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Abstract

Natural disasters and extreme weather events pose significant threats to the struc-

tural integrity and safety of civil and environmental infrastructure. In this context,

Structural Health Monitoring (SHM) emerges as a pivotal discipline, intersecting en-

gineering, technology, and disaster resilience. SHM’s mission is to provide real-time,

data-driven insights into the condition of critical infrastructure, encompassing bridges,

buildings, dams, and transportation networks. These systems not only expedite as-

sessment, but also wield substantial influence in mitigating catastrophic disasters.

As the frequency and intensity of extreme weather conditions escalate due to climate

change, the need for robust and proactive SHM strategies becomes increasingly ap-

parent. Moreover, the continuous monitoring of structures in dynamic environments

necessitates more versatile solutions. Traditionally, SHM relied on wired systems,

laden with logistical complications and steep installation costs, particularly in remote

or challenging locations. Unmanned aerial vehicles (UAVs) and wireless technolo-

gies have revolutionized rapid SHM, promising groundbreaking advancements in the

way structures are evaluated and secured. Deploying wireless systems for rapid SHM

confronts the intricate challenge of optimizing sensor placement while maintaining

a robust connection. Furthermore, signal deterioration due to transmissibility loss

and the imperative of low-power signal detection in sensing systems compound these

challenges. An extensive report of the aerial deployment design, development proce-

dure, and strategies employed to enhance the onboard vibration sensor’s signal-to-

noise ratio is provided. These enhancements are achieved through the integration of

lightweight 3D printed materials, small footprint low-power electronics, and the im-
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plementation of a machine learning-based Long Short-Term Memory (LSTM) error

compensator. Deliverables of this work include 1) An overview of the aerial deploy-

ment and retrieval system via electropermanent magnets integrated into uncrewed

aerial vehicles. 2) A breakdown of the sensor hardware and onboard subsystems. 3)

A comprehensive report of the algorithm employed to combat signal degradation due

to mechanical transmissibility loss. Finally, 4) a general view of the wireless system

with a focus on network communication, low-latency wireless triggering, and trans-

mission error-handling. The focus remains on enhancing structural safety, resilience,

and adaptability, ultimately safeguarding critical infrastructure for a more secure and

sustainable future.

iv



Table of Contents
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 A compensation technique for accurate accelera-
tion measurements using a uav deployable and re-
trievable sensor package . . . . . . . . . . . . . . . . . 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Sensor design and development . . . . . . . . . . . . . . . . . . . . . 8

2.3 Testing and validation apparatus . . . . . . . . . . . . . . . . . . . . 16

2.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Chapter 3 Non-linear vibration signal compensation technique
for UAV-deployable sensor packages with edge com-
puting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Experimental Training and validation . . . . . . . . . . . . . . . . . . 27

v



3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Chapter 4 Modal Analysis using a UAV-deployable Wireless
Sensor Network . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Chapter 5 Case Study for using Open-Source UAV-deployable
Wireless Sensor Nodes for Modal-based Monitor-
ing of Civil Infrastructure . . . . . . . . . . . . . . . . 47

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Chapter 6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Appendix A Permission to Reprint . . . . . . . . . . . . . . . . . . . 64

A.1 CHAPTER 2-3: The International Society for Optics and Photon-
ics, Smart Structures + Nondistructive Evaluation . . . . . . . . . . . 64

A.2 CHAPTER 4: Society of Experimental Mechanics, International
Modal Analysis Conference . . . . . . . . . . . . . . . . . . . . . . . . 65

A.3 CHAPTER 5: Structural Health Monitoring, DEStech Publication . . 66

vi



List of Tables

Table 2.1 Signal to noise ratio report of the Chirp-based filter applied to
the test structure’s data. . . . . . . . . . . . . . . . . . . . . . . . 19

Table 3.1 A comparison between the raw sensor measurements and the
compensated signal using signal-to-noise ratio and RMSE in the
bandwidth of 0-10 Hz. . . . . . . . . . . . . . . . . . . . . . . . . . 32

vii



List of Figures

Figure 1.1 (a) A suspended bridge inspector on a riveted steel bridge [34],
(b) Wiring through a concrete shaft [11], (c) Dedicated crane for
bridge inspection [10], (d) Bridge collapse after flooding event [25]. 2

Figure 1.2 Various components of the rapid structural health monitoring
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 2.1 (a) Sensor package deployment under a pedestrian bridge, (B)
MEMS accelerometer onboard the sensor package. . . . . . . . . . 8

Figure 2.2 Block diagram depicting the various subsystems onboard the
sensor package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 2.3 Hardware components for the UAV-deployable sensor package
removed from the protective frame. . . . . . . . . . . . . . . . . . 10

Figure 2.4 Package retrieval mission depicted in three frames (a) UAV ap-
proach (b) UAV contact (c) successful retrieval. . . . . . . . . . . 11

Figure 2.5 Sensor package deployment mission algorithm breakdown. . . . . 12

Figure 2.6 Control scheme of the inverse transfer function filter. . . . . . . . 13

Figure 2.7 Sensor package frequency response experimental setup with la-
beled key components. . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 2.8 Normalized Chirp excitation signal: (a) time domain; (b) fre-
quency domain plots. . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 2.9 Benchtop experiment comparison between pre and post filter
performance in the: (a) time domain; (b) frequency domain
with respect to a reference accelerometer. . . . . . . . . . . . . . . 15

Figure 2.10 Structure test setup with labeled key components. . . . . . . . . . 17

viii



Figure 2.11 Structure test comparison between pre and post filter perfor-
mance in the: (a) time domain; (b) frequency domain with
respect to a reference accelerometer. . . . . . . . . . . . . . . . . 18

Figure 2.12 Pre and post filtering frequency domain error percentage in the
bandwidth of: (a) 0-20 Hz; (b) 5-20 Hz. . . . . . . . . . . . . . . 18

Figure 3.1 (a) Sensor package deployment under a pedestrian bridge, (b)
sensor package and electropermanent magnet configuration. . . . 23

Figure 3.2 Edge implementation of the LSTM compensator network for
signal conditioning. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 3.3 Normalized Chirp excitation signal: (a) time domain, and; (b)
frequency domain plots. . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 3.4 One of the training datasets in the range of 0 - 10 Hz: (a) time
domain, and; (b) frequency domain plots. . . . . . . . . . . . . . 29

Figure 3.5 Flow chart of (a) experimental setup for developing training
data, (b) edge implementation of the LSTM compensator, and;
(c) sensor field deployment on a pedestrian bridge. . . . . . . . . 29

Figure 3.6 A comparison of performance between the sensor package and
the compensator network, showing: (a) time domain, and; (b)
frequency domain plots utilizing the testing dataset. . . . . . . . . 31

Figure 3.7 Frequency response function of the sensor package and the com-
pensator network in the range of 0-5 Hz. . . . . . . . . . . . . . . 32

Figure 4.1 Vibration sensor package with key components annotated along
with a field deployment on a test bridge. . . . . . . . . . . . . . 38

Figure 4.2 Block diagram of sensor package with the various modules on-
board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 4.3 FEA modal simulation results indicating the first three mode
shapes of the bench top experimental beam. . . . . . . . . . . . . 40

Figure 4.4 Power consumption of the various modules onboard the sensor
package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

ix



Figure 4.5 Voltage decay of Lithium polymer battery during sensor pack-
age deployment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 4.6 Timing instance of trigger latency between wireless receivers
onboard two sensor packages. . . . . . . . . . . . . . . . . . . . . 43

Figure 4.7 Benchtop experimental setup for the sensor package network
deployment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 4.8 Frequency domain analysis of the beam impulse response test
with the first three modes annotated. . . . . . . . . . . . . . . . 45

Figure 5.1 Open-source vibration sensor package with key components an-
notated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 5.2 Sensor network placement along with the mass shaker on the
test bridge and the UAV deployment system. . . . . . . . . . . . . 52

Figure 5.3 Experimental results of the pedestrian bridge modal detection
experiment using a mass shaker for active excitation with (a)
time domain measurements, (b) frequency domain response with
the first flexural mode identified . . . . . . . . . . . . . . . . . . . 53

x



Chapter 1

Introduction

In the wake of natural disasters and extreme weather events, the structural integrity

and safety of civil and environmental infrastructure become paramount concerns.

Structural health monitoring (SHM) emerges as a critical field at the intersection of

engineering, technology, and disaster resilience. It seeks to provide real-time, data-

driven insights into the condition of infrastructure such as bridges, buildings, dams,

and transportation networks. These systems not only facilitate rapid assessment and

response but also play a pivotal role in mitigating the devastating impacts of disasters.

As climate change continues to amplify the frequency and severity of extreme weather

conditions, the need for robust and proactive SHM strategies becomes increasingly

evident. In this context, this work sets the stage for a comprehensive exploration of

the vital role SHM plays in safeguarding our civil and environmental infrastructure

during and after natural disasters and extreme weather events. Uncrewed vehicles

and wireless systems have emerged as invaluable tools in the field of rapid SHM.

