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Abstract

As engineering systems increase in scale and complexity in the era of the Fourth

Industrial Revolution, data-driven solutions will become essential in enabling the next

generation of these systems. One of the trending tools that can aid in this transi-

tion is digital twins. As physical systems degrade throughout their life cycles, their

behavior also changes. Digital twins use data assimilation to continuously update vir-

tual models to represent the current state of their physical counterparts. A reliable

digital twin can be leveraged by a system operator to perform diagnostics, optimize,

and tests without ever needing the physical system. However, implementing effec-

tive digital twins involves overcoming challenges such as ensuring model accuracy

and minimizing latency between the physical system and its virtual representation.

This work proposes an updating scheme that utilizes real-time sensor data and a

particle swarm optimization algorithm to update model parameters for continuous

virtual model calibration within a digital twin framework. The PSO algorithm iter-

ates through different multi-physics model configurations to reduce the discrepancy

between the physical and virtual spaces. All computations are performed on edge

devices, aligning with real-time constraints for high-performance applications that

require on-site data processing. To evaluate the performance of this methodology, it

was implemented on two electro-thermal systems designed to emulate the power and

energy systems of a naval ship. Results demonstrate that the updating scheme can

effectively update a digital twin in a reasonable amount of time, guarantee a higher

level of accuracy, and adapt to external changes in its physical counterpart. This

work aims to provide a novel model updating scheme that operates within a digital
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twin frame to boost system resilience and adaptability. This approach sets the stage

for more robust and autonomous applications across various engineering fields as they

evolve alongside emerging technological demands.

iv

Approved, DCN# 2024-11-26-391 12/02/2024

DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited. 4 of 53



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Real-time thermal data assimilation for power elec-
tronics at the edge . . . . . . . . . . . . . . . . . . . . . 3

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Chapter 3 Autonomous real-time model updating within digi-
tal twin frameworks for thermal systems . . . . . . . 17

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 34

v

Approved, DCN# 2024-11-26-391 12/02/2024

DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited. 5 of 53



3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Chapter 4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vi

Approved, DCN# 2024-11-26-391 12/02/2024

DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited. 6 of 53



List of Tables

Table 2.1 Performance metrics of the concatenated windows. . . . . . . . . . 14

Table 2.2 1000 simulation timing report. . . . . . . . . . . . . . . . . . . . . 16

Table 3.1 Metric results for a model continuously updated at four loca-
tions, numerical case study. . . . . . . . . . . . . . . . . . . . . . . 34

vii

Approved, DCN# 2024-11-26-391 12/02/2024

DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited. 7 of 53



List of Figures

Figure 2.1 Labeled picture of tabletop thermal loop experiment. . . . . . . . 7

Figure 2.2 Diagram of the thermal loop experiment. . . . . . . . . . . . . . . 9

Figure 2.3 Particle swarm optimization digital twin calibration flow chart. . . 12

Figure 2.4 Particle swarm optimization updating a digital twin every 5 min-
utes using online temperature data. . . . . . . . . . . . . . . . . . 13

Figure 2.5 Particles positional improvement over time. . . . . . . . . . . . . 14

Figure 2.6 Logarithmic timing distribution of a 1000 simulations. . . . . . . 15

Figure 3.1 Diagram of the digital twin framework. . . . . . . . . . . . . . . . 22

Figure 3.2 Electrical diagram of power converter system within the testbed.
Note. Reprinted from “Digital Shadow-based Detection of Block-
age Formation In Water-Cooled Power Electronics” by Richard
Hainey, 2024, IMECE, Volume, page number. Copyright Year
by "Name of copyright holder". . . . . . . . . . . . . . . . . . . . 23

Figure 3.3 Labeled image of the testbed from the front, left, right, and back. 24

Figure 3.4 Cooling loop diagram. . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 3.5 Algorithm updating the hyper-parameters and cost function ac-
cording to the performance of the previous window. . . . . . . . . 27

Figure 3.6 Timing distribution of 10,000 model instances. . . . . . . . . . . . 29

Figure 3.7 Flowchart of the multi-physics model updating scheme. . . . . . . 31

Figure 3.8 Top: Distribution of dissipated heat per ship system during a
ten-hour scenario. Bottom: The cumulative dissipated heat of
a ship during a ten-hour scenario. . . . . . . . . . . . . . . . . . . 32

viii

Approved, DCN# 2024-11-26-391 12/02/2024

DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited. 8 of 53



Figure 3.9 Recorded temperature at the tank, heater, power modules, and
radiator, during the 40-hour experiment. . . . . . . . . . . . . . . 33

Figure 3.10 Manually tuned model simulation results of the 40-hour experiment. 33

Figure 3.11 Model without updating v.s. model with updating scheme . . . . 35

Figure 3.12 Scenario 1: Power modules dissipate heat into the cooling loop. . 36

Figure 3.13 Scenario 2: Insulation removed from the tank. . . . . . . . . . . . 37

ix

Approved, DCN# 2024-11-26-391 12/02/2024

DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited. 9 of 53



Chapter 1

Introduction

As threats against Navy vessels increase in size and complexity, modernizing its fleet is

imperative. To address this issue, the United States Navy recognized the predicament.

