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ABSTRACT

 Dynamic forces and evolving structural boundary conditions pose challenges for 

various structural systems such as aircraft, orbital infrastructure, and energy harvesting 

devices. The design, evaluation, and functionality, of such systems can be aided through 

the collection and analysis of data. However, real-time decision-making for systems 

experiencing high-rate changes can pose unique challenges, if assessments are to be made 

accurately and rapidly enough to be relevant. 

In cases where the systems are well-defined and thoroughly understood, 

monitoring the frequency response can be instrumental in determining the state of 

structures subjected to high-rate structural boundary condition changes. This study 

focuses on investigating frequency detection methods to enable real-time state estimation 

for such structures. The research explores progress and findings related to extracting the 

real-time frequency response of structures. 

This study compares a novel technique; Delayed Comparison Error Minimization, 

a more traditional FFT based method, a trained neural network-based method, and a 

method combining aspects from the Delayed Comparison Error Minimization and neural 

network techniques in an at-tempt to potentially leverage the strengths of each. The 

performance of each method will be demonstrated, and the results examined and 

discussed in terms of latency, precision, and possible applicability. 
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Training of systems that require it will be performed using synthetic data, and the 

performance of each method demonstrated on a synthetic data set. Each method’s 

performance will also be evaluated on data collected from the DROPBEAR testbed in 

order to validate performance on a physical system with a changing boundary condition. 

The DROPBEAR testbed consists of an oscillating beam with one fixed end and a roller 

support that moves in a controlled manner along the beam’s length, altering the frequency 

response of the beam proportionally to the roller location.
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CHAPTER 1 

INTRODUCTION 

 

 Many aspects of a structure influence its dynamic response when subjected to an 

input. As such monitoring that response can allow one to determine if a change in the 

structure has occurred. In some cases, these systems will be subjected to high-rate 

dynamic events (defined as changes that occur in under 100 ms [1]). If a condition or 

state expected to pre-cede a malfunction of the system occurs, detection and reaction 

prior to failure of the system can improve the outcome. This chain of thought has led to a 

demand for observers capable of assessing structure or system states, determine the 

condition from that assessment, and decide what action to take within the possibly very 

short span of time between the occurrence of a detectable issue and complete failure. If 

effective general purpose tools with such capability were developed, they would be likely 

to find use in a wide range of fields and applications where new materials and interface 

methods are being implement-ed [2], including blast mitigation [3] [4],  hypersonic craft 

[5], and various aspects of machinery and automation. 

 This paper covers some of the steps in implementing and designing frequency-

based observers prioritizing precision and speed, and demonstrates how they function and 

their performance in a couple of example scenarios. One observer will be an 

implementation of the Fast Fourier Transform, or FFT. Commonly used for extracting 
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frequency information from a signal [6], the FFT is a powerful tool with some 

drawbacks. One, though much reduced [7] [8]compared to calculating the discrete 

Fourier transform, or DFT, using the definitional equation [9], is computational intensity. 

Another, more relevant and which is demonstrated here, is the need for long samples in 

order to achieve high frequency precision. When the Discrete Fourier Transform is 

calculated using the Cooley-Tukey FFT algorithm [10], for example, the number of 

frequency bins generated as output is directly de-pendent on the length of the sample 

used as input. This means that achieving any given frequency precision requirement is 

inherently a requirement for sample collection time [11] [12], and puts the need for 

precision in determining frequency at odds with the need for making a decision rapidly 

based on conditions or states that are changing rapidly compared to the signal frequency.  

If the characteristics of a system, and the signals it will generate, are adequately 

understood, alternative methods of tracking the system response may offer performance 

benefits compared to an FFT. This work proposes a few methods of tracking frequency, 

including an explanation of the theory behind each, some details on the implementation, 

and a comparison of performance between all methods. The results show the performance 

advantages of the alternate methods compared to an FFT-based approach, including a 

comparison of output when given data recorded from a physical system in order to 

demonstrate real-world applicability. 

