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Abstract

Structural Health Monitoring (SHM) is essential for ensuring reliability and longevity

of useful structures. Traditional SHM approaches rely on manual or remote data

transmission and external processing, which introduce latency and can depend on

stable communication links. This work aims to advance SHM by integrating edge-

computing techniques for rapid damage detection to enable faster and more au-

tonomous structural assessments in resource-constrained environments. The research

spans three key contributions including 1) frequency-based damage detection of civil

structures using a sensor package with the addition of an edge processor, 2) addi-

tions to the computational efficiency of the edge-computing sensor package in a more

resource-constrained environment, and 3) frequency-based damage detection for elec-

tronic assemblies with embedded sensors subjected to high-rate dynamic events. The

main focus is to enhance structural safety, resilience, and adaptability for structures

in critical areas. The first contribution involves drone-deployable vibration sensors

and explores the feasibility of edge-computing for autonomous SHM in inaccessible

or hazardous environments. The sensors analyze frequency-domain data in real-time

to reduce reliance on external data processing. The second contribution constrains

the edge-computing abilities of the sensor package to the embedded microcontroller

and evaluates the computational efficiency of on-the-edge processing. Lastly, the

third contribution demonstrates Fast-Fourier Transform (FFT) analysis for identify-

ing structural damage in printed circuit boards (PCBs) exposed to mechanical shock.

This study makes use of embedded sensors to build the foundations of edge-computing

for self-diagnosing electronics, also paving the way for active control and damping of
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vibrations in electronic assemblies. The findings of this work demonstrate the effec-

tiveness of edge-enabled SHM to enhance rapid structural assessments by reducing

response times and enabling decision-making at the data source. These advancements

contribute to the broader vision of intelligent monitoring systems that can operate

autonomously across diverse structural environments.
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Chapter 1

Introduction

Structural health monitoring (SHM) is a critical method for ensuring safety and

longevity of engineered systems, ranging from civil infrastructure exposed to extreme

conditions to electronic assemblies in high-rate dynamic environments. Traditional

SHM methods rely on external data processing, which is typically performed off-

site, creating a workflow that introduces latency in decision-making and requires

stable communication links. In scenarios such as real-time damage detection in elec-

tronic systems or post-disaster assessments of civil structures, time delays can be

detrimental. Additionally, having to rely on centralized computing is impractical in

resource-constrained situations where rapid insights are necessary.

Computing SHM data on the edge can significantly reduce response times. By

deploying algorithms directly onto embedded devices, structural anomalies can be

detected in real-time, eliminating the need for continuous data transmission or off-

site processing. This approach is particularly useful in diagnosing issues in electronic

assemblies with embedded sensors or civil structures with rapidly deployable sensor

packages.

In civil infrastructure monitoring, drones equipped with vibration sensors can be

deployed to assess structural integrity following natural and man-made disasters. An

example of a civil structure that SHM would be used on is shown in Figure 1.1.

While this approach inherently decreases response times especially in cases in which

the structure is damaged, the method can be further improved with the use of mi-

crocontrollers to make necessary computations on the edge. Integrating Fast Fourier
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Transform (FFT) frequency analysis on embedded systems within drone-deployable

sensor packages allows for rapid anomaly detection.

Figure 1.1: Example of a pedestrian walking bridge which could be a candidate for
SHM.

Similarly, electronics subjected to high-rate environments such as mechanical

shock can benefit from rapid detection of structural damage. Frequency-based dam-

age detection using FFT algorithms has been demonstrated as an effective method

for monitoring printed circuit board (PCB) health. Implementing an edge-computing

approach for FFTs directly on electronic assemblies enables proactive responses to

possibly damaging events.

This work focuses on integrating edge-computing for SHM in resource constrained

systems to address challenges in computational efficiency, power consumption, and

real-time frequency identification. Experimental results from drone-based SHM ap-

plications as well as electronic PCB testing in high-rate environments are presented

to demonstrate the effectiveness of edge-processing FFTs for damage detection. The

findings contribute to the broader vision of autonomous, real-time monitoring systems

capable of enhancing the durability and reliability of critical structures.

In these studies, vibration-based damage detection networks and edge-enabled

systems were tested. Along the first domain of this work, drone-deployable wire-
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less sensor nodes were developed as shown in Figure 1.2. Vibration sensor packages

equipped with an accelerometer and a microcontroller were designed and tested for

capability of Fast Fourier Transform (FFT) processing and peak detection compu-

tations for modal frequencies. This package was integrated with UAV compatibility

for deployment onto physical structures like beams or bridges. Results from the on-

device data processing were compared to high-fidelity, off-site analyses and showed

low root mean squared error from the two frequency domain calculations.

Figure 1.2: Wireless drone-deployable sensor nodes attached to a pedestrian walking
bridge.

In the second domain of this work, damage detection, response, and control of

electronic assemblies were investigated. Repeated use of electronics in high-rate en-

vironments can lead to catastrophic systems failures as shown in Figure 1.3. PCBs

were designed with embedded sensors to investigate the feasibility of damage detec-

tion in small electronics subjected to high-rate conditions. A MEMS accelerometer,

two strain gauges, and a resistor were mounted on the PCB for continuous data ac-

quisition during testing. The PCBs were then evaluated on high-rate loading using a

drop tower to intentionally detach the resistor. The resistor detachment showed an

increase in natural frequency, which was expected due to the higher mass that the
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component adds when attached. The change in frequency was shown to be detectable

through the embedded sensors.

Physical structures, such as PCBs, bridges, or even airframes, will degrade over

time due to fatigue, impacts, thermal cycling, environmental conditions, or any other

scenario that can impact structural integrity. SHM is a data-driven method to clar-

ify the state of a structure where visual or physical inspection methods might fail.

From a theoretical perspective, damage in a structure alters its mass, damping, and

stiffness, which in turn changes the system’s natural frequencies and mode shapes.

Tracking these quantities over time provides a way to infer damage in a structure

non-invasively. Furthermore, edge-computing creates an opportunity to develop rapid

decision-making capabilities. This would push SHM into the domain of real-time feed-

back and control, where damage detection would trigger a response, such as an alarm,

control adjustment, or mission re-routing.