These technologies offer the potential to revolutionize the way we assess and ensure

the safety of various structures, from bridges to industrial facilities. Traditionally,

sensor placement and data acquisition in SHM applications have relied on wired sys-

tems, which come with their own set of limitations. These wired systems can be

cumbersome, costly, and logistically challenging to install, especially in remote or

difficult-to-access locations as shown in Figure 1.1. Additionally, the constant mon-

itoring of structures, especially those in dynamic environments, necessitates a more

flexible and adaptable solution. One of the primary challenges in deploying wireless
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systems for rapid structural health monitoring lies in optimizing sensor placement

and communication. Ensuring that sensors are strategically located to capture crit-

ical data while maintaining a robust and reliable wireless connection is a complex

task.

Figure 1.1: (a) A suspended bridge inspector on a riveted steel bridge [34], (b)
Wiring through a concrete shaft [11], (c) Dedicated crane for bridge inspection [10],
(d) Bridge collapse after flooding event [25].

Furthermore, signal degradation due to transmissibility loss and the need for low-

power signal detection in wireless systems pose additional challenges. While the

literature offers various systems addressing these issues, very few make their systems

available as open-source solutions, limiting accessibility and collaborative opportu-

nities. The overarching goal of this work is to present an aerially deployed sensing

system designed to address these challenges. This innovative system offers a high-

mobility, low-cost, and safer alternative to traditional wire-based systems. In this

thesis, a comprehensive overview of the aerial deployment design requirements, de-

velopment procedure, and the processes employed to enhance the signal-to-noise ra-
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tio of the onboard vibration sensor is presented. These enhancements are achieved

through the integration of compact lightweight 3D printed materials, the use of small

footprint low-power computational devices, and the implementation of a machine

learning-based Long Short-Term Memory (LSTM) error compensator. Central to the

thesis are the following key aspects:

Sensor Deployment and Retrieval System: The mechanism for deploying and

retrieving the sensing nodes using electropermanent magnets mounted on an uncrewed

aerial vehicle (UAV) will be detailed.

Sensor Hardware and Onboard Systems: A breakdown of the embedded hard-

ware and various sub-systems onboard the UAV and sensing nodes will be provided.

Signal Conditioning and Error Compensation:The algorithms implemented to

mitigate signal deterioration caused by mechanical transmissibility loss will be de-

scribed.

Wireless Network Overview: An overview of the wireless system’s algorithm and

hardware, with an emphasis on network communication, low-latency wireless trigger-

ing, and error handling, will be presented.

This innovative system, presented in Figure 1.2, proposed as an open-source

project, carries profound significance for the structural health monitoring and sens-

ing community on multiple fronts. Firstly, by adopting an open-source approach, it

fosters a culture of collaboration within the community, effectively addressing evolv-

ing challenges in SHM. Furthermore, this open-source initiative opens up avenues for

enhancements. Through a collective effort, the system can further evolve to incor-

porate state-of-the-art technologies, novel methodologies, and cutting-edge sensors.

This process of ongoing refinement ensures that the system remains at the forefront

of SHM practices, capable of meeting the continuously evolving needs of structural

safety assessment. Most significantly, the open-source nature of this project paves
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Figure 1.2: Various components of the rapid structural health monitoring system.

the way for wider adoption across a diverse range of structural settings. By making

the technology accessible, adaptable, and cost-effective, it allows a broader spectrum

of stakeholders, including infrastructure and construction agencies, disaster response

teams, and civil and environmental experts to embrace rapid SHM systems as a fun-

damental component of their safety assurance strategies. This work aims to make

advanced SHM practices readily available, thereby transforming the monitoring, as-

sessment, and safeguard of critical infrastructure on a global scale.
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Chapter 2

A compensation technique for accurate

acceleration measurements using a uav

deployable and retrievable sensor package

1

Abstract

The rapid assessment of infrastructure following extreme weather or seismic events

is important to ensure the stability of structures before their continued use. This

work presents an amplitude compensation technique for accurate acceleration mea-

surements formulated for unmanned aerial vehicle’s (UAV) deliverable sensor pack-

ages. These packages are designed for measuring the acceleration of structures, for

instance, railroad bridges and power transmission towers. Current technology for

structural health monitoring is expensive, stationary, and requires maintenance by

certified personnel. These attributes prevent rapid assessment of remote and hard-

to-reach structures. Low-cost, UAV-delivered sensor packages are an ideal solution

due to their ability to be deployed on a large scale in a timely manner; cutting down

on cost and the danger affiliated with structural health monitoring following extreme

and hazardous events. One challenge to this approach is that the UAV deployable

sensor package consists of several systems, including mounting hardware, embedded

1Joud Satme, Corinne Smith, Austin R.J. Downey, Jason D. Bakos, Nikolaos Vitzilaios, Dim-
itris Rizos, 2022. Conference proceeding of SPIE Smart Structures + Nondestructive Evaluation.
10.1117/12.2612945 Reprinted here with permission of the publisher, 11/8/2023
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electronics, and energy storage that result in a loss of transmissibility between the

structure and the package’s accelerometer. This work proposes a frequency response-

based filter to isolate the structure’s vibration signature from interference caused by

the sensor package itself. Utilizing an input-output relationship between the sensor

package and a calibrated reference accelerometer, a model transfer function is con-

structed. Compensation is performed in the post-processing stage using the inverse

transfer function model. This approach is shown to enhance the signal-to-noise ratio

by 1.2 dB, an increase of 7.17%. This work investigates algorithm robustness and

sensitivity to noise across the sensor package’s bandwidth of 6-20 Hz. A discussion

on the limitations of the system is provided.

2.1 Introduction

In structural health monitoring, current systems operate as a mounted cluster of sen-

sors permanently fixed onto and around the structure in question [28]. These systems

are typically installed later by specialists with dedicated instruments and vehicles as

they are rarely considered during the structure’s construction. This procedure is very

time-consuming and cost-ineffective, as the sensing systems can’t be removed when

not in use and their maintenance is as complex as the installation process. While

traditional manual methods for sensor deployments have certain advantages, their

use is challenging in remote locations and hard-to-reach structures where access to

specialized vehicles for deployment is limited, or in safety-critical situations that limit

options for human interaction with the structure.

The UAV-deployable sensor system considered in this work is a low-cost micro-

electromechanical system (MEMS) alternative [30] that is independently powered and

compact enough to be aerially deployed to remote test sites, otherwise inaccessible

by conventional methods. UAV deployment of an early-stage prototype package was

demonstrated by Carroll et al. [8]. Utilizing an electropermanent magnet, the sensor
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packages can be mounted onto any metal surface on the structure being tested with

minimal evasive effects [41] and can withstand long deployment periods due to the

independent power system onboard. This system monitors the power consumption

while conserving energy by turning off non-vital parts of the sensor package when not

in use. The package uses additional sensors to measure environmental parameters

along with the vibration signature of the structure being inspected. Data is stored in

onboard memory while a wireless system is used for data retrieval on demand.

This sensing system offers ease of use, high mobility, and low cost. Important

parameters for the deployment of widespread sensing networks in structural health

monitoring applications. Rapid inspection can be made possible by deploying mul-

tiple packages that work in tandem to, more accurately, quantify damage from the

vibration signature of the structure. With the aid of a UAV system, the sensor pack-

ages can be placed in vital locations where damage is suspected to occur [9]. Once

deployed, the challenge becomes detecting the low-energy signals that are of interest

when investigating damage.

In this work, a transfer function-based filter is proposed to enhance the signal-to-

noise ratio (SNRdB) of the sensor package’s accelerometer. Using a known excitation

signal and an input-output relationship between two accelerometers a filter can be

modeled to attenuate interference and transmissibility losses [2]. The filter designed

in this work utilized a comparison between the MEMS accelerometer, onboard the

deployable sensor package, and a reference lab-grade piezoelectric accelerometer. The

comparison focus on the sensor package’s sensitivity in the lower frequency range (up

to 20 Hz) as those frequencies are typically found in large structures[17]. The contri-

butions of this work are twofold. First, a transfer function-based filtering approach

is formulated for use with UAV-deployable sensor packages, secondly, the considered

UAV-deployable sensor package is validated against a reference accelerometer for the

frequency range of DC to 20 Hz.
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2.2 Sensor design and development

This section reports on the previously developed sensor package hardware, the data

collection algorithm, and the complementary UAV deployment and retrieval system.

Additionally, information on the mathematical formulation of the transmissibility

filter along with its experimental procedure is also covered.

UAV-deployable sensor package:

Figure 2.1: (a) Sensor package deployment under a pedestrian bridge, (B) MEMS
accelerometer onboard the sensor package.

The previously developed UAV deployable sensor package was designed with high

mobility in mind as its weight and footprint had to be optimized for aerial delivery

with payload limitations. Power and memory storage systems had to be incorporated

into the design in anticipation of long deployment missions in remote areas where

charging or offloading data is not possible. A wireless subsystem along with data

management and error handling algorithm was incorporated as well to enable the

package to transmit data upon request from the user [36], gaining an advantage

over wired systems. With the main goal being vibration sensing, a sturdy contact

with the structure is vital so a strong electropermanent magnet, with minimal power

consumption, was adopted. Finally, the electronics and frame of the package were
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designed with minimizing transmissibility losses in mind because of the low-power

ambient vibration signals to be measured. The data gathered using such a system

provides insight into structures’ vibration signature and their natural frequencies,

which carries information about the state of such structures[44].

Figure 2.2: Block diagram depicting the various subsystems onboard the sensor
package.

