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ABSTRACT 

Friction-based dampers have gained attention as a cost-effective way to provide structural control 

during natural hazards. However, the dry friction interfaces in these systems display highly non-

linear damping phenomena such as the stick-slip phenomena and damper backlash during reversal 

of travel. In this work, we develop a new physics-informed friction model to represent a 40 kN 

rotary friction damper designed for high damping performance and mechanical simplicity. 

Specifically, the LuGre dry friction model is augmented with the use of online parameter 

estimation from two long short-term memory models. It is shown that the physics-informed model 

preserves a state-boundedness property similar to the LuGre model. A methodology for model 

training is given which uses direct training for static parameters and back-propagation to produce 

an indirect training method for the dynamic parameter 𝜎0 in the LuGre model. Results from 

training datasets are then compared against LuGre models found with the least-squares method. 

The model is validated with data from a hybrid simulation of the damper installed in a structure 

under wind loading. 
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INTRODUCTION 

Damping systems are now in widespread use in structural controls and are used to mitigate 

damage from wind and earthquake events (Saaed et al. 2015). Of interest to this paper is the class 

of friction dampers, which can produce larger damping forces than other damping systems, while 

maintaining mechanical simplicity and low costs (Cao et al. 2016). One problem preventing the 

implementation of friction dampers is their nonlinear dynamics. An accurate dynamical 

understanding of a damper is imperative, as an untuned damper may have either negligible or 

detrimental effects on a structure’s performance (Nabid et al. 2018). However, modeling is 

complicated by the nonlinear stick-slip phenomenon present in dry friction interfaces. 

Furthermore, friction dampers exhibit loss of friction during reversal of travel termed backlash. 

Most research in friction modeling is within servo and pneumatic controls, where model-

based compensation allows for greater precision movement. A common choice for modeling dry 

friction systems is the LuGre model, which was developed as a modification of the Dahl model to 

account for the Stribeck effect (Canudas de Wit et al. 1995). The LuGre model calculates force as 

a function of velocity and a state variable, interpreted as average bristle deflection. However, 

fitting the dynamic parameters of ‘rate and state’ models to a friction system has been observed to 

be a difficult problem. 

Various methodologies have been proposed for parameter identification of the LuGre 

model. Madi et al. (2004) proposed a methodology using set inversion to bound model parameters 

and validated by modeling an electro-pneumatic actuator. Liu (2006) applied a genetic algorithm 

to identify the system properties of a mechanical servo. Wenjing (2007) identified LuGre model 



parameters in a similar system using a particle swarm optimizing algorithm. These methods avoid 

the local minimum problem but suffer from inefficient computation time. In the realm of online 

training, adaptive controllers have been used to identify parameters for friction compensation of a 

pneumatic actuator (Khayati et al. 2009), while Wei et al. (2014) used a recursive least-squares 

method to fit piezoelectric actuation to a Bouc-Wen model. 

A simple alternative to parameter identification in physical models is the use of data-driven 

models. Although given sufficient data, machine learning (ML) models are adequately able to 

describe a physical process, stakeholders are often wary to implement ML models because of their 

“black box” nature, which gives no certain model properties. Compare this to the LuGre model, 

which has known properties such as state-boundedness, and, under certain conditions, passivity 

(Canudas de Wit et al. 1995), (Barabanov 2000). Recently, researchers have become interested in 

a combined approach, termed physics-informed machine learning, which offers the advantages of 

both ML and physics-based modeling (Vadyala et al. 2022). Most physics-informed machine 

learning approaches have focused on constraining neural networks to behave under known 

physical rules, such as time or spatial invariance. Other work, more relevant to this paper, 

combines ML components into a larger physics-driven architecture in a method termed hybrid 

physics-ML modeling (Willard). Hybrid physics-ML models may be more accurate than pure 

physics models; while retaining certain advantageous properties. 

In this paper, the authors create a physics-informed machine learning model to describe the 

friction effects of a 40 kN rotary friction damper. This model uses a modified LuGre model online 

parameter prediction from two long short-term memory (LSTM) models. The rest of this paper is 

organized as follows. First, the rotary friction damper and test setup are presented. The LuGre dry 

friction model and long short-term memory are then explained before a modified LuGre model 



used for online parameter updating is given. A training process for parameter prediction is given. 

Results are shown on characterization and validation datasets. The performance, reliability, and 

accuracy of the model are discussed. 