Figure 1.3: Degraded PCBs exhibiting damage shown as a) fully broken printed
circuit board and b) failure of an electrical component.
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Chapter 2

Frequency-Based Damage Detection using

Drone-deployable Sensor Package with Edge

Computing

1

Abstract

For rapid infrastructure assessment following natural and man-made emergencies, the

utilization of minimally invasive and cost-effective drone deployable sensor packages

has gained significant attention. While compact sensors with wireless data transfer

capabilities have demonstrated potential for monitoring structural dynamics of criti-

cal infrastructure, such systems typically require data to be processed off-device and

often off-site. These additional steps hinder the rapid assessment aspect. A challenge

arises when transmission is not feasible due to degraded communication links dur-

ing natural or man-made emergencies. Moreover, off-site data processing may add

unnecessary delays to actions that can be taken by emergency personnel following

infrastructure damage. To maximize the usefulness of sensor packages for rapid in-

frastructure assessment, the integration of edge computing techniques into the sensors

themselves to analyze data in real time presents a promising solution. The objective

1Ryan Yount, Joud N. Satme, and Austin R.J. Downey. Frequency-based damage detection using
drone-deployable sensor package with edge computing. In Conference Proceedings of the Society for
Experimental Mechanics Series. Springer Nature Switzerland, August 2024. doi:10.1007/978-3-031-
68142-49 Reprinted here with permission of the publisher, 2/25/2025
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of this work is to demonstrate edge computing for frequency-based structural health

monitoring techniques to showcase the effectiveness of on-device data processing for

the rapid assessment of infrastructure. The proposed approach continuously com-

putes the power spectral density of windowed vibration measurements taken from a

structure of interest that has the potential to experience further damage, for example,

the monitoring of a bridge immediately after a flooding event. This work presents

contributions in terms of a methodology, focusing on the hardware implementation

of edge computing algorithms. Additionally, a study of the performance and resource

utilization of a windowed power spectral density processing algorithm on-device is

provided.

2.1 Introduction

The emergence of high mobility, compact sensing nodes has the potential to transform

the landscape of SHM and modal analysis. These nodes, designed for deployment on

unmanned aerial vehicles (UAVs) or other platforms, provide a unique advantage by

combining rapid mobility with minimally invasive data collection, as shown in Figure

2.1. Utilizing unmanned deployment methods for these sensor nodes enhances per-

sonnel safety compared to conventional approaches, particularly when dealing with

large structures [20]. This flexibility enables the swift deployment of sensors across

a structure, facilitating dynamic data acquisition and structural assessment with re-

markable efficiency. The integration of electropermanent magnets (EPM) and radio

frequency (RF) communication into the sensing nodes proved beneficial to capturing

the vibration signatures from remote and challenging-to-reach infrastructures. Edge

computing allows for real-time processing of data at the source, which is critical for

applications such as SHM. Instead of collecting data from sensors and processing it

after a test, a sensor package that can process data locally can provide immediate

insights into a system’s structural condition. In this paper, we delve into an im-
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provement of a pre-existing UAV-deployable sensing node. Leveraging EPMs and

RF communication, this sensing node exhibits prowess in gathering vibration sig-

natures from infrastructures located in difficult-to-reach locations. Positioned as a

wireless sensor network (WSN), these sensors reduce the challenge of high installation

and maintenance costs associated with traditional wired methods [3]. Deployed via

drones, these standalone sensors rapidly access structures using onboard accelerome-

ters to collect data according to a preset schedule or event triggering for subsequent

analysis. The comprehensive breakdown of the designed open-source sensing system

is available in a publicly accessible repository [24].

Figure 2.1: Different stages of sensor package UAV deployment with a) delivery b)
deployment c) departure.

In this work, the integration of an edge-processing unit into this sensor network is

introduced. Enhancements to the sensing system’s real-time data analysis aspect is

investigated, by leveraging edge-computing, to compute key features of the structure’s

dynamic response. This proposed procedure promises to further reduce the time

affiliated with structural prognostics of the sensing system.

2.2 Sensor design

The sensor package featured in this study represents an embedded system-based de-

vice, designed for long-term deployment, and equipped with several subsystems [26].
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Figure 2.2: Block diagram of the components of the sensor package with the addition
of the edge processor.

As shown in Figure 2.2, the processing core is an ARM-Cortex-M7, residing on a

Teensy 4.0 microcontroller. To ensure sustained operation, the sensor package is pro-

vided with a 1500 mAh 2-cell lithium polymer battery, complemented by a dedicated

power management subsystem that regulates voltage distribution to all other sub-

systems. Central to the sensor package’s functionality is a high-performance MEMS

accelerometer, the Murata SCA 3300-d01, which operates over the Serial Periph-

eral Interface (SPI) protocol. For minimally invasive deployments, an EPM V3R5C

NicaDrone electropermanent magnet is seamlessly integrated. These magnets, char-

acterized by their low power consumption, require only a brief 5W pulse for state

switching. This process is typically only performed twice per deployment. Facili-

tating wireless communication and command exchange is the Nordic Semiconductors

NRF24L01 module, operating at 2.4 GHz via the ShockBurst protocol. This module

offers the crucial capability of connecting with multiple sensor nodes simultaneously,

which is desirable for effective wireless sensor triggering. To ensure precise data log-

ging and trigger time referencing, the sensor package is equipped with a real-time

clock.

Furthermore, data integrity is safeguarded through the incorporation of non-
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Figure 2.3: Sensor package with key components annotated along with a sensor
package set up on a UAV.

volatile memory in the form of an SD card module. This ensures that valuable data

is not lost in the event of power fluctuations or shutdowns. The sensor package is

protected from the elements by its encapsulation within a protective 3D-printed PLA

and PVC frame. This shields the delicate electronics from the harsh environment

during field deployments as shown in Figure 2.3. The sensor package’s footprint and

weight have been optimized to be suited for UAV deployment [4].

2.3 Edge Computing Algorithm

In this section, the key features extracted from time-domain vibration data, along

with a test and validation results are presented.

The Fast Fourier Transform (FFT) is a pivotal algorithm for the efficient com-

putation of the Discrete Fourier Transform (DFT) applied to diverse datasets. Its

application unveils the frequency components concealed within a time-domain signal.

The FFT is often utilized in a spectrum of domains such as audio processing, image

analysis, and the field of vibration analysis. This particular algorithm is extremely
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Figure 2.4: Synthetic data of a 100 Hz sinusoidal signal captured by the on-board
edge-processor with a) time domain; b) FFT; c) PSD.

important to wireless sensor networks dedicated to structural health monitoring, as

the extent of structural damage detectable through a system’s dynamics is inversely

related to the frequency range of excitation [33]. The FFT operation receives an exten-

sive time-domain acceleration dataset obtained from the sensor nodes. This procedure

undergoes a transformation of the data, shifting the signal from the time domain into

the frequency domain. The signal is deconstructed into the various magnitudes of the

frequency components. In many applications, only the positive frequency components

are relevant, prompting the exclusion of the negative frequency bins. Consequently,

the x-axis within Figure 2.4 represents the frequency components, while the y-axis

showcases the magnitude of each frequency component to offer insight into the sig-

nal’s dominant frequency components. In parallel, the Power Spectral Density (PSD)
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is an invaluable metric to elucidate the dispersion of power or energy across distinct

frequencies within a signal. It is a key tool in various domains, including noise anal-

ysis, signal quality assessment, and vibration analysis, extending its applicability to

the realm of wireless sensor networks employed for structural health monitoring. The

computation for the PSD necessitates a precedent FFT calculation. Once the fre-

quency components have been determined, the magnitude of the FFT coefficients is

squared since the PSD conveys power and power is proportional to the square of the

magnitude. Subsequently, the PSD values are normalized by dividing by the total sig-

nal length and the square of the sampling frequency. This normalization ensures the

values are expressed in units of power per Hertz, providing a foundation for the anal-

ysis. To allow for a clearer representation of the power distribution across different

frequencies, the values are articulated as decibels per Hertz.