The sensor package’s processor consists of the ARM Cortex-M7 onboard the

Teensy 4.0. This high-performance microcontroller, with its 600 MHz clock and the

serial peripheral interface (SPI) communication protocol, enables high-speed data

collection up to 28 kS/s. An SCA3300-D01 MEMS accelerometer (manufactured by

Murata) was mounted onto a custom PCB with its placement optimized to limit trans-

missibility losses. This PCB is directly fixed to the frame of the electropermanent

magnet, which is assumed to provide the best acceleration transmissibility from the

structure, as shown in Figure 2.1(b). The electropermanent magnet (EPM V3R5C

manufactured by NicaDrone) is used due to its low power consumption; only draw-

ing significant power when switching states (1000 mA for 0.75-1.2 s). During data

collection, a sample size of 74,000 samples is recorded temporarily onto the Teensy

4.0’s buffer to then be transferred to nonvolatile memory (SD card) for long-term

9



storage, a process that requires approximately 3.288 s. With packages being required

to deploy for up to 1 week at a time, a power monitoring and control system was

developed to periodically measure the onboard Lithium polymer battery voltage and

turn off all parts of the system that are not in use. This aids in extending the battery

life to the desired deployment period. The sensor package is fitted with a wireless

transceiver (NRF24L01 by Nordic Semiconductor) which enables the sensor package

to send stored data and package status (power and memory capacity) on-demand and

receive commands to disengage the magnet during retrieval. The System’s hardware

is then fitted into a 3D printed frame that fits into a standard 2" diameter PVC pipe

to shield the delicate electronics from the elements during operation. Sensor package

circuit with key components annotated is shown in Figure 2.2 and 2.3. The code was

developed on the Arduino integrated development environment which is compatible

with the Teensy 4.0 microcontroller used.

Figure 2.3: Hardware components for the UAV-deployable sensor package removed
from the protective frame.

With the goal being mass deployment in remote and hard-to-reach locations, a
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UAV system was developed to allow the user to approach the structure with ease

without the need for highly trained personnel and heavy machinery. The drone used

in this work incorporates a deployment harness which included an additional elec-

tropermanent magnet and guiding rails. This system further increases safety and

ease of use as it guides the sensor package to the mount during retrieval. The on-

board electropermanent magnet aids in securing the retrieved package in place before

disengaging the package’s magnet and flying back to base as shown in figure 2.4 [8].

Figure 2.4: Package retrieval mission depicted in three frames (a) UAV approach
(b) UAV contact (c) successful retrieval.

During normal operation, the code will start by initializing the magnet signaling

the start of a deployment mission. Acceleration data is then periodically collected

according to a preset schedule. Each set of data is first collected in the buffer to

enable high sampling rates as vibration signature-based algorithms used in structural

health monitoring require high time-domain accuracy. After a maximum sample set

of 74,000 samples is collected, the data is then transferred onto the SD card. The code

then signals standby mode which turns all modules off aside from the microcontroller

and the wireless module. Those two modules remain on, in case communication with

the package needs to be established. When communication is established, a user can
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Figure 2.5: Sensor package deployment mission algorithm breakdown.

request information about the operating conditions of the package, retrieve stored

data, send IO commands to the magnet which signals the end of a deployment. A

flow chart of the package’s algorithm is shown in Figure 2.5.

Filter design:

The sensor package’s filter is developed through a transfer function-based ap-
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proach. In this approach, an input-output relation is acquired using frequency sweep

excitation, also referred to as Chirp. Utilizing the input-output relationship, a model

of the plant being studied can be created. Assumptions about the nature of the

system have to be made during the modeling process. In this case, the system was

considered to be a causal minimal phase system, Gp(s). When Gp(s) is inversed, a

filter with the inverse characteristics of the plant’s frequency response is acquired.

Using this filter, the influence of the plant is attenuated, with the true input ob-

tained using only the output of Gp(s). The control scheme of the system is shown in

figure 2.6.

Figure 2.6: Control scheme of the inverse transfer function filter.

In order to acquire the transmissibility transfer function Gp(s) of the sensor pack-

age’s frame, the sensor package is placed on an electromagnetic shaker along with a

lab-grade accelerometer (model 393B04 from PCB Piezoelectric) to be used as refer-

ence. A Chirp excitation was used to obtain the sensor package’s frequency response

where the electromagnetic shaker was used to frequency sweep in the bandwidth of

DC to 20 Hz, the frequency range relevant in large structures. In this approach, the

input-output relation of the reference accelerometer to the sensor package’s onboard

accelerometer is recorded using a data acquisition system and then processed offline.

The two sets of data are imported, synchronized, and interpolated to the same time

scale. A model of the transmissibility of vibration through the sensor package is ac-

quired with an acceptable level of correlation, the assumption that the inverse of the

plant is stable when switching the zeros and poles’ location had to be made for this

approach to be successful. When setting the model parameters, only the frequency

components between DC and 20 Hz were considered as this will further filter out the
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undesired high frequencies that may be present. The plant transfer function Gp(s)

is then inversed; creating a filter transfer function Gp−1(s). When the sensor pack-

age data is fed through the designed filter, unity gain is established, where the filter

attenuates the influence of the sensor package’s frame on the acceleration that the

onboard accelerometer registers. This enhances the sensor package’s signal-to-noise

ratio by reducing the transmissibility losses through the frame of the package.

Figure 2.7: Sensor package frequency response experimental setup with labeled key
components.

Utilizing the experimental setup shown in Figure 2.7, any extra influence of a

structure was eliminated as the focus of this experiment was to study the effect of the

sensor package frame on the overall transmissibility of acceleration, from the imme-

diate source (electromagnetic shaker) to the sensor package’s onboard accelerometer.

With the results of this experiment, an input-output relation was investigated to see

where most transmissibility losses occur on the frequency spectrum. The Chirp ap-

proach chosen for the excitation signal made examining the bandwidth of DC to 20

Hz more feasible, as this type of excitation has a start and end frequency with no

components beyond that window.

In this approach, a Chirp signal was constructed using equation 3.8 as shown in

figure 2.8. Where f0 is the initial frequency (0.1 Hz) and f1 is the end frequency (21

Hz). T is the length of the test, which lasted 40 s, dictated by the size of the buffer
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Figure 2.8: Normalized Chirp excitation signal: (a) time domain; (b) frequency
domain plots.

Figure 2.9: Benchtop experiment comparison between pre and post filter perfor-
mance in the: (a) time domain; (b) frequency domain with respect to a reference
accelerometer.

onboard the sensor package, which collects approximately 45 seconds worth of data

at a sample rate of 1650 samples per second totaling 74,000 samples.

x(t) = sin(1 + 2π((f1 − f0)
2T

)t2 + f0t) (2.1)

Utilizing the Chirp signal, the experiment was conducted and data from both the

reference and package accelerometers were used in the modeling process. After in-

terpolating the data and using the input-output relationship, a third-order s-domain

transfer function was constructed then inversed as shown in equation 2.2. As demon-
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strated in Figure 2.9, the sensor package’s data is fed through the filter transfer

function validating the method.

Gp−1(s) = s3 + 668.8s2 + 2.937 ∗ 104s + 3.58 ∗ 104

1.123s3 + 652.1s2 + 3.067 ∗ 104s + 7.393 ∗ 104 (2.2)

To accurately evaluate the performance of the constructed filter, the signal-to-

noise ratio, in decibels, was adopted as a metric. SNRdB was utilized to compare

the condition of the measured acceleration signal, prior and post-filtering, to gauge

the noise rejection capabilities of the filter. SNRdB was calculated as the ratio of

the summed squared magnitude of the measured signal S(i) to the summed squared

magnitude of the noise N(i) taken on a log scale as shown in equation 3.9. [16]

SNRdB = 10 log10(
Σ74000

i=1 (S(i))2

Σ74000
i=1 (N(i))2 ) (2.3)

2.3 Testing and validation apparatus

In the validation stage, a steel test structure was constructed with a data acquisition

system capable of triggering both the sensor package and reference accelerometer

simultaneously, generating an excitation signal to be routed to the electromagnetic

shaker, and finally recording reference acceleration for later processing. The exper-

iments were conducted using the test apparatus shown in Figure 2.10. Both the

reference accelerometer and sensor package were hard-wired to the data acquisition

trigger to ensure minimal latency when triggering. Chirp-driven excitation was used

to examine the filter’s performance with the same input used in the modeling process.

By investigating the same input excitation, with and without a test structure, a true

metric of the filter’s performance can be determined.
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Figure 2.10: Structure test setup with labeled key components.

2.4 Results and discussion

Using the data gathered from the benchtop and test structure experiments, the filter

was implemented using MATLAB’s system identification toolbox v9.15[23]. With the

inverse plant transfer function determined, the raw sensor package, filtered signal,

in addition to the reference acceleration were examined. As shown in Figure 2.11,

the time domain plot indicates that the filtered signal traces the reference with high

correlation, additionally, in the frequency domain, it is shown that the filter enhances

the signal in the range of 6-20 Hz. When investigating error percentage as shown in

Figure 2.12, it is shown that error is considered negligible between 6-14 Hz (<0.4%).