THE BANDED ROTARY FRICTION DEVICE 

The banded rotary friction device (BRFD) is a semi-active friction damper proposed for 

use in structural control by Downey et al. (2016). The system is based on a double wrap band brake 

system designed to produce a high amplification of the applied force. Fig. 1 shows a profile view 

of the BRFD. The device consists of three steel bands lined with a friction surface wrapped around 

a steel drum. Linear displacement, such as from interstory drift, is transduced to an angular 

displacement in the drum. Energy is dissipated from the friction contact between the friction 

material and the drum’s surface. 

Semi-active control is accomplished with two electric actuators which connect to either 

end of the band. When an actuator is activated, the band tightens around the drum, increasing the 

pressure between the band and drum and increasing the friction force. 

 

 

 

 

 

 

 

 

 
Fig. 1. Front view of the banded rotary friction device (Coble 2022). 



 As the drum rotates, the bands grip more tightly around the drum and increasing the friction 

force in what is known as the self-energizing effect. When angular velocity changes sign, the 

friction force drops as slack in the bands is introduced. The damping force is amplified again as 

the band rotates in the opposite direction, taking up the slack in the bands and again benefiting 

from the self-energizing effect. In the region where the self-energizing effect is not active in either 

direction, termed the backlash region, the damper behaves with different friction properties (Cao 

et al. 2016). 

 Fig. 2 shows the BRFD on a structural testbed. A displacement profile is given by a 

hydraulic actuator and a load cell connected to the actuator measures the responding force. Electric 

actuators are connected to each end of the bands and are used for semi-active control. Load cells 

are placed between the friction bands and electric actuators to obtain the generated tension force.  

 

 

 

 

 

 

 

 

THE LUGRE MODEL 

The LuGre dry friction model describes a simplified system where friction is generated 

from the contact and deflection of bristles coming from two surfaces. Fig. 3 shows a representation 

Fig. 2. Banded rotary friction device test set-up. 

                     

             
              

                 

             

              

              

                  

          

    



of two surfaces in a LuGre system. As one surface moves past the other, energy is absorbed in the 

deflection of the bristles. 

 

 

 

 

 

 

 

The LuGre model is described in Eqs. (1-3). 

𝑧̇ = 𝑣 − 𝜎0

|𝑣|

𝑔(𝑣)
𝑧 (1) 

𝐹 = 𝜎0𝑧 + 𝜎1𝑧̇ + 𝜎2𝑣 (2) 

𝑔(𝑣) = 𝐹c + (𝐹s − 𝐹c)𝑒
|

𝑣
𝑣s

|
2

(3) 

where 𝑧 is a state variable representing bristle deflection. 𝐹s and 𝐹c are static and kinetic friction, 

and 𝑣s is the Stribeck velocity. The dynamic parameters 𝜎0, 𝜎1, and 𝜎2 represent stiffness, the 

damping coefficient, and viscous friction respectively, are the hardest to determine experimentally. 

A modified 𝑔 can be used to capture effects that are not symmetric with the direction of 

force.  

𝑔(𝑣, 𝐹) = {
𝐹c,neg + (𝐹s,neg − 𝐹c,neg)𝑒

|
𝑣
𝑣s

|
2

𝐹c,pos + (𝐹s,pos − 𝐹c,pos)𝑒
|

𝑣
𝑣s

|
2

𝐹 ≤ 0
𝐹 > 0

(4) 

 An important property of the LuGre model is state-boundedness. Given a general function 

𝑔 and a starting state 𝑧0 = 0, state-boundedness gives 

Fig. 3. A LuGre dry friction with contact between bristles on two surfaces. Adapted from 

Canudas de Wit 1995. 



|𝑧| ≤
max(𝑔)

𝜎0
 (5) 

where max(𝑔) is the maximum value in the range of 𝑔.  

LONG SHORT-TERM MEMORY 

 Recursive neural networks (RNNs) are designed for processing time-sequence data, where 

the desired output may have a history-dependance on the input data. While standard RNNs are 

able to represent history-dependence, in practice they suffer from an effect called the vanishing 

gradient problem, which limits learning from long sequences. Long short-term memory (LSTM) 

was proposed by Hochreiter and Schmidhuber in 1997 to overcome the vanishing gradient problem 

and has found success in areas such as machine translation and speech recognition. Eqs. (5-10) 

show the equation form of one LSTM timestep. 𝑊 matrices are the weights for the current time 

step input and 𝑈 matrices process the recurrent connection to the previous timestep output. 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) (6) 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (7) 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (8) 

𝑐̃𝑡 = tanh(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) (9) 

𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ 𝑐̃𝑡 (10) 

ℎ𝑡 = 𝑜𝑡 ∘ tanh(𝑐𝑡) (11) 

PHYSICS-INFORMED MODEL 

 The LuGre model is not capable of capturing the backlash effect or the changing normal 

force associated with semi-active control. To capture these effects, the authors present the modified 

LuGre model in eqs. (12-13), where the parameters 𝐹c, 𝐹s, and 𝜎0 are taken to be time-variable. 