Figure 2.5: Flowchart of the code on the edge processor.

The Python code used on the edge processor is designed to perform a series of

data processing and visualization tasks on real-time data received through a serial

connection, typically from an external device like a sensor. As presented in Figure 2.5,

the code establishes a serial connection between the sensor package’s Teensy 4.0

and the edge-processing Raspberry Pi and reads incoming data. It collects pairs

of time and acceleration values until the whole dataset is acquired. Once the full

dataset is gathered, the FFT is computed to analyze the frequency components.

Subsequently, the PSD is calculated to represent the distribution of power with respect

to frequency in the system. The time-domain, FFT, and PSD results are then saved

11



onto nonvolatile memory.

2.4 Testing procedure

The primary objective of this experiment is to investigate the power consumption

associated with various functions performed by the edge-computing system.

Figure 2.6: Block diagram depicting the power draw experiment with key compo-
nents annotated.

As represented in Figure 2.6, the experimental setup consists of several compo-

nents, including a DC power supply, an ammeter in series to measure current, an edge

computing platform (Raspberry Pi), a sensor package (Teensy 4.0) with serial commu-

nication capabilities, and a data logger to record temporal power consumption. The

software code developed for this experiment encompasses four essential tasks: firstly,

the initialization of the edge computing platform; secondly, the continuous reading

of data from the sensor package through se-rial communication; thirdly, signal pro-

cessing to generate frequency response and power spectral density information; and

lastly, the storage of processed data into memory for analysis. Once the serial data

stream is completed, the edge processor transitions into standby mode to conserve

energy. This experiment serves as a valuable tool to gain insights into the computa-

tional power requirements for extracting crucial features from time-domain data sent

serially to the edge computing device, thereby aiding in optimizing energy-efficient

edge computing solutions.

12



2.5 Results and discussion

Figure 2.7: Vibration response of data captured by the sensor package deployed on
a real structure, with the edge-processor capturing a) time domain; b) FFT; c) PSD
of the structure under excitation.

In order to validate the effectiveness of the edge processor, a practical test using

real acceleration data obtained from a bridge through the sensor package was con-

ducted. The edge processor was able to analyze this data, providing plots in the form

of the time domain, FFT, and PSD as shown in Figure 2.7. This real-world appli-

cation demonstrated the processor’s ability to swiftly process structural data under

continuous excitation conditions.

In the power consumption testing of the sensor package with the integrated edge

computing processor, several observations were made. The power consumption profile

exhibited distinct phases during operation, as shown in Figure 2.8. Upon initializa-
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Figure 2.8: Power draw of the edge processor sectioned into: (a) initialization; (b)
reading data; (c) computing the FFT and PSD; (d) saving the processed data, and;
(e) standby mode.

tion, the system’s power usage climbed to approximately 4 watts as the sensor package

and edge processor powered up. Subsequently, during data collection, the power draw

spiked to around 4.4 watts until gradually decreasing to less than 4 watts. During

the data processing phase, where the processor computes the FFT and PSD of the

captured data, power consumption increased slightly to roughly 4 watts again. Fol-

lowing data processing, the processor saved the computed data, maintaining a power

usage in the range of 3.7 to 4.1 watts. Finally, when the sensor package entered

standby mode, awaiting the initiation of the next test, power consumption remained

at approximately 3 watts. The results of power consumption testing with the newly

integrated edge processor within the sensor package strongly support the viability

of edge processing as a favorable alternative to active retrieval of data. Although

the power consumption of the edge processing system could be improved, the sen-

sor package can still perform calculations with efficiency that is crucial for real-time

structural analysis. Performing these calculations on the edge reduces data trans-

fer delays associated with physical retrieval and processing of captured data from

infrastructure.
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2.6 Conclusion

In this work, the addition of an edge processor on an embedded system-based high-

mobility sensor network is examined. During viability testing, the power consumption

results underscore the effectiveness of edge processing in terms of energy efficiency,

data accessibility, and reduced processing delays. These advantages showcase edge

processing as a valuable alternative to active data retrieval, particularly for applica-

tions where resource constraints, remote deployment, and real-time anal-ysis are crit-

ical considerations. The system under investigation holds the potential for extensive

deployment, offering a means for swift assessment of infrastructure in the aftermath

of severe weather events. This deployment can quickly deliver initial insights into

the condition of the infrastructure. While the system currently presents a viable so-

lution, there are still avenues for future improvement. Notably, despite the sensor’s

relatively compact size, the inclusion of the edge processor significantly expands the

footprint. Subsequent research will explore the utilization of smaller edge processors

to further reduce the size and power consumption of the sensor package. Additionally,

future work will delve into employing edge processors across multiple sensor packages

within a network. This approach aims to enable rapid computation across an entire

structure, rather than relying on a single localized point for processing.
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Chapter 3

Edge Processing for Frequency Identification

on Drone-Deployed Structural Health

Monitoring Sensor Nodes

1

Abstract

For rapid civil infrastructure assessment following natural and man-made emergen-

cies, the utilization of minimally invasive and cost-effective drone deployable sensor

packages has the potential to become a valuable tool. Although compact sensors with

wireless data transfer capabilities have proven effective in monitoring the structural

dynamics of infrastructure, these systems require data processing to occur exter-

nally, frequently off-site. These extra steps impede the high-speed assessment of a

structure’s state. Difficulties can arise when the transmission is unfeasible due to de-

graded communication links during natural or man-made emergencies. Additionally,

off-site data processing can add unneeded interruptions to actions that can be taken

by emergency personnel after infrastructure damage. To enhance the effectiveness

of sensor packages in expediting infrastructure assessment, incorporating real-time