Moreover, when the signal to noise ratio of the time domain signal is obtained, it is

found that an increase of 1.2 dB was established, a 7.17% enhancement from the raw

sensor package data. Diminishing returns of the filter can be observed in the range
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below 5 Hz, where it is speculated that the analog to digital converter (ADC) onboard

the sensor package’s accelerometer does not have the adequate resolution to detect

the low-energy signal found in lower frequencies. The results shown in Figures 2.11

and 2.12 are a comparison of filter performance with package pre-filter being the raw

sensor data and package post-filter being the final result after applying the inverse

plant transfer function to the raw data.

Figure 2.11: Structure test comparison between pre and post filter performance in
the: (a) time domain; (b) frequency domain with respect to a reference accelerometer.

Figure 2.12: Pre and post filtering frequency domain error percentage in the band-
width of: (a) 0-20 Hz; (b) 5-20 Hz.
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Table 2.1: Signal to noise ratio report of the Chirp-based filter applied to the test
structure’s data.

Pre-filter SNR 16.74 dB -
Post-filter SNR 17.94 dB -
SNR increase 1.2 dB 7.17%

2.5 Conclusion

In this work, the design of a low-cost high mobility structural health monitoring sys-

tem is presented. From sensor package design and testing to UAV deployment mission

experiments and finally, a frequency response filter is implemented to compensate for

the loss of transmissibility between the structure and the onboard accelerometer,

caused by the sensor package’s frame. Experimental results demonstrated that the

filter provided a 7.17% enhancement over the raw sensor package data with signifi-

cant improvement in the accuracy of the sensor package between 6 and 14 Hz. The

performance limitation seen in the range below 5 Hz is attributed to multiple factors

including shortcomings in the analog to digital resolution, noise band level, and the

transmissibility of vibrations through the electropermanent magnet. Future work on

this system includes further improvement on the accelerometer signal conditioning

and extending the ADC resolution to meet the required threshold.
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Chapter 3

Non-linear vibration signal compensation

technique for UAV-deployable sensor packages

with edge computing

1

Abstract

For rapid assessment of infrastructure, the use of minimally invasive sensors that can

be deployed remotely using autonomous vehicles is gaining popularity. Such systems

are favorable for their ease of deployment and cost-effectiveness. Utilizing electrop-

ermanent magnets or adhesives to mount the sensors temporarily forms a barrier

between the sensor and the structure being examined. This barrier creates unde-

sirable nonlinearities and transmissibility losses that introduce errors into structural

damage detection algorithms. Post-processing of signals using continuous modeling

techniques from classical control theory can be applied to the collected signals to

remove this error. However, post-processing creates additional analysis steps that

require the signal to be taken off device. Processing the data at-the-edge prior to

saving it to memory or transmitting it to a base station enables rapid assessment of

infrastructure. With minimal time from signal detection to prognostics, such systems

can be used in damage forecasting and infrastructure failure prevention. This pre-

1 Joud Satme, Daniel Coble, Hung-Tien Huang, Jason D. Bakos, Austin R.J. Downey, 2023.
Conference proceeding of SPIE Smart Structures + Nondestructive Evaluation.10.1117/12.2658563
Reprinted here with permission of the publisher, 11/8/2023

20



liminary work aims to develop a non-linear machine-based compensation technique

that is resource and power efficient enough to be processed on-device. The proposed

long short-term memory (LSTM) error-compensating network demonstrated poten-

tial by increasing the SNRdB by 9.3% and improving RMSE by approximately 20%

while widening the usable lower limit of the sensor’s bandwidth from 2.78 to 1.34

Hz. The progress described in this report focuses on setting the framework for the

proposed method and paves the way for a full-scale hardware implementation in the

near future.

3.1 Introduction

Wireless sensing networks have proven to be useful tools for structural health moni-

toring (SHM). Due to their compact footprint and ease of deployment, such networks

are ideal for rapid structural assessment applications [27]. Wireless sensing networks

have been widely used in the monitoring of civil structures utilizing vibration-based

modal analysis algorithms [4]. Of particular interest to this work is the ability to

deploy such wireless networks onto currently operational or historic structures while

minimizing environmental or cultural concerns[15].

Unmanned aerial vehicles (UAV) are increasingly being used to deploy wireless

sensor nodes for SHM applications. UAV-deployable wireless sensor networks en-

able the diagnostic process of a structure to be streamlined, eliminating the need for

personnel to be in danger zones of traffic or unstable structures. In addition, these

systems are advantageous in that a small number of sensing nodes can be rapidly

mobilized and re-positioned along a structure [8], for instance, in experimental modal

analysis applications of suspended bridges [48]. As a result of their desirable char-

acteristics, such networks have shown promise as reliable, low-cost alternatives to

hard-wired SHM sensing systems. UAV-deployable wireless sensor nodes and net-

works have been studied for SHM applications including [[38, 46, 19, 5]].
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A shortcoming of minimally invasive sensors is the mounting medium that main-

tains contact between the actual vibration sensor and the structure of interest. Mag-

nets and adhesives have been used to varying degrees of success [42, 40, 7], with

transmissibility loss being the main limitation [22, 43]. When vibration propagates

through the contact medium, some of the signal strength is lost through the mag-

net/metal interface and the natural damping of the material. This damping property

can have a major negative impact when the vibration signal is low-energy. Typically,

civil infrastructure vibration signatures tend to be at lower frequencies (< 100 Hz)

with acceleration amplitudes in the mg-µg scale, where any transmissibility loss can

cause the signal to degrade below the resolution of the accelerometer on board the

sensor package [49]. This loss has the greatest impact on SHM algorithms that use

ambient vibration rather than an excitation source [3]. Although traditional con-

trol approaches have shown some promise in increasing the signal-to-noise ratio and

mitigating transmissibility loss via filter transfer functions [20, 32], the low-energy

low-frequency scale remains a difficult range to address because the sensor’s nonlin-

earity is prominent within that bandwidth, specifically 0-5 Hz.

To address the transmissibility challenge in UAV-deployed sensor packages, a non-

linear deep-learning approach based on a long short-term memory (LSTM) developed

to run on board a UAV-deployable sensor package is investigated. The proposed

method demonstrated flexibility during model training, and the ability to tackle

complex sensor non-linearity in the low-frequency scale (< 5 Hz), as well as im-

proving signal quality on-edge, eliminating post-processing steps, all of which are

desirable characteristics for rapid SHM applications. The contributions of this work

are on two fronts. First, a report on the process of constructing training and test-

ing datasets through an experimental approach, training a neural network error-

compensating model, and finally assessing the model’s ability to mitigate transmis-

sibility loss through measurable metrics is reported. Second, an investigation is con-
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ducted into the feasibility of deploying such models on limited-performance computers

and embedded systems utilized in minimal invasiveness sensors for SHM applications.

Figure 3.1: (a) Sensor package deployment under a pedestrian bridge, (b) sensor
package and electropermanent magnet configuration.

3.2 Background

This section reports on the required background elements of this paper.

Open-source UAV-deployable vibration sensor:

The authors have developed an open-source UAV-deployable vibration sensor for

SHM applications as shown in Figure 3.1. The sensor package consists of an electrop-

ermanent magnet [45] for attaching the sensor package to steel structures, a capacitive

micro-electro-mechanical system (MEMS)-based accelerometer, and a microcontroller

to handle the sensor node’s data acquisition and control [8]. A network of these sen-

sor packages has been previously tested in an experimental modal analysis framework
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[33].

The sensor package utilized in the model training phase of this work consists of the

Teensy 4.0 microcontroller with its ARM Cortex-M7 microprocessor. The package

also features an independent power system comprising of a 2-cell lithium polymer

battery and a power regulation and conditioning module. Non-volatile memory is

chosen to store data on board, due to its desired footprint and low power consumption.

An SCA-3300-d01 MEMS accelerometer was embedded into the frame of the EPM

V3R5C electropermanent magnet to establish contact with the structure, a design

choice made with minimizing transmissibility loss in mind. An NRF24L01 wireless

module operating on the 2.4 GHz enhanced ShockBurst protocol is also included.

This feature enables the sensor package to receive control commands, communicate

with other sensor packages, or send data and status updates to a base station. The

hardware utilizes the Serial Peripheral Interface (SPI) as its wired communication

protocol for its favorable speed. This is required for sensor-memory interface and

data transfer processes. With aerial deployment in mind, a lightweight 3D printed

PLA frame was designed to house the delicate electronics and shield them from the

environment during field deployments; yet still be compact and light for UAV delivery.

This sensor package framework and all related designs have been made available as

an open-source project [31].

Long short-term memory networks:

Long short-term memory (LSTM) are a class of deep-learning artificial neural net-

works for processing time-series data. The principle of the LSTM network, as it is

with any recurrent neural network (RNN), is to use a feedback connection to pass

state information to future timesteps. The state information allows an LSTM model

to make predictions based on all previous data in the time series. Their ability to

predict based on temporal patterns makes them ideal for processing vibration data;

as done in this work. In an LSTM model set up for signal compensation, a data point
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Figure 3.2: Edge implementation of the LSTM compensator network for signal
conditioning.

enters the model as a singleton vector xt. The LSTM forward pass updates the inter-

nal state vectors ht and ct and returns the updated ht vector. The size of the vectors

ht and ct is termed the units of the model, and it is generally expected that models

with more units are capable of processing more complex signals. As the desired out-

put is a single datapoint, a dense layer takes the output of the LSTM and produces a

singleton output by means of a vector inner product with the weights and bias add, a

process simplified as shown in Figure 3.2. The seven driving equations of the model

are presented in equations 1-7, with equations 1-6 describing the LSTM forward pass

and equation 7 describing the dense layer [13, 12]. Nonlinearity is provided by the σ

and tanh activation functions.
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ft = σ(Wfxt + Ufht−1 + bf ) (3.1)

it = σ(Wixt + Uiht−1 + bi) (3.2)

ot = σ(Woxt + Uoht−1 + bo) (3.3)

c̃t = tanh(Wcxt + Ucht−1 + bc) (3.4)

ct = ft ◦ ct−1 + it ◦ c̃t (3.5)

ht = ot ◦ tanh(ct) (3.6)

yt = W T
d ht + bd (3.7)

3.3 Methodology

This section presents the LSTM compensator model in addition to the sensor package

hardware breakdown and the experimental testing procedure.