This work has four unique contributions: 1) the proposal of the Delayed 

Comparison Error Minimization method, 2) a comparison of the Delayed Comparison 

Error Minimization to two other methods using numerical and experimental data from the 

DROPBEAR testbed, 3) the proposal of a hybrid version that combines Delayed 
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Comparison Error Minimization with machine learning techniques to enhance precision 

and reduce lag, and 4) the introduction of the Lag Error Measurement approach to 

quantify the response delay of various frequency estimation methods in high-rate 

dynamic systems.
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CHAPTER 2 

BACKGROUND 

 An event is defined as involving high-rate dynamics when it occurs on a time-

scale of less than 100 ms, and can include large uncertainties in external loads, high 

levels of nonstationarities and heavy disturbances, and generation of unmodeled 

dynamics from changes in system configuration [1]. Prior work by Hong et al. discusses 

and demonstrates some of the challenges this presents [13], with a series of tests 

involving circuit boards and accelerometers packaged for shock survivability subjected to 

high impact conditions using an accelerated drop tower. This prior testing demonstrated 

the characteristics of a high-rate dynamic event, with the challenges of the system 

operating on a very short time-scale, and both inconsistent external loading and 

cumulative damage to the in-ternal structure of the test unit contributing to variation in 

the dynamics between each event. 

 While such testing clearly demonstrates the challenges associated with high-rate 

dynamics, the same test article damage and resulting inconsistencies between test runs 

that make it a great example can also become hindrances to its applicability in the 

development and experimental validation of observers designed for rapid state estimation 

on structures experiencing high-rate dynamic events. Recognizing these 
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difficulties, Joyce et al. sought to address them by introducing the Dynamic Reproduction 

of Projectiles in Ballistic Environments for Advanced Research (DROPBEAR) [14] 

testbed, which is described in more detail later in this paper. The controllable parameter 

changes were designed to produce repeatable effects in the system dynamics, while 

simulating changes (i.e. dam-age) occurring in a structural system. As the DROPBEAR’s 

changes are not destructive, test repeatability exceeds that of the accelerated drop tower 

experiments discussed earlier. Downey et al. used the DROPBEAR to develop a 

millisecond model-updating technique, comparing an FEA model to the physical system 

and minimizing error in the frequency domain through model updates. Results were 

achieved using this method of pin location updates every 4.04 ms with an accuracy of 

2.9% [15]. 

 The intent for the DROPBEAR was for it to serve as a generalized representation 

of various real world systems, with a system response that changes non linearly with the 

variable input parameter. Downey et al. demonstrated that using an FFT to analyze the 

accelerometer readings of the DROPBEAR’s response to dynamic input presents a 

challenge in trying to achieve adequate frequency precision without excessive lag [15]. 

The recorded output of the DROPBEAR was used to guide the generation of synthetic 

data sets for use in initial testing and development, with certain aspects of the physical 

data isolated in the synthetic data sets to better understand which characteristics will 

challenge frequency tracking tools and simplify testing. 
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CHAPTER 3 

MATERIALS AND METHODS 

 

3.1. DROPBEAR Test Bed 

The DROPBEAR, shown in Figure 3.1, is a cantilevered beam, with a fixity 

holding one end of the beam via clamping force and a second support consisting of a 

pinned condition with continuously adjustable location. The pinned condition is achieved 

via a pair of rollers in contact with the top and bottom faces of the beam, and a linear 

actuator moves the location of the pinned condition in a pre-programmed sequence. 

Excitation of the beam is provided by the motion of the rollers along the beam. The data 

collected on this system and used in this work is available in a public repository [16]. 

 

 

 

 

Figure 3.1: DROPBEAR testbed with key components labeled (used with 

permission [16]). 
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3.2. Frequency estimation methods 

 Several methods will be presented; namely FFT using a rolling window, delayed 

comparison error minimization inspired by Doran’s autocorrelation pitch tracking [17], 

MLP regression using a pre-trained network and data presented directly to the network 

after only a normalization processing step, and a hybrid method combining portions of 

the delayed comparison method with an MLP network. Some aspects of the 

implementation and operation of each will be explained and demonstrated. 