Varying 𝐹c and 𝐹s captures changes in normal force, while 𝜎0, which is related to the rising-rate of 



force after the velocity changes sign and captures the backlash effect. Notice that with constant 

parameters, this model reduces to the standard LuGre model with the state parameter 𝑦 = 𝜎0𝑧.  

𝑦̇ = 𝜎0 (𝑣 −
|𝑣|

𝑔(𝑣)
𝑦) (12) 

𝐹 = 𝑦 +
𝜎1

𝜎0
𝑦̇ + 𝜎2𝑣 (13) 

Preservation of the state-boundedness property was the main motivation for the substitution 

of the state variable in the modified model. In the modified model, state-boundedness is described 

by 

|𝑦| ≤ max (𝑔) (14) 

The time-dependent parameter estimations come from two LSTM models which predict 

the static parameters 𝐹c and 𝐹s and the dynamic parameter 𝜎0 respectively. The inputs to these 

LSTM models are the actuator tension measured by load cells connected between the actuators 

and bands, 𝐹act−1 and 𝐹act−2. Actuator tension is expected to have a non-linear relationship to all 

three of the predicted parameters. Fig. 4 shows a flow chart representation of the model. 
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Fig. 4. Physics-informed machine learning model used in this 

work where the LSTM models are used to train select parameter. 

 



TRAINING 

In producing data for characterization, the BRFD was tested under a sinusoidal 

displacement profile. The profile was modified to vary the period of the sinusoid between 0.05 Hz 

and 1.0 Hz. To give data on the relationship between the tension force and friction force, tests were 

run varying initial tension between 20 lb and 80 lb. In total, 24 characterization datasets were 

produced. Validation data was collected from five hybrid simulations of the BRFD installed in a 

structure under wind loading. Displacement, velocity, friction force, and actuator tensions were 

recorded during these tests.  

𝐹c and 𝐹s may easily be found from the data by averaging friction force in the kinetic and 

static domains. As true values may be inferred from the data, an LSTM model can be trained which 

predicts 𝐹c and 𝐹s from the actuator force in a direct approach. This method would not work for 

predicting the dynamic parameter 𝜎0, which cannot be easily measured or inferred from the data. 

Therefore, an indirect approach was used where the LSTM prediction of 𝜎0 was trained with error 

from the LuGre prediction. Backpropagation produces an error gradient with respect to 𝜎0 which 

then propagates an error gradient to train the LSTM model.  Fig. 5 shows the two-step process for 

training. Table 1. shows the sources of all parameters for the LuGre model. 
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Table 1. Sources of LuGre model parameters. 
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RESULTS 

 Results are reported in normalized root mean squared error (NRMSE). To provide 

comparison, a constant-parameter LuGre model was parameterized to each characterization dataset 

using a least squares method. Tables 2 and 3 give NRMSE for each dataset for both the LuGre and 

the physics-ML model. For the characterization datasets, the LuGre models produced a total 

NRMSE of 4.5%. In comparison, the physics-ML model reduced the NRMSE to 2.8%. Fig. 6 

shows force-velocity plots for a test with 0.1 Hz frequency with initial band tension of 35 lb. The 

experimental data is plotted against the LuGre and physics-ML model predictions. 

 

 

 

 

 

 

 

The physics-ML model was validated with data from five hybrid tests. The aggregate 

NRMSE for all tests was 14.7%. This shows a roughly five-fold increase in the error from the 

Parameter Source 

𝜎0 indirectly trained LSTM 

𝜎1 LuGre model 

𝜎2 LuGre model 

𝐹c directly trained LSTM cell 

𝐹s directly trained LSTM cell 

𝑣s manually selected 

Fig. 6. Force-velocity plots of (a) LuGre and (b) physics-ML prediction. 

Fig. 5. Model training where the cells trained are boxed in red, showing: (a) the 

direct first step, and; (b) the indirect second step.  



training and characterization dataset to the validation dataset. Fig. 7 shows a time-series plot of a 

portion of one test with the physics-ML model and experimental data. 