LSTM-based compensator model:

Temporal noise rejection and error-compensating models can take many forms with

their similarity being the recognition of undesirable or false sensor measurements.

Undesirable sensor anomalies can be categorized into two main types: phase error,

defined as the time lag between the temporal event occurring and its detection by the

sensor, and magnitude related error, which is classified as the under or overcompen-

sation of the measurement’s gain. Authors of this work have previously investigated a

controls-based approach by developing a continuous transfer function model that cor-

rected the gain-related error using an input-output relationship between a superior

reference accelerometer and a lower performance accelerometer utilized in low-cost

sensor packages[32]. This approach has shown potential in enhancing the signal’s

quality with some notable limitations. The model lacked the adequate generalization

and was only fitted to one type of excitation signals. The model was also heavily
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reliant on the training data as minor changes in phase between the input and out-

put signals impacted the model performance significantly. This was attributed to

high non-linearity that a linear transfer function could not account for. LSTM-based

compensator models tackle such challenges by being nonlinear systems themselves.

This feature enables the network to recognize complex sensor anomalies and reject

them from the measurement. LSTM networks are also more adaptable in terms of

architecture and training procedure, allowing batches of different tests with different

excitation signals to be fed into the network for a more generalized model. When com-

pared to transfer function filters, one drawback of LSTM error-compensating models

is their high computational load and large memory footprint. These characteristics

make deploying such networks on low-performance computers a difficult task, requir-

ing design trade-offs be made between performance and model size for a successful

deployment.

3.4 Experimental Training and validation

To develop the LSTM compensation model, data across the bandwidth of interest

is needed. An experimental setup is built in order to provide training data to the

compensator model. The setup, shown in Figure 3.5 (a), includes an electromagnetic

shaker as the mechanical excitation source, the sensor package, along with a superior

reference accelerometer as the ground truth measurement. A signal generation and

data acquisition system is also used to generate the excitation signal through an analog

output module, start both sensors simultaneously using a digital trigger, and finally,

an analog input module is included to record the reference accelerometer signal.

The chosen excitation signal was a frequency sweep also known as Chirp excitation.

The model performed better during training when only one frequency was presented

at a time, thus the choice of the excitation signal. The Chirp waveform, shown in
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Figure 3.3: Normalized Chirp excitation signal: (a) time domain, and; (b) frequency
domain plots.

Figure 3.3, was created initially with the mathematical formula

x(t) = sin
(

2π

(
fend − fstart

2(test time)t2 + fstartt

))
(3.8)

A voltage signal is then synthesized and fed into the electromagnetic shaker through

a power amplifier. The datasets were of 74000 samples taken at a sampling frequency

of 400 S/s. The model was provided with training frequency sweeps within the range

of 0-10 Hz with various dynamic ranges to further enhance its performance.

A primary investigation during the training dataset construction revealed a large

deviation in measurement within the low-frequency scale (< 5 Hz). The decision was

made to expand the training scope to 0-10 Hz because the error-compensating model

required data from a wide dynamic range to refine its prediction quality. Figure 3.4

shows that increasing the frequency is directly proportional to increasing the magni-

tude of actuation, thereby expanding the dynamic range over which the model can

train. Although increasing the bandwidth of training data resulted in a significant

overall improvement, the 0-5 Hz scale remained the focus during the experimental

phase.

To ensure a successful training process where the focus was training on the dy-
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Figure 3.4: One of the training datasets in the range of 0 - 10 Hz: (a) time domain,
and; (b) frequency domain plots.

Figure 3.5: Flow chart of (a) experimental setup for developing training data, (b)
edge implementation of the LSTM compensator, and; (c) sensor field deployment on
a pedestrian bridge.

namic range of the signal, an assumption of zero phase between the two sensors was

made. Because the sensor package and data acquisition were running on different

clocks, an impulse was fed through the shaker prior to each test iteration so that the

samples could be precisely aligned after the experiment. The reference accelerometer
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of choice was a Integrated Electronics Piezoelectric sensor (IEPE), which performed

considerably better than the low-cost Micro Electromechanical Systems (MEMS) ac-

celerometer on board the sensor package. The purpose of this experiment was to

generate a supervised learning dataset to train an error-compensating model that

will be deployed onto sensor packages in the field as shown in Figure 3.5 (b).

Compensator model training:

The training dataset consisted of six frequency sweeps: 0-1, 1-2, 2-3, 3-4, 4-5, and 0-

10 Hz, shown in Figure 3.4. Each training experiment was 90 s in length and sampled

at 400 S/s. By including more data from the 0-5 Hz region, the training dataset

emphasized improvement in the lower hertz range. Furthermore, an additional 90 s

dataset for testing in the range of 0-5 Hz was used. The testing dataset was run

independently, so no data was shared between training and testing. In other words,

while the testing dataset will be similar to a training frequency sweep, it will not

share the specific noise profile that the LSTM model is expected to compensate for.

Model training was performed using the tensorflow.keras module. The chosen

model consists of a single LSTM layer of 50 units. A dense layer converts the 50-

element vector output of the LSTM to the output acceleration prediction. Training

utilized the Adam optimizing algorithm with a learning rate of 0.001, β1 of 0.9, β2

of 0.999, and ϵ of 1e-07. During training, the model was observed to converge to

a satisfactory level in 30 epochs. Preliminary investigations into model architecture

revealed that the model size could be reduced without significant loss in performance,

however as the chosen model performed well within the execution time and memory

constraints without the need for additional compromise, minimal model size was not

investigated further in this work.

Training followed an online scheme, where each frequency sweep dataset was fed

in its entirety to the LSTM, with backpropagation and weight updating performed

every 400 samples (equivalent to one second of signal prediction). To gauge the LSTM
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compensator network’s performance, equations 3.9 and 3.10 were used to calculate

SNRdB and RMSE respectively.

SNRdB = 10 log10

(∑data length
i=1 (signal(i))2∑data length
i=1 (noise(i))2

)
(3.9)

RMSE =

√√√√∑data length
i=1 (truth(i) − prediction(i))2

data length (3.10)

Figure 3.6: A comparison of performance between the sensor package and the
compensator network, showing: (a) time domain, and; (b) frequency domain plots
utilizing the testing dataset.

To examine the compensator network prediction quality, a testing dataset is fed

into the model in the bandwidth of interest (0-10 Hz). The compensator network is

shown to trace the reference accelerometer sufficiently well in the range of 1-10 Hz.

An increase in gain in the lower frequency scale (< 0.9 Hz) is shown in Figure 3.6

(b). This anomaly can be attributed to the training dataset bias towards the lower

bandwidth or the lack of adequate resolution in the ±3 mg dynamic range leading to

a degradation in prediction quality.

Figure 3.7 reports the expansion in usable bandwidth of the sensor package. A

Frequency response function was used to represent the improvement in the lower

frequencies. A 2% error threshold was set, and as illustrated in Figure 3.7, the
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Figure 3.7: Frequency response function of the sensor package and the compensator
network in the range of 0-5 Hz.

compensator was able to maintain an error lower than the threshold as low as 1.379 Hz

in comparison to the raw sensor that surpassed that threshold at 2.779 Hz, producing

a 1.4 Hz expansion in usable bandwidth. Further improvement is reported in Table 3.1

where the LSTM compensator achieved a SNRdB of 18.88 dB a 9.34% enhancement.

Additionally, a significant improvement in error rejection was demonstrated, with the

network achieving an RMSE of 1.44 × 10−3 g, a 19.66% decrease from the raw sensor

signal.

Table 3.1: A comparison between the raw sensor measurements and the compen-
sated signal using signal-to-noise ratio and RMSE in the bandwidth of 0-10 Hz.

testing SNRdB RMSE
sensor package 17.26 dB 1.795×10-3

LSTM compensator 18.88 dB 1.442×10-3

% improvement 9.34% 19.66%

To assess the viability of hardware implementation, the trained LSTM model

is serialized to open neural network exchange (ONNX) to then be deployed onto a
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Raspberry Pi 4 with 2 GB of RAM, running Ubuntu Mate 20.04. The model was

deployed in 32-bit precision, consuming 5.1 MB of memory. In a forward pass over

the testing dataset, the model-averaged 10 µs per prediction, resulting in a forward

pass execution frequency of 100 kS/s, well over the 400 S/s threshold set by the SHM

sensor sampling rate. The runtime memory consumption was measured at 36.8 MB

as reported by the profiler. All model parameters were well within the thresholds set

by the intended SHM application.