Demonstration of each method, and comparison between them in terms of the output 

results and theoretical minimum delay time (the length of time between the earliest data 

sample used and output of estimate), will be performed. Single frequency identification 

and the tracking performance, in terms of accuracy and delay, will be demonstrated on a 

dataset consisting of a waveform containing sections of constant frequency, frequency 

sweeps and steps. The frequency variation will not exceed 60%, and as such each method 

will be required to meet a high degree of precision in order to differentiate a useful 

number of steps within the relevant variation range.  

 

3.2.1 Rolling FFT 

A well known, and commonly used, method for converting signals into the time 

domain is the FFT, or Fast Fourier Transform. The algorithm’s output is a series of bins, 

each containing an amplitude value and the number of which is equal to half as many 

samples as were provided to it. The bins cover a range from DC for the lowest bin to half 

the sampling rate of the input for the highest bin, with the remaining bins evenly spaced 

between. The frequency spacing between bins, which represents the frequency precision 
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of the method, is equal to the input data’s sampling rate divided by how many samples 

were fed into the FFT.  

The value in a given bin is determined by the cumulative amplitude and duration 

of signal components within that bin’s frequency range. Inspecting the magnitude of the 

frequency bins does not readily allow one to determine the time of an event occurring 

within the sample. Likewise, the output of the FFT may appear similar for events within 

the sample that are low in duration and high in amplitude, vs a long duration low 

amplitude event in another sample. These characteristics [15] are described to emphasize 

the limitations of applying an FFT to track rapidly varying signal frequencies, transients, 

or other features or characteristics where frequency components are not present evenly 

throughout the sample [18]. 

As the application in this paper is determining changes in frequency response with 

minimal delay, the FFT is run repeatedly on a short window, each overlapping with the 

previous but moved in the direction of newer data. The short windows and time 

difference between them can be thought of as analogous to the shutter speed and frame 

rate in taking pictures or video; shorter times help to capture rapid changes, longer times 

will give blurry results unless everything is stationary. Running the frequency estimation 

using shorter sampling windows and decreasing the time difference between windows 

can each be helpful in determining when an event occurs, but shorter windows create the 

drawback of reduced frequency precision and shorter times between sample windows 

produce diminishing returns as the overlap between windows increases. As any sampling 

window length must be a compromise between temporal precision and lag vs frequency 

precision, various window lengths were investigated in earlier work [19]. To note, 
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increasing the sampling rate of the time series data fed into the FFT does increase the 

number of bins it will produce, but also extends the frequency response on the high end; 

the result is that the spacing between ins, and therefore the frequency precision, remains 

unchanged. 

In the method employed in this paper, the fundamental frequency is determined 

by arranging the values produced by the FFT, excluding those corresponding to 

frequency bins outside of the range of interest, and checking the frequency bins to see 

which contains the highest value. In plotting the frequency estimator outputs, the time 

value for each estimate is taken to be the time of the newest time-series sample used in 

the FFT; this gives time alignment that would correspond to performing the estimate in 

real time if there were no computational or other delays introduced. 

 

3.2.2 Delayed Comparison Error Minimization 

Delayed Comparison Error minimization, proposed and explained previously in 

[19], aims to allow high frequency precision even when working with relatively short 

sections of samples taken from time series data of periodic waveforms. In certain 

circumstances, it can estimate the primary frequency of a signal with greater precision 

and less lag than is possible when using the FFT approach implemented here. The 

method works by comparing many pairs of samples taken from a signal, with each pair 

having a known time difference between them, and the complete set of pairs spanning a 

time difference proportional to the range of signal periods of interest. If a strong periodic 

component is present in the signal, the time difference of the pair where the samples are 

most similar should indicate that signal period [19]. 
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As implemented in this paper, the two samples that form a pair are each treated as 

a list of values, and are compared by subtracting each value within one sample from the 

corresponding value within the other sample of the pair. The result is a difference list 

equal in length to either sample; the individual values within this list are then squared, 

and then added together to give a single sum. The bandwidth ranges from a frequency 

corresponding to a wave period equal to the longest delay between sample pairs on the 

Figure 3.2: Visual representation of delayed comparison error 

minimization steps, showing the samples taken as input in i,, 

intermediate calculation values in ii. and iii., and the output values in iv. 