 

 

 

 

 

 

 

 

 Table 2. Normalized root mean squared error of LuGre parameterization to characterization datasets. 

act. tension 0.05 Hz 0.1 Hz 0.5 Hz 1 Hz 

20 lb 5.0% 5.2% 5.6% 6.6% 

22 lb 5.6% 4.9% 5.0% 8.0% 

25 lb 5.2% 5.5% 5.7% 5.8% 

35 lb 5.0% 5.2% 5.1% 6.4% 

70 lb 4.8% 4.9% 5.3% 5.9% 

80 lb 4.2% 4.4% 5.0% 6.3% 
 

Table 3. Normalized root mean squared error of physics-ML model to characterization datasets. 

 

 

 

 

DISCUSSION 

Trained and tested in the characterization dataset, the physics-informed ML model was 

able to outperform LuGre model fits to each dataset. NRMSE decreased from 4.5% to 2.8%, a 

act. tension 0.05 Hz 0.1 Hz 0.5 Hz 1 Hz 

20 lb 6.8% 6.7% 5.9% 7. % 

22 lb 3.6% 3.5%  .9% 6.3% 

25 lb  .3% 3.5%  . %  .5% 

35 lb  . % 3.9% 3. % 3.9% 

70 lb 5. %  .5% 3. % 3.5% 

80 lb  .5% 3.8% 3.3% 3.7% 

Fig. 7. Time series of a portion of one test with the physics-ML model and 

wind loading simulation. 



reduction of 37.3%. Most of the error reduction comes from the ability to reproduce the backlash 

effect. In the backlash region, the LSTM model produces smaller estimations of 𝜎0, which 

decreases the force’s rising-rate. The LSTM model also accurately predicts static and kinetic 

friction parameters from the actuation tension. This is necessary for semi-active control, where 

changes in the actuation tension will drive higher or lower friction forces. LSTM prediction of 

static and kinetic friction also captured the asymmetric properties of the BRFD resulting from the 

friction band. 

The model showed poor generalization to data from a hybrid simulation of a structure under 

wind loading. We observed that the largest source of error in the validation prediction came from 

the large force asymmetry seen in Fig. 8 (a) where experimental results on one side of the damper 

produced forces in excess of 6 kip. The source of the asymmetry comes from the nature of wind 

loading, where vibrations occur around an initial displacement. A frequency analysis of the hybrid 

tests, shown in Fig. 8 (b) showed that a significant portion of the dataset contained frequencies 

greater than the 1.0 Hz maximum that was used in characterization. Expanding the frequency 

sweep and applied force range could result in better fits to the wind profiles. Wind loading effects 

could also be replicated in the characterization tests by testing performing tests with an initial 

displacement. 

 

 

 

 

 

 

Fig. 8. Data for explaining the poor validation forces, showing: (a) box plot of force distribution in characterization and 

validation datasets, and; (b) frequency distribution of velocity in validation dataset. 



 

SUMMARY AND CONCLUSION 

The objective of this project was to develop a physics-informed ML model capable of 

capturing the backlash effect and semi-active control of a dry friction damper. To that end, a 

modified LuGre model was created which accepted time-dependent 𝐹c, 𝐹s, and 𝜎0 parameters. Two 

LSTM models were developed to predict these parameters from the actuator tension. Model 

training for 𝐹c and 𝐹s utilized a direct training method while model training for 𝜎0 utilized an 

indirect training method. This model improved prediction in the characterization dataset by 

capturing the backlash effect but poorly generalized when applied to a hybrid simulation of a wind 

event. Future work will look at improvements to combined physics and machine learning models, 

including improving generalization to tests of both wind and earthquake events. 

ACKNOWLEDGMENTS 

This work was funded under NSF Awards #21229782 and #2037771 and conducted at the 

Lehigh NHERI Experimental Facility. The authors would like to thank Lehigh University, the 

Lehigh NHERI Experimental Facility, and the ATLSS Research Center for hosting this work, as 

well as the laboratory technical staff who assembled the BRFD and testbed. We would like to 

thank in particular Robin Nelson and Chad Kusko for organizing the NHERI REU Summer 

Program and Lehigh STEM-SI program, respectively, without which this research could not have 

been possible. 

 

  



REFERENCES 

Barabanov, N., and R. Ortega. 2000. “Necessary and sufficient conditions for passivity of the 

LuGre friction model.” IEEE Trans. Autom. Control. 45 (4), 830-832. 

https://doi.org/10.1109/9.847131. 

Canudas de Wit, C., H. Olsson, and K. J. Åström, P. Lischinsky.  995. “A new model for control 

of systems with friction.” IEEE Trans. Autom. Control. 40 (3), 419-425. 

https://doi.org/10.1109/9.376053. 