3.5 Conclusion

In applications requiring rapid assessment of structures, high-mobility minimal inva-

sive sensors have demonstrated great potential. Low cost, small footprint, and ease of

deployment distinguish such systems from their hardwired counterparts. This work

presents a framework to further enhance the performance of minimal invasiveness

sensors by overcoming the transmissibility loss caused by the mounting medium. To

overcome this challenge an online LSTM compensator was proposed, with the focus

of the study being the signal quality enhancement of the accelerometer on board

the sensor package, as well as the feasibility of deploying such models on-edge. Re-

sults show an enhancement of 9.3% in SNRdB and an RMSE decrease of 20% in

addition to frequency response function analysis that indicated an expansion of 1.4

Hz in the usable sensor bandwidth (<2% error). These results demonstrate that an

LSTM error-compensating network is a viable approach to reduce signal degradation

attributed to transmissibility loss. Future work will concentrate on improving the net-

work performance in the lower frequencies while also minimizing model size to reduce

computational load, thereby paving the way for an embedded system implementation.
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Chapter 4

Modal Analysis using a UAV-deployable

Wireless Sensor Network

1

Abstract

In structural health monitoring, wireless sensor networks are favorable for their min-

imal invasiveness, ease of deployment, and passive monitoring capabilities. Wire-

less vibration sensor nodes have been implemented successfully for frequency domain

analysis in ambient vibration detection. To leverage advances in structural damage

quantification techniques, which require modal information, nodes in a wireless sen-

sor network must operate with a near-synchronous clock to enable the collection of

the signal phase. The non-deterministic timing nature of wireless systems raises a

significant challenge when trying to accurately determine the phase of a signal. In

particular, the trigger time delay of the various nodes on the structure cannot be

differentiated from a true phase caused by the examined system. This study in-

vestigates the reliability and error-handling capabilities of the ShockBurst 2.4 GHz

wireless protocol in triggering and data transfer. Building on an open-source UAV-

deployable sensor node, mode shapes from a 2-meter test specimen are experimentally

determined. An optimization technique that enhances time-domain accuracy for non-

1Joud Satme, Ryan Yount, Jacob Vaught, Jason Smith, Austin R.J. Downey, 2023. Society for
Experimental Mechanics, International Modal Analysis Conference. Reprinted here with permission
of the publisher, 11/9/2023
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deterministic wireless triggers is presented. This work quantifies latency and error

management effects that contribute to enhancing the modal extraction capabilities of

wireless systems in structural health monitoring applications.

4.1 Introduction

Structural Health Monitoring (SHM), is a Nondestructive Inspection process carried

out by measuring the parameters of a given system to infer the current structural

state. This process relies on damage identification and quantification algorithms [47].

Furthermore, SHM is used to monitor changes (i.e. damage) in the system through

its life cycle to make actionable decisions such as structural repairs. SHM is crucial in

extending infrastructures’ operational lifespan and maintaining safety following ex-

treme weather conditions. Its purpose is highly dependent on the system in question.

For example, the goal for SHM is drastically different between a railroad bridge and a

naval ship. Continuing, SHM for infrastructure primarily assesses changes that take

place on a long timescale (i.e. fatigue) while SHM for naval ships is used for various

damage types that occur on short and long time scales such as Impact, fatigue, and

corrosion. While SHM for both structures assesses fatigue damage, the actionable

decisions conducted for each structure are different.

Vibration-oriented damage detection for structural components is used to evalu-

ate the dynamic and structural property changes as damage indicators. A common

vibration-based damage detection technique is modal analysis, where the modes of

the structure’s ground truth state are analytically and experimentally determined.

These modes are then compared to future states in the structure’s life cycle to quan-

tify differences between each state, any differences detected signify damage in the

structure.

Damage detection methods such as acoustic emission analysis is a passive Non-

Destructive Testing Techniques (NDT) that has been successively used on structures
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such as bridges, tunnels, pipes, and buildings. This method is superior at detecting

and localizing damage such as cracking, deformation, and crushing. However, its

downside is that the energy emitted by the acoustic emission is very small in compar-

ison to the structure and ambient noise conditions. This leads to interference between

the Acoustic Emission and noise signals. Another approach would be numerical mod-

eling. FEA is a good alternative when the system is expensive or difficult to test.

However, it is limited by the user’s experience, modeling accuracy, and computational

resources. If the model is extremely accurate, then the analysis time and computa-

tional resources will be high or realistically unachievable so a middle ground should

be found.

4.2 Background

A single vibration sensor can provide information about a structure’s vibration sig-

nature, however, in structural health monitoring and experimental modal analysis, a

single sensor fails to provide the adequate information required to carry out such pro-

cesses. Sensor networks are typically used in this case to offer more observation points.

Using multiple points on the structure, gives information on how vibrations propagate

through the material and where mode shapes lie[6]. Using a small number of high

mobility compact sensing nodes, which can be spread throughout a given structure,

offer the flexibility needed for rapid modal analysis[26]. Moving sensor packages to

scan across a given structure can be done easily and with minimal invasiveness. With

strides in computer vision, autonomous aerial vehicles, and swarm algorithms, such

systems can offer high-mobility rapid infrastructure assessment capability[35]. In this

work, an improvement on a previously designed UAV-deployable sensing node will

be covered. Utilizing electropermanent magnets (EPM) and radio frequency (RF)

communication, this sensing node demonstrated the ability to gather vibration signa-

tures from remote infrastructures in inaccessible terrain, given an external excitation.
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Via a drone, those standalone sensors can be rapidly deployed across a structure

where the accelerometer onboard collects data according to a preset schedule to later

be send back for analysis. The developed open source sensing system breakdown is

made available in a public repository [31]. When deploying a network of those sensors

across a large structure, as shown in Figure 4.1 certain challenges arise, one of the

most significant is trigger synchronization[26]. Without the ability to start collecting

data simultaneously, phase data, or the measure of how vibration propagates is hin-

dered useless as differentiating between trigger delay and vibration phase cannot be

done. With the addition of a real-time clock, an accurate time reference can be set

between all sensors and the trigger delay can be minimized to an acceptable tolerance

dictated by the sampling rate and a structure’s natural frequencies.

Figure 4.1: Vibration sensor package with key components annotated along with a
field deployment on a test bridge.

The sensor package utilized in this work is an embedded system-based device

with the processing core being an ARM Cortex-M7 onboard a Teensy 4.0 microcon-

troller. With the goal being long-term deployment, the sensor package is fitted with
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Figure 4.2: Block diagram of sensor package with the various modules onboard.

a 1500 mAh 2-cell lithium polymer battery and a power management board to reg-

ulate the voltage to the various subsystems. The sensor onboard is a Murata SCA

3300-d01 high-performance MEMS accelerometer on the Serial Peripheral Interface

(SPI) protocol to enable high sampling rates. For deployment with minimal invasive-

ness an EPM V3R5C NicaDrone electropermanent magnet is used. Electropermanent

magnets are favorable for such applications for their low power consumption. A one-

second pulse of approximately 5 W is required only when switching the magnet’s

state which is typically done twice per deployment. For data transfer and IO com-

mands a Nordic Semiconductors NRF24L01 module is used. Operating at 2.4 GHz

ShockBurst protocol, connection with multiple sensor nodes at once is made possible

which is desirable for sensor triggering applications. Additionally, a real-time clock is

included for data logging and trigger time reference as those devices are reliable and

have minimal drift. Finally, nonvolatile memory (SD card module) is added to the

sensor package, so data isn’t lost in case of low power or shutdown. The system is

fitted into a protective 3D-printed PLA shell to shield delicate electronics from harsh
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conditions during field deployments. The footprint and weight of the sensor package

were optimized for UAV deployment [8]. Shown in Figure 4.2, is a high-level block

diagram of the various subsystems onboard.

Figure 4.3: FEA modal simulation results indicating the first three mode shapes of
the bench top experimental beam.

To validate the sensor network’s ability to determine the mode shapes of a given

structure, a model of a simple square beam pinned at each end is adopted. The goal

of the modeling phase is to provide an estimate of the optimal location to position

the sensing nodes. In experimental modal analysis, the sensors should be mounted at

the antinodes of the mode desired to be measured which ensures the highest signal

strength. In SHM, this can be a challenge as structures can have complex geometries

where using a model can significantly aid in the process[39]. For this work, the model

was constructed using finite element modal analysis where the output of the model

was the mode shapes and their accompanying frequencies. Utilizing this information,

the sampling rate and sensors’ location are determined. The model determined the

first three modal frequencies of the structure to be 46.2 Hz, 133.7 Hz, and 316.3 Hz

respectively with the mode shapes shown in Figure 4.3.
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4.3 Analysis

The goal of this section is to characterize the sensor package parameters. Experiments

are constructed to quantify the power consumption of the various subsystems onboard.

Additionally, an investigation into the length of deployment is reported. For the

wireless system, the latency of triggering between two deployed packages is presented

along with an experimental modal analysis test to measure the first three mode shapes

of a beam.

Figure 4.4: Power consumption of the various modules onboard the sensor package.

With longer deployment periods in mind, a standalone power subsystem is used.

A lithium polymer battery was chosen as it has desirable power density per footprint,

optimal for areal deployment applications where the payload is a significant concern.