(a) shows these values at delay of 0 ms, and; (b) shows these at a delay 

of 10 ms along with the stored output values from all previous runs up 

to the current delay. 



 

11 

Distribution A. Approved for public release; distribution unlimited (AFRL-2025-1758) 

low end, up through half of the original data’s sampling rate on the high end. The inverse 

of the data sampling rate determines the frequency precision of the method. 

 

 

 

 

 

 

Figures 3.2 and 3.3 visually represent what is occurring in each step of the 

Delayed Comparison method. Each step and what is occurring in the figures is further 

explained below.  

Figure 3.3: Visual representation of delayed comparison error 

minimization steps, showing the samples taken as input in i,, 

intermediate calculation values in ii. and iii., and the output values in iv. 

(a) shows these at a delay of 20 ms along with the stored output values 

from all previous runs up to the current delay, and; (b) shows these at a 

delay of 30 ms along with the stored output values from all previous runs 

up to the current delay and identifies minimum in “sum vs delay” curve 

indicating input frequency. 
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1. Figure 3.2 (a) i : A sample set is selected, starting at the data point for Time = 

0 (which is on the right in these figures) up through the data point matching 

the sum of  the length of the longest wavelength to be detected plus the length 

of the “reference” or “comparison” sample sets. These are 300 and 100 

sample points, or 30ms and 10ms at a 10,000 sample/second sampling rate, 

for a sample set “signal” totaling 400 points in length..   

2. Figure 3. (a) i . The 100 most recent, and thus right-most, samples are copied 

from “signal” into “reference”. While this will vary with each subsequent 

cycle, on the first cycle which figure 3.2 (a) depicts, the same 100 most recent 

values are copied to “comparison” as well.  

3. Figure 3.2 (a) ii. The difference between each point in “reference”, and each 

respective corresponding point in “comparison”, are found. This process 

outputs a list of difference values 100 points long. 

4. Figure 3.2 (a) iii. Each value in the list is squared. 

5. The list is summed to a single value, “current sum” in Figure 3.2 (a) iv.  

6. That value is stored into the list “sum vs delay” in Figure 3.2 (a) iv, which will 

contain the difference squared sum values at their respective delays. The first 

entry in the list represents difference squared sum at the delay value of 0.  

7. Steps (2) through (6) are repeated; on each subsequent cycle the samples 

placed into “comparison” come from one sample earlier, or to the left, on 

“signal”. The sum values are each appended to the “sum vs delay” list, with 

each value representing 1 sample length additional delay. Figure 3.3 (b) iv 

shows the values going into, and result after the completion of, the final cycle. 
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“comparison” and “reference” in that cycle are 300 points offset on “signal”, 

and the “sum vs delay” list is 300 values long upon completion. 

 

Upon completion of the 300th cycle, the local minimum within the region of 

interest corresponding to the expected wavelength is found from “sum vs delay”. The 

position of the minimum value within the list indicates the primary wavelength of the 

signal under analysis; that position value and the time of the last sample used in the 

comparison cycle are copied to the “signal wavelength” list. That process is repeated 

from different starting times, each offset by the desired temporal resolution, until the 

“signal wavelength” list is populated with data covering the length of the signal being 

analyzed for its primary frequency over time. 

 

3.2.3. MLP Regression - Direct 

An MLP, short for multi layer perceptron, is a neural network arrangement 

characterized by (multiple layers between the input and output layers), and a feed-

forward data flow between layers without feedback to earlier layers from the subsequent 

ones [20]. While often used for classification, they are capable of performing regression 

and outputting continuous values as well, as is the case implemented here using 

TensorFlow. 

