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HIGH-RATE DYNAMIGS

 Description of High-rate dynamics:
* high-rate (< 100 ms)
* high-amplitude (acceleration > 100 g)
* such as a blast or an impact

* The high-rate dynamics are subjected to

* large uncertainties in external loads

* high levels of nonstationarities and heavy disturbances

» generation of unmodeled dynamics from changes in system
configuration
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STRUGTURES WITH HIGH-RATE DYNAMICS

Hypersonic vehicles Space launch system Blast seat energy absorbers
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HIGH-RATE DYNAMICS [CONTINUES) =& =

 Goals:

» Application: Real-time decision-making of
structures

* Required Technologies:
« Low-latency model updating

« System state prognostics in real-time
» Challenges:
« Computing power is limited
* memory, available energy, processors

* Unknown sources of the inputs (forces, location)
« Inability to calculate fault scenarios in advance
» Rare and extreme situations
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GCONTRIBUTIONS OF THIS WORK

The development of an online structural vibration time series forecasting hardware/software system

An experimental investigation showing the potential of the FFT-based time series forecasting methodology
for high-rate signals

A detailed discussion of the periodicity challenge for FFT-based time series forecasting

The key focus for the current hardware implementation
« FPGA resource utilization
« timing constraints of various aspects of the methodology

« algorithm accuracy and limitations concerning different data
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EXPERIMENTAL SETUP FOR DATA GENERATION

beam structure

RTRRRRRNNIN
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power amplifier Esmm

electromagnetic shaker

- This data is available in a public repository !

[1] High-Rate-SHM-Working-Group. Dataset-4 univariate signal with nonstationarity.
https://github.com/High-RateSHM-Working-Group/Dataset-4-Univariate-signal-withnon-stationarity Uof .
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DATA STRUGTURE

The structure’s measured acceleration
response for a composite sinusoidal
input from the shaker.

Two sine wave signals are concatenated
together at =5 where a nonstationary is
present due to a change of frequency.

The first half of the composite signal is
built from 50, 70, and 100 Hz
frequencies.

The second half signal consists of 50
and 100 Hz frequencies.

Four different sampled data were
created from this data.
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DATA GENERATION EXPERIMENT VIDEO

Data generation of univariate signal with non-stationary
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ALGORITHM FOR FFT-BASED FORECASTING

measure amplitude

—»(prediction SignaD

@cceleration sign@—» » » measure frequency
1

collect frequencies
extend time scale
add trend

measure phase

Schematic Algorithm diagram of FFT-based time series forecasting algorithms

In FFT, the time domain and frequency domain maintain the circular topologies.
The two endpoints of input length are assumed to meet at the same point.

In a non-stationary signal, it is not possible to have all the embedded signals with different
frequencies start at the same time.

For accurately capturing all the frequencies, the minimum period should be higher than the Nyquist

jimit,
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ALGORITHM FOR FFT-BASED FORECASTING (CONTINUE)
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ALGORITHM FOR FFT-BASED FORECASTING (CONTINUE)
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PROBLEM STATEMENT

The measured acceleration signal is

Xy = (%1, %9, X3, u, Xy)
The variable length sequence is

Xq = (Xq1,Xa2,Xa3) -+ » Xan)
A polynomial function is used for finding trend.
Xtrena = P(X) = co + c1x + sz2 + et quq
The new acceleration signal without trend is
X = Xq — Xtrend

As considered, the acceleration signal without
the trend,

x = (xq1,%5,X3, .0, XN)

The discrete Fourier transform (DFT) of that series
N-1
X = z xne(_iz”(""/N)) for k=0,...,N

n=0

w=2n/N = 2nf
(Xamp)k = |Xk|
(Xphase)k = Xk/|Xk|

Similarly, the inverse DFT can be written as
N-1

1 .
Xp = Nz xe("i2Tkn/N) - for n =0, ...,N
k=0

A new series of M length where M > N. The time series can be
M-1

Xy = Z ((Xamp)k COS (2n(k m/M)) + (Xphase)k> form=1,..,M
k=0
The time series with the trend information added back
Xa new = Xm T Xtrend

South Carolina




HARDWARE VALIDATION
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INTRODUCTION TO FPGA

FPGA A field programmable gate array (FPGA)
A special kind of chip
Used in integrated circuit, silicon device, microchip, computer chip, or any designation
compatible for programming
: A configurable logic block (CLB) is the basic
Repeating logic resource on an FPGA

contain smaller components, including flip-flops, look-up tables (LUTs), and
multiplexers.