Solid-state voltage regulators and a power conditioning circuit are also added to step

down voltage and deliver it to the various subsystems onboard. An experiment is

constructed to measure each module’s power consumption. As indicated in Figure 4.4

the Teensy 4.0 microcontroller has the highest steady-state power consumption at 0.52

W. For extended deployment (>10 hours) a strict power-saving mode can be deployed

where the microcontroller along with non-vital modules are turned off, when not in
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use, further preserving power. Temperature dependencies were observed in this phase

as lithium polymer’s charge output can degrade in low temperatures causing voltage

drops. This problem was partially rectified by adding conditioning capacitors to

the package to compensate for the temperature-related voltage swings. furthermore,

increasing the number of cells in the battery can ensure the voltage regulators receive

adequate voltage regardless of temperature.

Figure 4.5: Voltage decay of Lithium polymer battery during sensor package de-
ployment.

As for battery life, the capacity of the battery chosen for this work was a 1500 mAh

2-cell lithium polymer, this was chosen for medium-length deployment (<10 hours).

An experiment is constructed to measure the possible deployment period before the

battery voltage gets critical. A safety system with an alarm is added during this

stage to prevent the battery from over draining which can decrease the lifespan and

cause deformation to the battery itself. The experiment was run at constant room

temperature to construct a linear model of the power system. Temperature variations

can introduce high nonlinearities in the battery’s state of charge making it challenging

to model. In this case, only the voltage of the battery was observed as an indicator

of the discharge rate. As shown in Figure 4.5, the experiment ran for over 8.3 hours
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with the voltage decay linear model shown in equation 4.1.

V = −2 ∗ 10−5(t) + 8.19 (4.1)

Figure 4.6: Timing instance of trigger latency between wireless receivers onboard
two sensor packages.

To investigate trigger latency, an experimental setup was constructed to measure

the time it takes for two packages to receive a wireless trigger and initiate data col-

lection. A high-resolution oscilloscope is connected to a digital pin of both packages,

a transmitter is then used to send a wireless trigger command. The time difference

(trigger latency) between the two sensor packages is recorded over multiple iterations

with the data normalized as a percentage. While varying the distance between the

transmitter (TX) and the two receiver sensor packages (RX1, RX2), a better un-

derstanding of how antenna orientation and distance influence the sensor delay is

deduced. Shown in Figure 4.6, the system’s latency lies mainly below 10 microsec-

onds.

In this experiment, the simulated beam from the finite element analysis is con-

structed. The structure of choice was adopted for its simplicity and well-known be-
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Figure 4.7: Benchtop experimental setup for the sensor package network deploy-
ment.

havior. Three sensor nodes were used as shown in Figure 4.7. A wireless transmitter

was used to initiate all sensors within an acceptable tolerance. The beam was then

excited with an impulse response using a hammer at various positions on the beam.

This ensured that all mode shapes are excited. With the data of interest being the

frequencies of the first three mode shapes, the time-domain data extracted from the

test is converted to the frequency domain using the Fast Fourier Transform (FFT).

Observed in Figure 4.8, the first three peaks in frequency. The peaks at 32.74 Hz,

126.62 Hz, and 281.50 Hz are of the first three modes respectively. This was com-

pared to the FEA model presented prior. A maximum error margin of 11% was found

between modal frequencies extracted from the model when compared to experimental

results. This is attributed to boundary conditions and material property inconsisten-

cies. Using mode shapes from the simulation, the sensor packages were positioned

at the mode’s antinodes where the vibration signal was at its highest. For mode 1

it was shown that the three sensors peak together as they all experience vibration

in the same direction at 32.7 Hz. When observing mode 2 at 126.6 Hz, it is shown

that sensor node 2 (middle package) does not detect any peak which correlates to a

node of mode 2. Finally, peaks are observed as mode 3 at a frequency of 281.5 Hz

indicating that all three sensors are on antinodes of the third mode.
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Figure 4.8: Frequency domain analysis of the beam impulse response test with the
first three modes annotated.

4.4 Conclusion

In this work, an embedded system-based high-mobility sensor network is examined.

During system characterization tests the network has shown the potential to be a

reliable tool in structural health monitoring and experimental modal analysis appli-

cations. The ease of use and compact footprint, along with the magnetic mounting

capability, makes these sensors optimal for UAV deployment where human access is

challenging or dangerous. For rapid assessment of infrastructure following extreme

weather conditions, such systems can be widely deployed in a very short time pro-

viding first responders with preliminary data about the infrastructure state. Experi-

mentation has also shed the light on some system limitations. Although the wireless

system ensures relatively low latency, the time non-determinism of the latency makes

it challenging to accurately determine the phase. This will be further rectified by

basing the trigger not only on a wireless signal but a real-time clock onboard the

package, where all sensors would collect data on a preset schedule. That will enable

all sensors to have an accurate time reference further minimizing latency-related er-
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ror. Future work will also include error-handling capabilities with the wireless system

to allow rapid data transfer and real-time monitoring capabilities.

Acknowledgments:

This material is based upon work supported by the Air Force Office of Scientific

Research (AFOSR) through award no. FA9550-21-1-00832. This work is also partly

supported by the National Science Foundation Grant number 1850012. The support

of these agencies is gratefully acknowledged. Any opinions, findings, and conclusions,

or recommendations expressed in this material are those of the authors and do not

necessarily reflect the views of the National Science Foundation or the United States

Air Force.

46



Chapter 5

Case Study for using Open-Source

UAV-deployable Wireless Sensor Nodes for

Modal-based Monitoring of Civil

Infrastructure

1

Abstract

Experimental modal analysis is an important technique used in structural health mon-

itoring to evaluate the dynamic properties of a structure, such as natural frequencies,

damping ratios, and mode shapes. There has been an increasing interest in using un-

crewed aerial vehicles (UAVs) to perform experimental modal analysis, as they offer

several advantages over traditional hardwired sensing systems. UAVs equipped with

deployable wireless sensor packages can capture a vast amount of data due to their

high mobility, enabling the identification of subtle structural behaviors that would be

more challenging to obtain using conventional sensors. This case study focuses on the

use of UAV-deployable wireless sensor nodes to perform experimental modal analysis

on a pedestrian bridge in use.

The objective of this study is to demonstrate the potential for monitoring the

1Joud Satme, Ryan Yount, Jason Smith, Austin R.J. Downey, 2023. Structural Health Monitor-
ing, Destech Publications. Reprinted here with permission of the publisher, 2023
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dynamic properties of a structure using networks of UAV-deployable sensor packages.

The paper reports on the development of an open-source UAV-deployable sensor

node designed for autonomous deployment on steel structures. The open-source sen-

sor package is a standalone system that includes independent energy storage along

with nonvolatile memory and radio frequency communication capabilities. A high-

performance microcontroller is utilized to record and process acceleration data in

real-time. Moreover, the microcontroller processes various input/output commands,

manages the transmission of status updates, and controls the electropermanent mag-

net onboard during the docking procedure in combination with the UAV to ensure

safe deployment.

The case study consists of an experimental approach, using a vibration-based

sensing network in conjunction with a structural shaker, to capture the structural

dynamics of a pedestrian bridge under forced excitation. The results showed that the

UAV-deployable wireless sensor nodes were able to capture accurate and reliable data,

enabling the identification of the bridge’s first flexural mode shape. Furthermore, this

study provides valuable insights into the challenges and prospects associated with

using UAV-deployable sensors for the dynamic modeling of structures in a structural

health monitoring framework.

5.1 Introduction

Structural Health Monitoring (SHM) involves measuring the structural properties of

a system to assess its current condition. It is a nondestructive inspection technique

that relies on sensor measurements, with the aid of damage detection algorithms, to

infer the state of a structure [18]. By accurately quantifying and localizing early signs

of damage, SHM helps to extend the operational lifespan of infrastructure. Enabling

early maintenance to be performed, the risk of catastrophic failure is reduced while

minimizing downtime and lowering repair costs.
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Modal analysis is extensively employed in SHM applications due to its ability to

provide insights into the dynamic characteristics of a structure. By observing alter-

ations in the dynamic response, potential damage and deterioration can be detected

and localized. Studies on the use of vibration-based sensing networks indicate the

ability to infer the state of a structure by tracking the structural modes and their

natural frequencies. This involves monitoring changes in the structural dynamics

over extended periods of time, which can indicate the occurrence of damage [24].

Vibration-based SHM techniques can be categorized into two classes, passive and ac-

tive, where the two approaches are similar in data gathering and sensors used, the

primary difference lies in the excitation source. Passive vibration-based SHM relies on

unknown and random excitation such as wind interaction with tall towers or passing

vehicles over a bridge, whereas active SHM makes use of a known excitation signal

fed into the structure by actuators or transducers. With the ability to control the

characteristics of the excitation signal, the response to specific conditions can be in-

vestigated with minimal interference. Monitoring a structure passively simplifies the

approach and enables rapid assessment, however, the unpredictable excitation source

along with the low magnitude of the response, which requires high-resolution sensors,

makes the analysis challenging. Although the networks of sensors and actuators re-

quired for active SHM are high in complexity, especially in inaccessible locations, this

method enables the study of specific dynamic responses which results in the accurate

capturing of mode shapes and their natural frequencies. Efforts into miniaturization

and autonomy have been put forward to streamline active structural health monitor-

ing and increase the remote and rapid deployment capabilities as demonstrated by

[37].