data analysis through embedded edge computing techniques emerges as a promising

1 Ryan Yount, Joud N. Satme, David Wamai, and Austin R. J. Downey. Edge processing for
frequency identification on drone-deployed structural health monitoring sensor nodes. In Paul L.
Muench, Hoa G. Nguyen, and Robert Diltz, editors, Unmanned Systems Technology XXVI. SPIE,
June 2024. doi:10.1117/12.3013712 Reprinted here with permission of the publisher, 2/25/2025
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solution. The objective of this work is to demonstrate on-device data processing for

frequency-based structural health monitoring techniques using drone-deployable sen-

sors. This approach advances the effectiveness of drone-deployable sensors in rapid

infrastructure assessment by mitigating their susceptibility to errors or delays in data

communications. The proposed approach computes the frequency components of

vibration measurements taken from a structure of interest, for example, the mon-

itoring of a bridge immediately following a damaging event such as a flood. This

work presents contributions in terms of outlining a methodology that emphasizes

the hardware-based implementation of edge computing algorithms and examines the

required on-device performance and resource utilization for structural health mon-

itoring at the edge. The execution time for the sensor’s edge computing functions

was profiled, resulting in an additional 9.77 seconds per test, an advancement over

traditional transmit and analyze methods.

3.1 Introduction

The assessment of the structural health of civil infrastructure in the aftermath of

natural disasters and man-made emergencies is a critical area for advancement [22].

Extreme weather conditions and environmental factors often render structures in-

accessible or dangerous to inspect and maintain, posing significant risks to human

operators. Moreover, accessibility issues can arise under normal circumstances, com-

pounded further by the aftermath of emergencies. Traditionally, structural health

monitoring (SHM) has predominantly been performed by on-site work crews, neces-

sitating substantial investments in both time and equipment for a thorough examina-

tion of each structure. These conventional approaches typically involve the collection

of data, which is then processed off-site, which inherently delays the availability of

crucial real-time insights into a structure’s dynamic behavior.

The introduction of rapid, minimally invasive, nondestructive testing technologies
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presents a promising solution for overcoming these limitations. A future aspect of

this methodology is the utilization of on-the-edge data processing, which significantly

reduces the timeline for obtaining actionable insights into the structural health of

infrastructure. The current landscape of drone technology within SHM primarily

focuses on leveraging drones equipped with integrated sensors for tasks such as digital

image correlation, crack detection, and thermal imaging [23]. These applications,

while valuable, do not fully utilize the potential of drones in SHM. By using drones for

deploying vibration sensors that can perform on-device data processing, there exists

an opportunity to deepen our understanding of structural dynamics under challenging

conditions [4, 21].

Current approaches in SHM have seen significant advancements through the in-

tegration of UAVs, edge computation, and SHM measurement techniques [17]. UAV-

based remote sensing has emerged as a vital approach for bridge condition assessment,

offering an efficient, cost-effective, and accessible means to inspect and monitor the

structural health of bridges and other infrastructures [10]. The use of UAVs allows

for rapid data collection even from areas deemed difficult to access, reducing the need

for physical scaffolding and enhancing safety during inspections.

With various approaches to structural health monitoring and numerous technolo-

gies currently in use, such as optical and thermal imaging, acoustic emissions, and

vibrations, the work by Hassani et al. [12] sets a framework for SHM sensor evalu-

ation. From monitoring various types of civil structures to damage prognosis algo-

rithms, the authors offer a methodology for evaluating cases to assist in the selection

of the most suitable sensing technology for a given application. The authors also

present a detailed review method for evaluating state-of-the-art sensors and damage

detection and prognostics algorithms. Furthermore, Hassani et al. [13] also define

optimal sensor placement (OSP) as the placement of sensors that results in the least

amount of monitoring cost while meeting predefined performance requirements. This
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emphasizes the role of aerially deployable wireless sensing systems due to their high

mobility while still being a cost-effective solution with similar performance to their

wired counterparts.

Edge computation is being increasingly integrated into SHM systems to address

the delays in data processing from on-site crews. The use of edge computational

devices enables real-time data analysis and decision-making directly at the data ac-

quisition site. This approach reduces the need to travel off-site for real insights into

a structure as well as decreasing the need to transmit large amounts of raw data

to a centralized server. Despite its potential, the implementation of edge comput-

ing in SHM comes with challenges, including the development of robust algorithms

capable of operating under the conditions of constrained computational resources

available [19].

Vibration-based SHM techniques, utilizing MEMS accelerometers, have become

a standard for detecting anomalies and assessing the structural integrity of build-

ings, bridges, and other critical infrastructure. These techniques rely on analyzing

the vibrational characteristics of structures to identify potential damage or changes

in structural behavior over time. Advances in MEMS technology have improved the

sensitivity and reliability of these sensors, making them more useful for SHM appli-

cations [30].

This work presents a methodology for integrating edge computation directly onto

drone-deployable sensor packages designed for the vibration monitoring of civil struc-

ture [28]. In this preliminary work, the algorithms specifically designed to detect

and track changes in the first mode of a vibrating structure are deployed to an edge

computing device [36]. By facilitating real-time analysis of vibration data directly

on the device, the approach minimizes the delay or potential for lost data caused

by data transmission. These advancements can improve emergency personnel’s re-

sponse to infrastructure damage. Drones can be leveraged to access hazardous or
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hard-to-reach areas. The proposed sensor package, designed to autonomously mon-

itor a structure’s first natural frequency, can function independently and alert first

responders or technicians to any alterations in the structure’s vibrational properties.

The contributions of this work are twofold. First, a previously proposed algo-

rithm [36] for frequency-based damage detection is expanded to include an automated

methodology to find the frequency associated with the first mode of the structure.

Second, the appropriateness of the edge computing algorithm is demonstrated by de-

ploying the algorithm to the same ARM Cortex-M7 microcontroller that is used on

the open-source drone-deployable sensing node designed for SHM. The sensor design

and code are available on GitHub [?].

Figure 3.1: Labeled components for a typical drone sensor package deployment.

3.2 Methodology

This section describes the methodology employed to examine and validate the ef-

fectiveness of the sensor package for edge computational SHM. The methodology is

divided into three subsections, each detailing a component of the study: the hardware
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specifics of the sensor package, the algorithm installed on the sensor package, and an

experimental validation.

The sensor package discussed in this paper is designed for the vibration monitoring

of civil structures. For example, Satme et al. reported on a case study that used the

sensor packages to perform experimental modal analysis on a pedestrian bridge in

use [28]. For rapid assessment, the sensor packages can be deployed by hand or by

leveraging UAVs [?]. Figure 3.1 illustrates a standard setup for deploying the sensor

using a drone, while Figure 3.2 details the step-by-step process of UAV deployment.

