x3 + x2y + xy2 + y3

x4 + x3y + x2y2 + xy3 + y4

Pascals Triangle for displacement function

Kirchroff’s theory of thin plates
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Algorithm Development

Unidirectional strain maps
The least squares estimator (LSE) is used to solve for the estimated unidirectional strain maps

ε̂x(x, y) = b̂1 + b̂2x+ b̂3y + b̂4x
2 + b̂5xy + b̂6y

2

ε̂y(x, y) = b̂7 + b̂8x+ b̂9y + b̂10x
2 + b̂11xy + b̂12y

2

solve for b using least squares estimator (LSE):

B̂ =
1

λ
(HTH)−1HTS
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Algorithm Development

Dynamic reconstruction of unidirectional strain maps
40 SEC DSN on a custom built test bench designed for controlled dynamic loading

Strain maps (simulation) Dynamic excitation

Downey et al., “Dynamic Reconstruction of In-plane Strain Maps Using a Two-dimensional Sensing
Skin”.
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Algorithm Development

Unidirectional strain maps
Dynamic strain maps reconstructed from a 40 SEC DSN on a test bench

εx εy

Downey et al., “Dynamic Reconstruction of In-plane Strain Maps Using a Two-dimensional Sensing
Skin”.
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Algorithm Development

Unidirectional strain maps
Dynamic strain maps reconstructed from a 40 SEC DSN on a test bench

εx εy

Downey et al., “Dynamic Reconstruction of In-plane Strain Maps Using a Two-dimensional Sensing
Skin”.
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Experimental Wind-Tunnel Validation
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Experimental Wind-Tunnel Validation

Dynamic reconstruction of unidirectional strain maps
A wind turbine blade application

Wind tunnel
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Experimental Wind-Tunnel Validation

SEC signal
Time series signal and associated frequency domain for SEC # 8 and RSG B

SECRSG

filtered SEC

SEC

RSG
3.10 Hz

6.2 Hz

SEC maximum power

6.15 Hz
(RSG) (SEC)

9.25 Hz
(RSG)

Downey, Laflamme, and Ubertini, “Experimental wind tunnel study of a smart sensing skin for
condition evaluation of a wind turbine blade”.
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Experimental Wind-Tunnel Validation

Unidirectional strain maps
Dynamic unidirectional strain maps generated for a the model wind turbine blade

Wind Tunnel Testing

Link

Strain Maps

Link

Downey, Laflamme, and Ubertini, “Experimental wind tunnel study of a smart sensing skin for
condition evaluation of a wind turbine blade”.
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Experimental Wind-Tunnel Validation

Changing load paths
Damage-induced changes in the monitored substrates load path for all bolts removed on the leading edge

εx εy εx εy

healthy damaged

Downey, Laflamme, and Ubertini, “Experimental wind tunnel study of a smart sensing skin for
condition evaluation of a wind turbine blade”.
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Experimental Wind-Tunnel Validation

Network Reconstruction Feature (NeRF)
A damage detection and localization algorithm specially designed for the SEC-based DSN

The proposed Network Reconstruction Feature (NeRF) algorithm provides:

Data fusion of the additive SEC signal and unidirectional RSG signal.

Distinguish healthy states form possibly damaged states.

Capable of damage detection, quantification and localization.

Can function without historical data set or external models.

unidirectional strain maps

shape function

RSG signal

SEC signal

least
squares

estimator
(LSE)

mean
squared

error
(MSE)

estimated εx

estimated εy

reconstruction
error

Downey, Ubertini, and Laflamme, “Algorithm for damage detection in wind turbine blades using a
hybrid dense sensor network with feature level data fusion”.

Iowa State University NAWEA 2017 September 27th 2017 29 / 35



Experimental Wind-Tunnel Validation

Error quantification
Quantifies the error between the sensor’s measured strain and the decomposed strain maps

 

damage
location

εy healthy εy damaged

1.21×10-11 ε2
reconstruction error

46.7×10-11 ε2
reconstruction error

Downey, Ubertini, and Laflamme, “Algorithm for damage detection in wind turbine blades using a
hybrid dense sensor network with feature level data fusion”.
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Experimental Wind-Tunnel Validation

Feature extraction
Features are defined as the improvement (reduction) in error from one polynomial complexity to another
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Downey, Ubertini, and Laflamme, “Algorithm for damage detection in wind turbine blades using a
hybrid dense sensor network with feature level data fusion”.
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Experimental Wind-Tunnel Validation

Experimental wind tunnel validation
Experimental setup used for testing the DSN in the noisy environment of a wind tunnel
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Downey, Laflamme, and Ubertini, “Experimental wind tunnel study of a smart sensing skin for
condition evaluation of a wind turbine blade”.
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Experimental Wind-Tunnel Validation

Leading edge damage
NeRF algorithm results for changing boundary conditions on the leading edge of the monitored substrate

leading edge bolts removed

Downey, Laflamme, and Ubertini, “Experimental wind tunnel study of a smart sensing skin for
condition evaluation of a wind turbine blade”.
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Conclusion

Conclusion
Summary of the advances made to the monitoring of mesoscale systems

Key advances made in the current work:

Proposed a low-cost dense sensor network for mesoscale monitoring
Demonstrated the dense sensor network’s capability to detect and localize damage
Formulated a simple damage detection algorithm with a high level of data fusion
Validated the proposed dense sensor network and damage detection algorithms
through wind tunnel testing

SEC technology: 1) SEC sensor; 2) 4 channel DAQ; and 3) HDSN; 4) HDSN.
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