Cao, L.,  . Laflamme, D.  aylor, and J. Ricles.    6. “ imulations of a variable friction device 

for multihazard mitigation.” J. Struct. Eng. 142 (12), H4016001. 

https://doi.org/10.1061/(ASCE)ST.1943-541X.0001580. 

Downey, A., L. Cao,  . Laflamme, D.  aylor, and J. Ricles.    6. “High capacity variable friction 

damper based on band brake technology.” Eng. Struct. 113, 287-298. 

https://doi.org/10.1016/j.engstruct.2016.01.035. 

Hochreiter, S., and J. Schmidhuber. 1997. “Long short-term-memory.” Neural Comput. 9 (8) 

1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735. 

Khayati, K., P. Bigras, and L. A. Dessiant.    9. “LuGre model-based friction compensation and 

positioning control for a pneumatic actuator using multi-objective output-feedback control via 

L I optimization.” Mechatronics. 19 (4), 535-547. 

https://doi.org/10.1016/j.mechatronics.2008.12.006. 

Liu, D. P.    6. “Parameter identification for LuGre friction model using genetic algorithms.” In 

Proc., 5th Int. Conf. on Machine Learning and Cybernetics, Dalian, China: IEEE, 3419-3422. 

https://doi.org/10.1109/ICMLC.2006.258506. 

https://doi.org/10.1109/9.847131
https://doi.org/10.1109/9.376053
https://doi.org/10.1061/(ASCE)ST.1943-541X.0001580
https://doi.org/10.1016/j.engstruct.2016.01.035
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.mechatronics.2008.12.006
https://doi.org/10.1109/ICMLC.2006.258506


Madi, M. S., K. Khayati, and P. Bigras. 2004. “Parameter estimation for the LuGre friction model 

using interval analysis and set inversion.” In Int. Conf. Sys., Man, and Cybernetics, The Hague, 

Netherlands: IEEE, 428-433. https://doi.org/10.1109/ICSMC.2004.1398335. 

Nabid N., and I. Hajirasouliha,  . Petkovski.    8. “Performance‑based optimisation of RC 

frames with friction wall dampers using a low‑cost optimisation method.” Bull. Earthquake Eng. 

16, 5017-5040. https://doi.org/10.1007/s10518-018-0380-2. 

Saaed,  . E., G. Nikolakopoulos, J. E. Jonasson, and H. Hedlund.    5. “A state-of-the-art review 

of structural control systems.” J. Vib. Control. 21 (5), 919-937. 

https://doi.org/10.1177/1077546313478294. 

Sobczyk, M. R., V. I. Gervini, E. A. Perondi, and  . A. B. Cunha.    6. “A continuous version 

of the LuGre friction model applied to the adaptive control of a pneumatic servo system.” J. 

Franklin Inst. 353 (13). 3021-3039. https://doi.org/10.1016/j.jfranklin.2016.06.003. 

Vadyala, R. S., S. N. Betgeri, J. C. Matthews, and E. Matthews. 2022. "A review of physics-based 

machine learning in civil engineering." Results Eng. 13: 100316. 

https://doi.org/10.1016/j.rineng.2021.100316. 

Wei, Z., and B. L. Xiang, R. X.  ing.     . “Online parameter of the asymmetrical Bouc-Wen 

model for piezoelectric actuators.” Precis. Eng. 38 (4), 921-927. 

https://doi.org/10.1016/j.precisioneng.2014.06.002. 

Wenjing, Z.    7. “Parameter identification of LuGre friction model in servo system based on 

improved particle swarm optimization algorithm.” In Proc., 26th Chinese Control Conf., 

Zhangjiajie, China: IEEE, 135-139. https://doi.org/10.1109/CHICC.2006.4346908. 

https://doi.org/10.1109/ICSMC.2004.1398335
https://doi.org/10.1007/s10518-018-0380-2
https://doi.org/10.1177/1077546313478294
https://doi.org/10.1016/j.jfranklin.2016.06.003
https://doi.org/10.1016/j.rineng.2021.100316
https://doi.org/10.1016/j.precisioneng.2014.06.002
https://doi.org/10.1109/CHICC.2006.4346908


Willard, J. X. Jia, S. Xu, M. Steinbach, V. Kumar. Forthcoming. "Integrating scientific knowledge 

with machine learning for engineering and environmental systems." ACM Comput. Surv. 

https://doi.org/10.48550/arXiv.2003.04919. 

https://doi.org/10.48550/arXiv.2003.04919