These sensor packages are considered “smart” in that they can be enhanced with

onboard signal conditioning. Satme et al. developed a long short-term memory

(LSTM) error-compensating network for the sensor package that demonstrated a

9.3% increase in signal-to-noise ratio (SNRdB) of the collected signals, with the most

improvement found at lower frequencies [27]. Hardware and software designs for

the sensor packages [24] and deployment systems [25] are open-sourced and freely

available.

Figure 3.2: Deployment steps for the drone-deployable sensor package showing a)
delivery, b) deployment, and c) departure.

The sensor package is shown in Figure 3.3 and is designed as an embedded system-

based device for long-term data logging of structural vibrations. The core of this

device is an ARM-Cortex-M7 processor housed in a Teensy 4.0 microcontroller. The

sensor package receives power from a 1500 mAh 2-cell lithium polymer battery, with
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a power conditioning and regulating system, ensuring stable power distribution to the

various systems on board.

The functionality of the sensor package is provided by a Murata SCA 3300-d01

MEMS accelerometer, which communicates via the Serial Peripheral Interface (SPI)

protocol. For deployments with minimal intrusion, the sensor package incorporates

an EPM V3R5C NicaDrone electropermanent magnet. This magnetic setup requires

a 5W pulse to change states, which is typically done twice during deployment for low

power consumption. IO commands and data transmission are handled by a Nordic

Semiconductors NRF24L01+ module, which operates at 2.4 GHz using the Shock-

Burst protocol. This network enables multi-link communication with several sensor

nodes in addition to wireless sensor activation. A real-time clock and a nonvolatile

memory module are also incorporated to extend the device memory to conduct com-

putation in addition to ensuring accurate data logging. The package is protected

by a 3D-printed PLA frame and a PVC shell to shield against any environmental

conditions during field use. The sensor package is designed with a suitable size and

weight for UAV deployment.

The methodology implemented on the sensor package includes an application of

edge computing for SHM to leverage real-time data acquisition and processing directly

on the device. A flow chart containing the basic run sequence of the methodology is

shown in Figure 3.4. The methodology starts by initializing the libraries for the com-

ponents of the sensor package as well as setting up variables and functions for later

use. Then, data is collected from the z-axis of the accelerometer with recorded times-

tamps. Once a full vibration test is completed, the collected data and timestamps

are then saved to an SD card in a CSV file format.

After data collection, the file containing the accelerometer data is read and each

value is used to perform a Fast Fourier Transform (FFT) analysis. The FFT run

on the sensor package is a variant of the Cooley-Tukey FFT algorithm [6]. This
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Figure 3.3: The hardware of the sensor package with key components annotated.

algorithm is meant to recursively break down a Discrete Fourier Transform (DFT)

with a size that is a power of 2. The dataset is split into two sequences of even-

indexed and odd-indexed points. The algorithm then computes the DFTs of these

two sequences and combines them back into one sequence to produce the DFT of the

original dataset.

The full FFT data is written to a new file on the SD card to provide a record of the

frequency magnitudes. A peak detection algorithm is run to identify peak frequencies

and their magnitudes, which are saved onto another file on the SD card.

To evaluate the sensor package’s performance and the effectiveness of its algo-

rithm, an experimental setup was devised involving a square stock beam positioned

with a pinned support and a roller support. The experiment, shown in Figure 3.5,

aimed to evaluate the sensor’s precision in capturing data under diverse structural

scenarios.

Positioned at the midpoint of the beam, the sensor package underwent three tests,

each performed to emulate a different structural condition. Following the initial place-
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Figure 3.4: Flowchart indicating the sequence of operations deployed on the sensor
package for the automated frequency-tracking algorithm.

Figure 3.5: Experimental setup of a beam with pinned and roller boundary condi-
tions on each end with key components annotated.

ment, the left roller support was sequentially repositioned closer to the beam’s center

for subsequent tests. A visualization of the repositioning can be seen in Figure 3.6.

To induce vibrations, a modal impact tool was used, generating an impulse re-

sponse within the beam, shown in Figure 3.7. The observed impulse response enabled

the evaluation of the sensor package’s vibration-sensing ability, FFT analysis, and the

rapid identification of the beam’s first flexural mode through a frequency domain peak

detection algorithm.

3.3 Results

This section presents the findings from the analysis of the sensor package’s perfor-

mance, focusing on its algorithm and hardware operation. The sensor’s capability to
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Figure 3.6: Pined-roller beam test setup showing the shifted roller boundary con-
dition to simulate an altered structural state.

Figure 3.7: Impulse response of three cases of boundary conditions of a beam with
roller supports.

process temporal vibration data and identify the first linear modal frequency of struc-

tures is examined. Additionally, an investigation into the hardware’s computational

resource utilization is also reported.

The sensor demonstrated efficiency in processing vibration data from the beam,

accurately identifying the system’s first flexural modal frequencies. The frequencies

identified for the first modes in each successive test were 45.1, 51.0, and 56.0, re-
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spectively. These variations in modal frequencies can be directly attributed to the

adjustments in the beam’s structural configuration for each experiment, evidencing

the sensor’s sensitivity to changes in structural conditions. To validate the sensor’s

onboard algorithm’s accuracy, its FFT output was compared to an off-edge FFT cal-

culated using the Numpy Library in Python [11] in Figure 3.8. The root mean square

error values quantifying the comparison between the onboard and off-edge FFT com-

putations were 0.0032, 0.0028, and 0.0031 in units of the normalized gain for tests 1,

2, and 3 respectively. This indicates a high degree of accuracy across all tests. Note

that results here are normalized for the magnitude to account for variations result-

ing from differences in the Cooley-Tukey FFT algorithms as implemented in the two

software packages.

Figure 3.8: FFT comparison showing the offsite FFT alongside the onboard sensor
FFT.

A frequency response function (FRF) analysis was conducted to quantitatively

measure the similarity between the onboard FFT and the external FFT computation

as shown in Figure 3.9. Ideally, a flat FRF, hovering around 1 indicates a perfect

correlation between the onsite sensor FFT and the offsite analysis. This would suggest

that the sensor’s algorithm can match the accuracy of external processing. Although

there is a slight deviation between the two FFT analyses, the greatest discrepancy near

26



the modes was approximately 9.4%, seen in test 1 at 46 Hz. This deviation is in an

acceptable range, as the magnitude was still enough to recognize what frequency the

first mode was located at. The comparison showed a remarkable alignment between

the two sets of Fourier transforms.

Figure 3.9: FRF comparison showing the difference between the offsite and onboard
FFTs.

The Teensy 4.0 Development Board is an ARM Cortex-M7 microcontroller with

a 600MHz primary oscillator. The microcontroller is well suited for on-the-edge com-

puting, featuring 2MB of OCM flash, 1MB of RAM, and 8MB of QSPI flash memory.