SHM of infrastructure has numerous approaches to observe deterioration patterns

and quantify damage over a structure’s operational lifespan. Notable methods rely

on visual inspections, acoustic emissions sensing, digital twin models, and vibration-
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based techniques [29, 14, 21, 1]. SHM of civil infrastructure presents many challenges

that this work attempts to address. First being the large size of civil structures, as

modal-based prognostics require a high number of sensing nodes on the structure to

accurately detect and reconstruct the modes. Additionally, hard-wired and perma-

nently mounted sensors present another challenge as these systems require installation

and trained personnel which can be costly and hazardous. Another obstacle to civil in-

frastructure monitoring is the location of such structures. Remote and hard-to-reach

structures, suspended bridges, and high voltage pylons for example, can be located on

unhospitable terrain where approaching the structure conventionally is difficult and

unsafe. In an aim to rectify the addressed challenges, this work presents a network of

UAV-deployable sensing nodes with wireless long-range capabilities for modal-based

SHM applications. The contributions of this work are twofold. 1) A report on the

capabilities of an open-source UAV-deployable vibration-based sensing network with

wireless communication, 2) A case study on active mode detection using the sensing

network along with a structural excitation shaker.

5.2 Methodology

To effectively capture the modal response of a structure utilizing a network of vibra-

tion sensors, a previously developed open-source UAV-deployable sensor package [8]

that has demonstrated modal-monitoring capabilities in a laboratory setting [33] was

enhanced with long-range wireless communication to enable its use on real-world steel

structures. The developed open-source UAV-deployable sensor package is shown in

figure 5.1 and is comprised of a microprocessor, accelerometer, independent memory,

real-time reference, and the aforementioned long-range wireless capabilities. Design

files for the sensor package are available in a public repository [31]. The package

incorporates an ARM Cortex-M7 microprocessor on a Teensy 4.0 microcontroller. It

is powered by a two-cell 1500 mAh lithium polymer (Li-Po) battery, supported by a
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Figure 5.1: Open-source vibration sensor package with key components annotated.

power management system to regulate and ensure steady voltage to the various sub-

systems. Data from a high-performance SCA-3300 MEMS accelerometer is collected

and stored in a nonvolatile memory module using the Serial Peripheral Interface (SPI).

The package is also equipped with a DS3231 real-time clock (RTC) for precise time

reference, and RF communication through an NRF24L01+ for wireless triggering and

data transfer. The system is housed in a 3D-printed PLA frame to shield the delicate

electronics during deployment. A long-range wireless transmitter was also developed

using the same framework as the package, with the inclusion of a high-power RF am-

plifier with a gain of 40 dB. This amplifier was daisy-chained to the onboard amplifier

of the NRF24L01+ module, enhancing the range and reliability of the wireless net-

work. The transmitter was developed to enable the user to synchronize sensing nodes

during deployment. This aids in capturing structural mode shapes more accurately
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by reducing sensor-related phase shifts caused by transmission latency.

To seamlessly integrate with UAV deployment, the system is developed to in-

corporate EPM-V3R5C electropermanent magnets (EPMs). EPMs are preferred for

such applications due to their low power consumption and non-invasive nature on the

host structure [42]. The activation of magnetization or demagnetization configuration

only requires a one-second pulse of approximately 5 W. This process is typically per-

formed twice during deployment – once when securing the package to the structure

and again when detaching it. The UAV is also equipped with a retrieval harness de-

signed to securely hold the package during flight. The retrieval harness incorporates

its own EPM with magnetization and demagnetization capabilities for retrieval and

deployment, respectively.

Figure 5.2: Sensor network placement along with the mass shaker on the test bridge
and the UAV deployment system.

To investigate the dynamic response of a pedestrian bridge in this study, an exper-

iment was devised. Adopting an active analysis approach, a structural mass shaker,

shown in figure 5.2, is utilized. The mass shaker converts rotational motion from a

3-phase AC motor into linear oscillations, inducing vibration in the structure. During

testing, the mass shaker is placed on the structure along with the sensing network.

Data collection is initiated using the long-range wireless transmitter. Once the net-

work is operational, a frequency sweep excitation in the range of 0 to 20 Hz is applied

to the structure through the shaker to lock onto the frequency response of the highest

magnitude. The sensors are then mobilized across the bridge to explore regions with
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the highest measured response magnitudes. Identifying the regions with the strongest

response provides valuable information about the locations of the antinodes of a de-

sired mode shape. The frequency bandwidth used in this experiment specifically

targets the detection of the first flexural mode of the test structure.

5.3 Results and discussion

In this section, the results of the proposed experiment are presented along with a

discussion on system limitations in addition to the experimental outcomes.

Figure 5.3: Experimental results of the pedestrian bridge modal detection experi-
ment using a mass shaker for active excitation with (a) time domain measurements,
(b) frequency domain response with the first flexural mode identified

Using the sensing nodes as probes, the structure is scanned for critical regions.

As depicted in Figure 5.2, the sensors are strategically placed at A0, A1, and A2 to
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target the first flexural mode. In Figure 5.3 (a), the captured acceleration signatures

from the three sensor packages are displayed. Both A0 and A2 sensing nodes are

positioned at the antinodes, while A1 is placed near the central support of the bridge.

The frequency sweep reveals a prominent response at 10.51 Hz, corresponding to the

first flexural mode. Examining Figure 5.3 (b), it can be observed that both A0 and

A2 exhibit higher oscillations compared to A1, which experiences a lower response

due to its proximity to a fixity in this specific test configuration. Further analysis of

the frequency domain reveals complex responses within the bandwidth of 20-50 Hz,

attributable to higher modes of the structure.

The challenges encountered in this case study are associated with conducting

tests on metal structures, which generate induced magnetic fields that interfere with

the wireless network. To address this issue, increasing the transmission power and

implementing an RF filter onboard the sensor packages to enhance the signal-to-

noise ratio (SNR) effectively rectify any interference. The presented results exemplify

the application of an active structural health monitoring system for capturing the

first flexural mode of a pedestrian bridge. The utilization of an open-source sensing

network, combined with a long-range transmitter and a mass shaker, demonstrates

promising potential due to their high mobility and reliability during testing.

5.4 Conclusion

Experimental modal analysis is an essential technique in structural health monitoring,

and uncrewed aerial vehicles (UAVs) have emerged as a promising platform for its im-

plementation. By utilizing UAVs equipped with deployable wireless sensor packages,

a vast amount of data can be captured, enabling the detection of subtle structural

behaviors that are challenging to obtain using conventional sensors. The objective

of this study was to demonstrate the potential of monitoring the dynamic proper-

ties of structures using networks of UAV-deployable sensor packages. The case study
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involved the use of a vibration-based sensing network and a structural shaker to cap-

ture the dynamic response of a pedestrian bridge under forced excitation. The results

provided valuable insights into the challenges and prospects associated with employ-

ing UAV-deployable sensors for dynamic modeling in a structural health monitoring

framework. In conclusion, this study successfully implemented an active structural

health monitoring system for capturing the first flexural mode of a pedestrian bridge.

The combination of a mass shaker, open-source sensing network, and long-range trans-

mitter allowed for targeted scanning of key regions, localization of antinodes, and iden-

tification of the first flexural mode frequency. This research contributes to advancing

structural health monitoring techniques and enhancing the safety and longevity of

infrastructure.

Acknowledgments:

This material is based upon work supported by the National Science Foundation grant

numbers 2152896 and 2237696 with additional support from the Air Force Office of

Scientific Research (AFOSR) through award no. FA9550-21-1-0083. Any opinions,

findings, and conclusions or recommendations expressed in this material are those of

the authors and do not reflect the views of the National Science Foundation, or the

United States Air Force.

55



Chapter 6

Conclusion

In conclusion, Structural Health Monitoring (SHM) stands as a crucial field, partic-

ularly in the context of escalating natural disasters and extreme weather events. Its

significance lies at the crossroads of engineering, technology, and disaster resilience,

offering real-time, data-driven insights into vital infrastructure conditions. SHM not

only expedites swift assessment and response but also plays a pivotal role in miti-

gating the catastrophic aftermath of disasters, highlighting its importance during the

rapidly-evolving climate.

With Traditional wired systems being plagued with logistical complexities and

high installation costs, the integration of uncrewed vehicles and wireless systems into

SHM holds the potential to revolutionize the evaluation and safety assurance of critical

infrastructures. However, adopting these technologies raises new challenges, includ-

ing optimizing sensor placement, maintaining robust communication, and addressing

signal degradation due to mechanical transmissibility loss.

This work sets to address these challenges by proposing an aerially deployed wire-

less sensing system with edge-computing capabilities optimized to be a high-mobility,

cost-effective alternative to traditional methods of SHM. The comprehensive overview

provided in this thesis encompasses aerial deployment design requirements, sensor

design processes, and strategies employed to enhance the onboard vibration sensor’s

signal-to-noise ratio. These improvements, achieved through advanced material inte-

gration and machine learning-based error compensation, bolster the system’s overall

effectiveness.
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The significance of this open-source project lies in its potential to foster collab-

oration, facilitate enhancements, and drive wider adoption across various structural

contexts. By making advanced SHM practices accessible and adaptable, this work is

poised to revolutionize the global landscape of infrastructure monitoring, assessment,

and safety assurance, addressing the paramount needs for resilience and safety in an

era defined by increasing environmental challenges.
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