During operation of this method, the sections of the waveform undergoing 

frequency identification are normalized in amplitude and then fed directly into the MLP 

network. As such, the network must be able to identify the frequency content of the 

sample in question when presented at any possible phase offset.  
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The MLP implementation demonstrated here is pre-trained and does not undergo 

learning while identifying frequency content. The training and testing data set consists of 

22,140 distinct sinusoids, each 100 values long and of a distinct frequency and phase 

shift. 16,605 were used for training, and the remainder to verify performance. The 

network is constructed of 2 layers of 64 nodes each, plus the output layer. Training was 

performed for 1,000 epochs.  

 

3.2.4 Hybrid MLP Regression - Delayed Comparison 

This method combines aspects of the Delayed Comparison method with an MLP 

Regression network, in an attempt to leverage the strengths of each. Similar steps to 

Delayed Comparison are performed, through where the Sum vs Delay lists, which store 

the relative mismatch between a sample fixed in time and a comparison sample of 

progressively increasing time offset, are created. After that step, whereas DCEM 

identifies the time offset value within the range of interest that results in the minimum 

error and frequency is calculated from that value, the Hybrid method passes Sum vs 

Delay list to a pre-trained network. Earlier attempts used identical steps as in the DCEM 

method in order to calculate the Sum vs Delay lists; testing showed that small tweaks to 

these steps would improve the performance of the Hybrid method in validation tests with 

input of varying phase and when run on the example sweep data set shown later.  

In the initial implementation of this method, the “sum vs delay” list was generated 

using the same steps used in the DCEM method, and was then provided to the network 

for identification of frequency content. “sum vs delay” was calculated using the same 

‘reference” and ‘comparison’ sample lengths as in the previously described Delayed 
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Comparison method, 100 samples each, and the difference between each point squared 

before summation.  

However, testing revealed that the output of the neural network was being 

affected by the phase of signal data being analyzed using the hybrid method, and further 

inspection showed that phase differences affected the values of the “sum vs delay” lists. 

In an attempt to address the sensitivity to phase, a change in the calculation of “sum vs 

delay” was implemented; this consisted of changing a step from squaring the point-by-

point error to instead finding the absolute value, and increasing the length of `Reference’ 

and ‘Comparison’ samples until manual inspection of data showed minimal effects from 

varying phase, which was determined to be at a length of 400 samples each.   

Figure 3.4 (a) is an example of two “sum vs delay” lists plotted together; the two 

lists were produced from signals of the same frequency but different phase offset. The 

plotted lists overlap each other, demonstrating that phase does not have a significant 

effect for the implementation used in the Hybrid method.  

Figure 3.4 (b) shows a similar plot, but produced using the steps employed in the 

DCEM method, with shorter sample sets used for ‘Reference’ and ‘Comparison’. In 

contrast to Figure 3.4 (a), the two lists plotted do not overlap fully along their length; the 

minimums of each list occur at the same location, but the maximums (which are not used 

to determine frequency in the DCEM method) occur in significantly different locations. 

This shows the difference in how much of an effect phase has on the calculation of “sum 

vs delay” when using the two slightly different implementations. 



 

16 

Distribution A. Approved for public release; distribution unlimited (AFRL-2025-1758) 

These changes simplified interpretation of frequency values by the neural 

network, decreasing the size of the training data set needed to achieve performance as 

shown in the Results section. 

The MLP in this case is also pre-trained, though the data set is somewhat smaller 

than was used in the previous described Direct method, consisting of 200 samples each 

300 values long. The training data set can be much smaller than in the MLP Regression – 

Direct method, as much of the phase information is hidden by the Delayed Comparison 

processing step as shown by inspecting the Sum vs Delay lists, so the MLP does not need 

to be trained to recognize that multiple waves of varying phase are the same frequency.  