Its modest demand for operational power at 100mA makes it an ideal platform for

sensor packages designed for long-term, continuous SHM.

The overall performance of the hardware driving the Fourier analysis and peak-

finding algorithms is examined through GNU gprof [9], an open-source profiling soft-

ware from the GNU’s Not Unix software collection. The algorithm itself was written

using the Arduino toolchain sourced from the Arduino.h header, allowing access to

quality-of-life features such as SD card and Serial communication support. This par-

ticular workflow is ideal for ensuring a stable algorithmic implementation capable of

running continuously without the need for recalibration or similar intervention. Time

efficiency is examined by probing profile data correlating to time, cumulative time,
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and percent of total time.

Table 3.1: Timing profile describing execution time of processes in the sensor pack-
age’s algorithm.

process time (s) cumulative time (s) percent of total
time (%)

data collection 10.24 10.24 51.07
read sensor 4.43 14.67 22.07
SD card read 0.05 19.54 0.27
SD card write 0.01 19.88 0.07
FFT computation 0.01 19.90 0.07
numeric conversions 0.00 20.01 0.01

A collection of 30 profiling runs was conducted and compiled into a mean ag-

gregate. The configuration of the profiling runs was controlled and consistent, with

the sensor package arranged to collect 16384 samples at a 1.6 kHz sampling rate.

The data was then processed using the FFT algorithm, which was then followed by

a peak-finding algorithm. The sensor package was bench-bound for all runs. This

does not affect the quality of the profiling runs. An equal number of floating-point

operations occur regardless of data composition or testing environment. The timing

profile includes only functions imperative to the algorithm’s operation and is shown

in Table 3.1.

3.4 Conclusion

The testing and analyses of the sensor package have successfully demonstrated its

capability to effectively process and analyze vibration data on the edge. The sensor’s

detection of flexural modal frequencies under varying structural conditions proves its

adaptability to dynamic environments. The congruence between the sensor’s onboard

FFT analysis and an offsite FFT calculation further validates the accuracy and re-

liability of the embedded algorithm. The findings from this study underscore the

algorithm’s ability to be deployed on resource-constrained devices for SHM. Future

work will focus on refining the sensor algorithm to read multiple modal frequencies
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from a structure as well as learning modal frequencies to recognize discrepancies.

This study makes contributions in the form of a methodology of edge computing

algorithms.
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Chapter 4

Experimental Analysis to Enable Low-Latency

Structural Health Monitoring for Electronics

in High-Rate Dynamic Environments

1

Abstract

Electronic assemblies subjected to high-rate dynamic environments offer the potential

of increased robustness and resilience to mechanical loading if integrated with active

feedback mechanisms that respond when damage is present in the system or alter

mission outcomes when appropriate. To enable active structural control of electronic

assemblies, the rapid detection of mechanical damage is crucial. This study focuses

on monitoring an electronic package under a shock and introduces a method for en-

hancing the durability of printed circuit boards through onboard frequency-based

damage detection. The experimental setup is comprised of printed circuit boards

equipped with representative electronic packages enhanced with embedded sensing

capabilities, subjected to controlled shock tests using a drop tower system. This

study details the data acquisition process, Fast Fourier Transform (FFT) implemen-

tation on the electronic assembly, and the algorithmic strategies for peak detection

1Ryan Yount, Trotter Roberts, Jacob Dodson, Adriane Moura, and Austin R.J. Downey. Exper-
imental Analysis to Enable Low-Latency Structural Health Monitoring for Electronics in High-Rate
Dynamic Environments. Springer Nature Switzerland, 2025 Reprinted here with permission of the
publisher, 2/25/2025
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and response initiation. The frequency-based damage detection system has the ca-

pability to increase the robustness and resilience of systems experiencing shock when

combined with a closed-loop control system. In future work, the electronic assembly

will be re-designed to autonomously process the resulting vibration data using an

FFT computed at the edge to identify a change in the critical frequency components

associated with potential damage. This work not only extends the understanding

of printed circuit board dynamics under stress but also showcases the practical ap-

plications of embedded signal processing to enable enhanced system durability and

reliability.

4.1 Introduction

The ability to rapidly detect structural damage in electronic assemblies exposed to

high-rate dynamic events is crucial for ensuring reliability and longevity [18]. High-

rate dynamic events occur frequently in various contexts, including automotive colli-

sions, and aviation accidents. These high-rate dynamic events, or mechanical shock,

are defined as abrupt modifications in force, position, velocity, or acceleration, which

induce transient states in the system [7]. Such shocks can lead to rapid and unpre-

dictable responses within the structural integrity of components, making it critical to

ensure that systems can recover or adapt in real time. The integration of active feed-

back mechanisms capable of swiftly detecting and responding to structural damage

plays a pivotal role in enhancing the robustness of such systems. These mechanisms

employ a network of sensors that continuously monitor the system’s state, detecting

deviations from normal operation that may indicate damage or failure. Upon detect-

ing an anomaly, the system can immediately implement corrective actions—such as

adjusting loads, altering operational parameters, or rerouting energy flows—thereby

preventing further damage. This capability not only mitigates potential failures but

also optimizes mission outcomes by adding the possibility of adapting system be-
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havior in response to detected damage [31]. By adapting the system’s behavior in

response to detected damage, these active feedback mechanisms ensure that mission-

critical tasks can continue with minimal interruption. Furthermore, this adaptability

reduces the need for redundant system designs and manual intervention, thereby in-

creasing operational efficiency and prolonging the system’s lifespan [5]. Electronic

packages subjected to shock and vibration must endure rigorous testing to validate

their durability under real-world conditions. A useful approach to enhancing struc-

tural health is onboard frequency-based damage detection [8]. Traditional meth-

ods such as accelerometer-based monitoring for Structural Health Monitoring (SHM)

have been extensively studied. Accelerometers are commonly used to capture vibra-

tion data and analyze modal characteristics of Printed Circuit Boards (PCBs) under

varying mechanical loads [1]. Studies aimed at investigating how PCBs respond to

mechanical stresses and dynamic forces contribute valuable insights into understand-

ing how to build more robust electronics [14]. By embedding sensors within PCBs and

employing signal processing techniques like Fast Fourier Transforms (FFTs) [37], it

becomes feasible to monitor vibration signatures of electronic assemblies during and

after shock events. The analysis of frequency components allows for the rapid iden-

tification of changes indicative of mechanical damage, enabling response mechanisms

to mitigate potential failures.

In shock events, the impact can adversely affect the entire system, highlighting

the importance of controlled and repeatable testing methodologies. To address this

challenge, shock test systems such as drop towers are used, which simulate abrupt

mechanical impacts to evaluate how electronic assemblies withstand sudden forces.