Lookup Tables (LUTs):

 Abasic unit of computation at the heart of configurable logic in FPGAs (a6 ][] ]

- has a single bit output that is calculated based on the input signal values and the b
configurable table (or memory)

Dlgltal Signal Processing (DSP) Blocks:

Stratix® series FPGAs are an ideal solution for high-performance, high-precision DSP
applications.

very Power efficient and operate at far higher frequencies than the equivalent circuits in ]
a soft implementation. - @_
Block RAMs: e
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48-Bit Accumulator/Logic Unit

« Larger memories are also a significant resource on FPGAs — r attom Dotocter
» provide several kilobits of memory storage (Xilinx typically makes 18k or 36k available).

Basic DSP48E1 Slice Functionality
https://www.rapidwright.io/docs/FPGA_Architecture.html UOf -
19 https://www xilinx.com/support/documentation/user_guides/ugd79 7Series DSP48E1.pdf SC Outh arOllna

https://www.ni.com/documentation/en/labview-comms/latest/fpga-targets/configurable-logic-blocks/
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HARDWARE VALIDATION
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Flowchart for data collection and processing during FFT-based forecasting in case of hardware
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HARDWARE CONFIGURATION

A Kintex-7 70T FPGA housed in a NI cRIO-9035
incorporates a CPU running NI Linux Real-Time
1.33 GHz Dual-Core CPU

1 GB DRAM

4 GB Storage

8-Slot CompactRIO Controller

The sampling rate of the hardware system is set from 128 to
51,200~S/s

Internal clock of 24-bit ADC
Data stored in the FPGA's look-up table memory cRIO-9035

The built-in LabVIEW FPGA FFT function has a range of size Kintex-7 70T FPGA
limitations between 8 to 8192 samples.

\ |
NATIONAL !

EWRUMMS
N cRI0-3033 e

Each size of FFT has a latency of cycles from 16 to 16384.
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South Carolina




SIMULATION RESULIS

« Compared to the higher sampled data 25600 S/s, the prediction accuracy for the lowest sampled data, 128
S/s, is poor.
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Sample frequency list
rate

25600 0.0017 17.12 50, 70, 100, 210, 220, 240, 260,
280, -50, -70, -100, -210,-220, -
240, -260, -280

» The frequency list reveals that 25600 S/s utilized more frequencies. <10, 0, 1818, =2, =t AT
50, 70, 100, -50, -70, -100

50, 58, 22, 14, 20, 24, -50, -58, -
22,-14, -20, -24

17

RMSE (m/s?)
o o

>arolina

sampling rate (S/s) sampling rate (S/s)




HARDWARE VALIDATION RESULTS

* The 512 S/s sampling rate takes greater computation time than other sampling rates.
» This is because the sample rate of 512 S/s is paired with an FFT size of 512; which maximizes the device hardware.
» Device utilization, the signal sampled at 512 S/s uses 96% of the FPGA slices.

« The 25600 S/s required its pairing with reduced FFT sizes to enable its deployment on the chosen FPGA hardware.
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The current hardware (Kintex-7 70T), only data sampled at 512 S/s is viable for real-time time

series forecasting of the considered system with a total system latency of 39.05 us in restoring
signal.

« A sampling speed of 25600 S/s requires FPGA resources beyond that provided by the chosen
hardware.

Future work will investigate the deployment of a hardware-in-a-loop implementation of the
hardware/software system proposed here.
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