 

Figure 3.4: Delayed Comparison intermediate steps, calculated using different 

sample lengths, with inputs of 86.5 Hz, with 2 ms phase difference between inputs 

of blue and orange traces, showing: (a) calculations as performed for Hybrid 

method, with longer input samples and resulting reduced apparent phase 

sensitivity, and; (b) calculations performed as they originally would have been 

for DCEM method, using a shorter input sample length and resulting noticeable 

sensitivity to input phase 
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3.3. Lag quantification 

While other factors such as frequency accuracy must be kept in mind when 

evaluating the performance of an estimator, one important performance metric in 

applications where reaction time can be critical is how quickly the estimator reports a 

change in response to a varying input signal. The “lag” of each estimator method was 

calculated on a portion of the synthetic signal described earlier, covering a length of time 

where the signal is increasing in frequency to just afterwards. 

Delay analysis is performed by comparing each value in the target frequency list 

with the values in the frequency estimator output lists, and finding the difference between 

the target frequency times vs when the first estimator value of equal or greater frequency 

occurred. The pseudocode for the method used is shown in Algorithm 1.  

 

 

Algorithm 1 Pseudocode for Lag Quantification    

1: for length of target frequency array do    

2:   if (index <=  length of estimator frequency array) & (match = false) do 

3:  

if ( (current target frequency > previous target frequency and 

estimator frequency >= current target frequency) or (current target 

frequency < previous target frequency and estimator frequency <= 

current target frequency) ) and (time difference between estimator 

frequency and current target frequency <= max time difference) 

4:   write estimator value, target value, and estimator 

time to output array 

5:   set match  = true   

6:  else     

7:    index++    

8:   else      

9:  set match == false    

10:  proceed to next value in target frequency array 
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CHAPTER 4 

RESULTS 

The described methods were all run on an identical data set, and the output 

produced by each was inspected and assessed in order to describe their capabilities and 

compare their relative performance. The total difference in time between the newest and 

oldest sample used in calculations by each method, as well as the subjective visual lag of 

each method behind the original signal, will be noted. Precision, accuracy, and other 

characteristics will also be discussed. 

 

4.1. Test Input Synthetic Dataset 

A data set was generated that contains a continuous sinusoid, amplitude is 

constant. It starts at a constant 50hz, followed by a slow frequency sweep up to 100hz, 

holding at the higher frequency, then a slow sweep down back to the first frequency, 

followed by a similar pattern with a faster pair of sweeps and then frequency steps up and 

down. The sampling rate of the test input data set is 10,000 samples per second, giving a 

“length” of 0.1 milliseconds per data point. 

The figure below, Figure 4.1, shows both the actual waveform (in blue) that the 

frequency estimators will be given, as well as the target frequency (in red) that was used 

to generate the waveform. 
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4.2. Output of Each Method on Synthetic Dataset 

When each frequency identification method is run on this synthetic signal, they 

give the outputs shown in Figure 4.2: 

Figure 4.1: Time domain representation of frequency-varying signal, with the target 

frequency indicated. 

Figure 4.2: Output of frequency estimation methods run on synthetic data set, 

with target frequency of synthetic data set. 
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A closer inspection of the results given at the beginning of the first sweep, 

zoomed in on in Figure 4.3, helps to show the difference between the FFT, direct neural 

network, and hybrid method output. 

 

4.3. Lag Analysis of Methods on Synthetic Dataset 

Delay analysis was performed on a section of the synthetic signal and the 

associated estimates of each of the methods. The section used in the analysis was the 

rising frequency sweep shown in Figure , determining lag values for each estimation 

method for the target frequency curve between 400 ms and 920 ms (frequency estimator 

outputs from outside of that time span can be used for comparison during lag analysis). 

These “lag” values were plotted, relative to the target frequency times, for each estimator 

method, in Figure 4.4. Around the beginning and end of the target frequency sweep, some 

Figure 4.3: Output of frequency estimation methods run on synthetic data set, 

with target frequency of synthetic data set; close up on first frequency sweep. 
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of the lag values have a high delay or lead, at times due to the frequency estimators not 

reaching the target frequency. 

Performing the same analysis, but looking at the target frequency only from 450 

ms to 850 ms, excludes the edge effects visible at the beginning and end of Figure 4.4. 