These systems provide controlled, repeatable environments that replicate the dy-

namic stresses encountered during deployment. Dynamic analysis techniques have

similarly been applied to investigate the behavior of electronic assemblies under me-

chanical shock loads. For instance, studies have focused on scenarios such as the
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dynamic analysis of fixed-fixed beams subjected to mechanical shock, revealing criti-

cal insights into the structural response and potential failure modes under high-rate

loading conditions [29]. Furthermore, the fundamental principles of SHM have been

clarified through comprehensive frameworks and theoretical studies. These include

the axioms and foundational concepts that underpin effective SHM practices, guiding

the development of robust monitoring strategies aimed at enhancing the reliability

and longevity of electronic systems [34]. For electronic feedback, resistive circuits

have been employed for continuity measurements in electronic assemblies, facilitating

real-time assessment of circuit integrity under dynamic conditions [2]. This method

is particularly effective in detecting and diagnosing potential faults promptly, thereby

enhancing the reliability of electronic systems in high-stress environments.

Advancements in edge computing present promising avenues for real-time data

processing in SHM applications. Edge computing architectures enable data anal-

ysis closer to the source, which reduces latency [15] and supports timely decision-

making based on monitored parameters [32], particularly in smart electronics ap-

plications [16]. This capability is particularly advantageous in SHM, where rapid

responses to dynamic events are critical for preemptive maintenance and operational

efficiency in electronic assemblies.

This study focuses on the development and implementation of a frequency-based

damage detection system for electronic assemblies undergoing shock tests using a

drop tower setup. The experimental framework involves equipping PCBs with em-

bedded sensors capable of acquiring the necessary vibration data. An FFT algorithm

is employed to extract critical frequency components associated with structural in-

tegrity, facilitating rapid assessment of damage. Key aspects of this research include

a detailed description of the data acquisition process, the implementation of FFTs on

the acquired data, and the algorithmic strategies for peak detection and initiation of

response actions. The contribution of this work is the advancement our understand-
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ing of PCB dynamics under shock-induced mechanical stresses and introducing the

application of embedded signal processing for enhancing durability. This study also

contributes to the broader field of structural health monitoring in electronic assem-

blies. While this study focuses on frequency-based damage detection, the next step

will involve developing edge computing frameworks to implement these processes in

real-time.

Figure 4.1: a. PCB configured in the test setup b. Geometry and boundary condi-
tions created for simulation of the PCB.

4.2 Methodology

To determine the expected modal frequencies of the PCBs under investigation, vi-

brational simulations were conducted using finite element analysis software. The

geometry and boundary conditions used in the simulation are provided in Figure 4.1.

For this experiment, a 5.5 inch PCB was clamped with a pseudo-fixity setup. Since

the clamp extended 0.5 inches and was positioned 0.5 inches from the board’s edge to

provide space for data acquisition wiring, the effective length of the PCB measured

from the edge of the clamp to the opposite edge of the board was determined to be

4.5 inches.

The simulations were performed with and without the additional mass attached

to the board, aiming to understand the impact of the mass on the board’s vibrational

characteristics. A frequency analysis was performed to identify the natural frequen-
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cies and mode shapes of the PCB as shown in Figure 4.2. The material properties

used in the simulations are shown in Table 4.1. This analysis was useful in determin-

ing expected outcomes for how the board will respond to mechanical shock and the

resulting vibrations.

Table 4.1: Material properties used in the simulations of the PCB

Material Density (lb/ft3) Young’s Modulus (psi) Poisson Ratio
FR4 118.64 2,697,707 0.2

Figure 4.2: Simulation results showcasing the mode shapes and frequencies with
and without the mass attached.

Notably, the first mode, which is of primary interest in this study, exhibited

significant variation depending on the presence of additional mass. With the resistor

connected to the board, mode 1 was found to have a frequency of 240 Hz. After the

resistor was removed, the frequency of mode 1 increased to 384 Hz.

To enable the detection of mechanical damage in the PCBs, a frequency-based ap-

proach utilizing FFTs is employed [8]. This method leverages the inherent vibration
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signatures of the assemblies captured by the embedded sensors during shock. The

FFT algorithm converts the time-domain vibration signal x(n) into the frequency

domain X(f), as shown in Equation 4.1, allowing for the identification of specific

frequency components associated with structural integrity. The signal is decomposed

into its frequency components using the FFT. Next, the resulting spectrum is nor-

malized by dividing by the number of samples. Lastly, only the positive side of

the frequency spectrum is retained, as the FFT output is symmetric for real-valued

signals.

X(f) =
N−1∑
n=0

x(n)e−j2πfn/N (4.1)

where x(n) represents the sampled time-domain signal, N is the number of samples,

and f is the frequency.

Algorithmic strategies for peak detection can be implemented on edge computing

devices to provide more rapid damage assessment. Such algorithms are designed to

analyze FFT-transformed data and identify significant peaks or changes in critical

frequency components. As damage occurs, a shift in the modal frequencies is ex-

pected. Some strategies include threshold-based peak detection, pattern recognition,

and adaptive filtering.

To implement edge computing for rapid damage assessment on the PCBs, several

important factors must be considered. A suitable microcontroller capable of handling

real-time signal processing tasks should be chosen. This microcontroller must be able

to connect to all of the sensors in the system and have a high enough sampling rate

to capture the vibration signals of interest. An algorithm to perform and read an

FFT on the captured data must be deployed on the microcontroller. Other traits of

interest would be a program to trigger a control response such as damping the system

when vibrations exceed a threshold and wirelessly transmitting data to an external

monitoring system.

While not implemented in this study, the integration of an edge processing device
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with the damage detection approach enables the implementation of a closed-loop

control system. This system would monitor real-time vibration data processed on

the edge and could initiate control decisions to mitigate mechanical vibrations when

deemed critical. This approach could enhance the resilience of electronic assemblies

by actively managing mechanical loads and optimizing performance under dynamic

environments. It showcases the potential of edge computing in enhancing system

durability through responsive, autonomous control mechanisms.

Figure 4.3: Drop tower test setup including the top and bottom of the fixed-fixed
PCB.

4.3 Experimental procedure

The experimental setup utilizes a drop tower system to subject electronic packages to

controlled shock events. This system, as shown in Figure 4.3, simulates abrupt me-

chanical impacts to assess the resilience of the assemblies under dynamic conditions.

Controlled impacts allow for systematic evaluation of how electronic components re-
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spond to sudden forces, which is crucial for understanding their durability in high-rate

dynamic environments.