The lag analysis on a single sweep, without edge effects, is shown in Figure 4.5. 

Based on the range of lag values that occurred with each method when run across 

a single sweep, time spans of interest for the potential lag of the frequency estimation 

methods were determined. These time span of interest ranges were then used when 

running each method across the full synthetic signal, with its multiple sweeps, steps, and 

sections of constant frequency. If a lag value result within the time span of interest was 

not found, no result was generated, eliminating some of the edge effects visible in 4.4 

Figure 4.4: Lag of each estimation method on the first sweep of the synthetic 

data set, with edge effects included to help identify the time range which lag 

calculation on the frequency estimation methods are meaningful.   
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along with other non-relevant results. The results from this time range of interest method 

on the full sweep are shown in Figure 4.6. 

 

 

 

 

METHOD MEAN 

LAG 

 
MEAN 

ABSOLUTE 

LAG 

RMS 

LAG 

 
LAG 

STANDARD 

DEVIATION 

FFT 57.07 
 

60.21 72.16  
 

44.16 

DCEM 17.95 
 

17.95 18.34  
 

3.78 

MLP 2.57 
 

7.49 9.83  
 

9.49 

HYBRID 36.69 
 

37.08 39.51  
 

14.66 

Figure 4.5: Lag of each estimation method on a single sweep, with edge 

effects trimmed. 

Table 4.1: Lag metrics, calculated on a single sweep with edge effects 

excluded as shown in Figure 4.5. 
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METHOD MEAN 

LAG 

 
MEAN 

ABSOLUTE 

LAG 

RMS 

LAG 

 
LAG 

STANDARD 

DEVIATION 

FFT 54.98 
 

58.47 69.22  
 

42.05 

DCEM 17.96 
 

17.96 18.33  
 

3.67 

MLP 2.07 
 

9.47 11.43  
 

11.24 

HYBRID 30.87 
 

31.62 34.43  
 

15.24 

 

When viewing the lag results and comparing between methods, it is important to 

understand that errors in frequency estimation will influence the calculated lag, and as 

such these results should be considered carefully. Metrics on the lag of each estimation 

method were performed, and the results are shown below. The metrics in Table 4.1 were 

Figure 4.6: Time range of interest lag results for the estimation methods on 

full length synthetic signal. 

Table 4.2: Lag metrics calculated from the time range of interest lag results 

over the full synthetic data set as shown in Figure 4.6. 
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calculated only on lag estimates occurring between 450 ms to 850 ms as shown in 4.5, a 

single sweep which excludes the edge effects from the beginning and end. The edge 

effects are visible in 4.4, especially on the MLP regression, hybrid, and 100 ms FFT 

methods. The statistics in Table 4.2 were calculated from the time range of interest lag 

results on the complete synthetic data set as shown in Figure 4.6. 

 

4.4. Test Input DROPBEAR Dataset 

Acceleration at the end of the DROPBEAR’s cantilever beam was measured and 

recorded over the course of a roller location motion sequence, and that data was used to 

demonstrate the performance of each of the frequency analysis methods on a physical 

system. A section of the measured roller location during the sequence, as well as the 

accelerometer output, are both shown in Figure 4.7 overlaid on top of each other. Within 

the range of roller location used in this data set, calculation and previously performed 

measurements have shown that the frequency the beam oscillates at varies fairly 

consistently with roller location. Note the beat frequency present in the signal between 

Figure 4.7: Measured roller location and oscillating beam acceleration during roller 

motion sequence on DROPBEAR. 
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approximately 12500 ms and 13500 ms; the presence of which suggests multiple 

components of similar frequency and amplitude are present. The simultaneous presence 

of more than one frequency at similar amplitude may present a challenge in determining 

the signal’s primary frequency. 

 

4.5. Output of Each Method on DROPBEAR Dataset 

When each frequency detection method is run on the acceleration data collected 

from the DROPBEAR system, the results are as shown in Figure 4.8. In Figure 4.9, 

inspecting the outputs closer around the time of a roller location change shows the 

behavior of each method during roller motion, as well as the relative performance and 

behavior of each at two different stationary locations. 