The electronic packages under test were configured as 4.5-inch PCBs clamped

as a fixed-fixed beam. Each PCB is equipped with a piezoresistive accelerometer,

two strain gauges, and a resistor acting as a mass setup in a resistive circuit. This

setup allows for the precise detection of impacts that cause the mass to fall, thereby

indicating the onset of structural failure. A close-up example of the PCB before and

after detachment is shown in Figure 4.4.

Figure 4.4: Close view of the PCB being tested before and after the mass was
detached.

The integration of the shock test system and DAQ facilitated rapid data analysis

during testing. The data acquisition process synchronized an accelerometer on the

base of the hammer with the sensors on board the PCB for accurate correlation

of input and output signals. Additionally, a voltage divider circuit, as shown in

Figure 4.5, was used to monitor the integrity of the resistor. The DAQ recorded the

output voltage from the circuit, which was 2.5 volts while the resistor was intact and

dropped to 0 volts when the resistor detached, providing a reliable time reference for

failure events.

The signals were sampled at a rate of 2 million samples per second. While this

sampling rate is significantly higher than necessary, it ensured precise data capture

and avoided aliasing. A high-speed camera was used in conjunction with the DAQ to

visually capture the precise moment of damage initiation on the PCBs, as shown in
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Figure 4.5: Voltage divider circuit used in the experiment to read from the PCB
resistor.

Figure 4.6. This visual cue was a supplement of sensor data, enhancing the under-

standing of failure mechanisms under high-rate conditions.

After each test, the clamps holding the PCBs were torqued to 15 in lbs to standard-

ize test conditions as each clamped end simulated a fixed support. Testing sequences

ranged from lower to higher gravity (g) shocks, systematically increasing impact in-

tensity to gather comprehensive data points before observing failure. An example of

how the shock propagated throughout the PCB is shown in Figure 4.7.

4.4 Results and Discussion

The experimental data acquired from the shock tests, published in a public reposi-

tory [35], revealed significant findings regarding the effect of the resistor circuit under

stress conditions. Across multiple trials, the provided DC voltage to the resistor

circuit stayed relatively constant until a shock occurred where the mass fell. A com-

parison of time domain signals to assess the behavior of the PCB during the failure

test was plotted in Figure 4.8. Some differences are shown during the response, which

can be attributed to sequential excitations due to the detached component colliding

with the board.

The Fourier analysis conducted on each test indicated pronounced alterations
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Figure 4.6: Frames from a high-speed camera showing the board during a resistor
failure drop.

in the frequency signatures of the boards following the mass detachment, as shown

in Figure 4.9. Specifically, when observing the first modal frequency, there was a

significant change in line with the change expected from simulations. In Table 2,

an analysis of the difference between the frequencies seen in the tested data and the

frequencies expected from the simulations is shown.

Condition Simulated Frequency (Hz) Tested Frequency (Hz) Absolute Error (Hz) Percentage Error (%)
With resistor 240 258 18 7.50

Without resistor 384 354 30 7.81

Table 4.2: Error analysis of the frequencies seen from the simulations and the tested
data

This analysis highlights the impact of circuit failure on the electrical signal’s spec-

tral content, underscoring the feasibility of rapid damage detection using frequency

analysis.
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Figure 4.7: Analysis of a time domain signal from the accelerometer on the board
during a shock test.

Figure 4.8: Time series representation of shock tests leading up to a final test where
the resistor became detached.

4.5 Conclusion

This study demonstrates the effectiveness of frequency-based damage detection using

FFTs in identifying mechanical damage in electronic assemblies subjected to high-rate

dynamic environments. The notable frequency changes observed upon the occurrence

of damage highlight the viability of this method for enhancing SHM in such scenarios.

Integrating edge computing into the damage detection process offers several po-
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Figure 4.9: Sequential Fourier transforms from shock tests until the resistor becomes
detached.

tential benefits. By processing FFT-transformed data locally on edge devices, the

system can achieve rapid detection of damage events. This capability reduces la-

tency in decision-making and lays a foundation for implementing responsive control

strategies to mitigate mechanical vibrations before they lead to failures.

Future research on this project will include a multi-faceted approach including the

implementation of an edge computing device, the optimization of sensor placements,

the development of more advanced simulation models, and the integration of these

processes with usual packing practices used to mitigate shock.

This paper establishes the foundation for the future development of edge comput-

ing architectures, which will enable the autonomous detection of structural changes

in real-time. While this work successfully demonstrates frequency-based damage de-

tection, the implementation of closed-loop control using edge devices will be pursued

in subsequent studies.
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Chapter 5

Conclusion

This thesis investigated advances made in edge computing for rapid structural health

monitoring of civil structures and electronic assemblies. Integrating vibration sens-

ing and frequency-domain analysis onto resource-constrained devices demonstrates

the feasibility of real-time structural damage detection in harsh environments. The

significance of this work extends to mitigating the potentially catastrophic aftermath

of disasters, which becomes important in the rapidly-evolving world climate. The

combined body of work spans two main domains: (1) edge-enabled frequency-based

SHM for wireless, drone-deployable sensor nodes and (2) shock-based testing and

validation of embedded sensors for vibration-based rapid damage detection on elec-

tronics. Together, these efforts create a foundation for edge-centric SHM systems

which operate autonomously, respond to dynamic loading conditions, and enable

data-driven insights in areas where traditional data collection and remote processing

are impractical. Our results show that edge devices can accurately detect shifts in

modal frequency from structural inconsistencies, with minimal latency and low power

consumption.

Future research will build on the autonomous UAV-based deployment of sensor

packages by enhancing the real-time object-tracking algorithms and deep learning-

based control systems. This includes transferring the deep learning model from exter-

nal systems to onboard processors and exploring multi-modal sensing strategies such

as combining vibration data with visual or acoustic inputs. More extensive field trials

on varied infrastructure types will be conducted to validate robustness in uncontrolled
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environments. The ultimate goal is to enable a closed-loop system where drones not

only deploy sensors but also make decisions based on in-flight data analysis.

To further optimize edge-based SHM systems, upcoming work will investigate

adaptive sampling and dynamic FFT resolution strategies to balance energy con-

sumption and signal fidelity. A deeper exploration into low-power AI accelerators

and task-specific hardware (e.g., FPGAs) could also reduce computational overhead.

Integrating self-monitoring of system health and battery levels into the edge node

would improve long-term deployment viability, especially in remote or harsh environ-

ments.

To develop SHM to a greater extent for electronic assemblies, future work will

focus on refining modal frequency tracking under varying boundary conditions and

improving sensitivity to microstructural fatigue that may precede catastrophic fail-

ure. Active damping or control systems can be integrated with the edge device to

initiate real-time response when damage is detected. Additionally, the dataset of

shock events and corresponding frequency shifts could be expanded to train machine

learning classifiers that differentiate between levels or types of damage in the PCB

substrate.
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