The Delayed Comparison method is very stable during each period where the 

roller is stationary, with minor oscillations visible. During motion of the roller however, 

Figure 4.8: Output of the frequency detection methods, when provided with 

DROPBEAR beam acceleration data. 
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there’s a large jump; it is unclear whether this is representative of actual frequency 

content in the data when viewed on such short time scales. 

The FFT method gives its results at a fairly coarse resolution, with only 3 steps 

from the earlier to later roller positions across the time motion occurred. Output during 

each period where the roller is stationary is stable, and the change in output during roller 

motion, while beginning after each other method shows a change, does reach its end 

value sooner, and without any oscillation or unexpected values during motion. 

The Hybrid method showed fairly similar performance compared to the Delayed 

Comparison method. Their outputs each start to shift, and likewise stabilize, at similar 

times. They each exhibited a large jump early in the motion of the roller, though 

interestingly the jumps are in opposite directions. One distinct difference in their 

performance is that the Hybrid method shows significantly more “noise” in its output, 

Figure 4.9: Output of the frequency detection methods, when provided with 

DROPBEAR beam acceleration data; close up during movement of the roller. 
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with oscillations that are higher in amplitude and frequency than that of the Delayed 

Comparison method’s output. 

 The output of the Direct Neural Network method, while tracking with 

roller location well enough to tell that that is what it’s doing, exhibited much more high 

frequency oscillation noise than any of the other methods. This is especially pronounced 

during roller motion, but even during periods where the roller is stationary the amplitude 

of output variation is very significant. 
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CHAPTER 5 

DISCUSSION 

Visually, it’s apparent that the methods vary in delay, frequency precision, and 

accuracy. Part of the variation in delay between the methods can largely be accounted for 

by the sample length of each method, and accordingly the age of the oldest data point in 

use. Sample length and apparent delay don’t perfectly correlate because of the differences 

between how each method makes use of the data, but it is certainly a relevant factor. 

It is notable that the performance on clean synthetic data varies from performance 

on physical acceleration data. Comparing the results on the synthetic data with the output 

of the methods running on acceleration data from the DROPBEAR shows how the 

performance of some of the methods are less consistent than others between the two 

scenarios. For example, the 100ms FFT performs very predictably on the synthetic data 

but lags behind the response rate of the direct neural network and is relatively imprecise. 

Comparing the same two methods on the DROPBEAR acceleration data, the FFT’s 

output is unremarkable while the direct neural network shows inconsistent behavior and 

large jumps in its output especially while the roller is in motion. While additional training 

data, or modification to the training data set such as the addition of noise or harmonics, 

may improve the performance of the direct neural network method, the contrast in 

performance seems to show a potential drawback of the method that must be addressed. 

The hybrid method, which was trained using similarly generated synthetic data, didn’t 



 

29 

Distribution A. Approved for public release; distribution unlimited (AFRL-2025-1758) 

suffer the same level of performance loss when run on the DROPBEAR acceleration 

data, suggesting the method may be inherently more tolerant of attributes of physical data 

which it was not specifically trained to account for. 

One question that was raised when looking at the output of the estimation 

methods on the DROPBEAR data was whether tracking the frequency, as if it’s a 

smoothly changing or quasi-static value, was a valid approach when the roller starts 

moving. Aside from the FFT, which was using the longest sample time, none of the 

methods seem to track early in the motion of the roller following a stationary period. 

Perhaps the assumption of continuous frequency change with roller position needs to be 

re-assessed, and initial roller movement introduces signal content that needs to be 

analyzed in a somewhat different way, compared to continuing roller movement which 

does appear to result in a frequency sweep as expected from an ideal oscillating beam 

with varying pin location. If additional noise is being introduced as the roller transitions 

from stationary to moving, perhaps that can be identified and filtered out; another 

possibility is that the primary mode hasn’t accumulated enough energy to be easily 

detected early in roller motion events. 
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