It shifted its focus towards fully electric ships, which promise enhanced efficiency, in-

creased sustainability, and versatility in combat scenarios. While this transition is

promising, it presents significant engineering challenges requiring data-driven solu-

tions to manage the ship’s systems and subsystems. An example is the development

and implementation of new high-power laser weapons and radar systems. These

systems will produce a large amount of waste and, if not properly managed, can re-

sult in downtime. If a ship were to overheat while carrying out a mission, it could

leave the vessel vulnerable to adversaries and jeopardize the safety of its crew. To

enable these new naval systems, virtual models have emerged as pivotal tools for

thermal management. Virtual models can enable naval operators to simulate sys-

tem behavior under various conditions, facilitating system assessments and informed

decision-making without needing the physical system. However, as a physical system

undergoes degradation or is affected by operational actions during its lifecycle, its

virtual representation will fail to capture the current state of the system. Due to

this problem, an important question arises: how will the virtual representation be

updated to reflect the changes in the physical system over its life cycle? A digital

twin can help resolve these issues by utilizing sensor data from the physical system

to update its virtual representation. While the concept of digital twins has been

around since the early 2000s, they were not widely investigated until recently due
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to the hardware and software limitations of the time. A digital twin comprises two

key elements: the virtual models and simulations that form a virtual representation

and a feedback loop between that virtual representation and its physical counterpart.

Since the development of digital twins is still in its infancy, there is no unified way

to construct this feedback loop within a digital twin framework. The method pro-

posed in this work leverages a population-based algorithm to continuously evaluate

permutations of model parameters to link virtual and physical spaces together.

Particle Swarm Optimization (PSO) has gained significant attention for its effec-

tiveness in real-time parameter estimation. PSO is a meta-heuristic algorithm that

mimics the foraging behavior of birds or fish. This technique has shown considerable

success in finding the global minimum of a given search space quickly and accurately,

making it especially suitable for updating model parameters in real-time.

In this work, PSO is the foundation of a generic model updating scheme, pro-

viding real-time updating for virtual representatives of liquid-cooled thermal loops.

The updating scheme first initializes particles on a search space with random posi-

tions. These positions represent different permutations of various model parameters.

The particles will continuously iterate through model parameters to reduce the error

between the sensor data of the physical system and the simulation data of its vir-

tual representation. Once the optimal parameters are found, the model is deemed

calibrated.

In the following sections of this paper, two investigations are performed to evalu-

ate the robustness of the model updating scheme. Each investigation will outline the

methodology employed in developing the updating scheme, present the investigated

physical system, discuss the experimental validation results, and provide a conclusion.

This work aims to contribute valuable knowledge to the field of digital twin technol-

ogy by providing a generic model updating scheme, facilitating the advancement of

complex and dynamic next-generation naval systems.

2
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Chapter 2

Real-time thermal data assimilation for power

electronics at the edge

2.1 Abstract

Physical systems are often far too complex for a virtual model to fully encapsulate the

behavior of a system. Requiring the user to fine tune parameters of the virtual model

over the course of a system’s life cycle. Data assimilation addresses this problem by

continuously updating the model with sensor data to construct a personalized model

of the physical system. This personalized model is known as a digital twin. Digital

twins of ship systems can provide insight into the future state of the ship to enable

operators to make informed decisions to increase health of the ship. However, there

are a few key challenges that need to be overcome while updating a model. The first

problem is reducing latency between the physical system and the digital twin. While

ensuring that the digital twin has enough time and data to update. The second prob-

lem is verifying the model is an accurate representation of the physical system. This

paper proposes a methodology that uses real-time sensor data and a particle swarm

optimization algorithm to update model parameters for an instrumented thermal loop

developed as a stand-in for liquid-cooled power electronics. The swarm of particles

represent different configurations of a multi-domain model that constitutes the digital

twin of the thermal loop. All computations are done on the edge to emulate a real

world system. Results demonstrate that the particle swarm algorithm can reliably

update a digital twin of the thermal loop as external changes are made to the system
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(radiator turned on and off) with a root mean squared error of under 0.35 ◦C over

the whole system. All models are updated in real-time with a maximum compute

time of 38.4 s; demonstrating the proposed methodologies applicability for real-time

data assimilation within a digital-twin framework.

2.2 Introduction

Model-driven solutions play a critical role in the development of next generation

autonomous and semi-autonomous naval systems. Digital twins are one tool inves-

tigated by researchers to link physical and virtual spaces [33]. By using knowledge

of the physical system and processing real-time (online) sensor data, digital twins

can increase the efficiency of a system while providing the operator/user an accurate

representation of the system. One of the main benefits of having a digital twin is its

look ahead capabilities [26]. With the ability to accurately predict the behavior of

a system, a user can make informed changes to the system [41]. However, problems

arise as the physical system ages or changes over its life cycle and the model is no

longer an accurate representation of the system. To overcome this challenge, the

model’s parameters must be continuously updated to ensure that the model is an

accurate representation of the physical system.

Real-time model updating is a cornerstone of digital twin technologies and has

been demonstrated by various researchers [35]. For example, researchers have used

the particle swarm optimization algorithm for quick and easy parameter estimation of

a resistance capacitance (RC) thermal model. The results demonstrate the approxi-

mation of RC parameters by the particle swarm optimization method took only 1.8 s

to 10 minutes, depending on the resistance capacitance configuration, and a model

estimation error of +1.2 ◦C the junction temperature in the steady state. Addition-

ally, the script was able to be used by staff with low technical qualification, allowing

anyone to update the models thermal properties [6]. Other researchers have taken
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advantage of particle swarm optimization method and implemented the algorithm

into real-time model updating. The particle swarm optimization algorithm has been

implemented into a bridge’s structural health monitoring system. The group cre-

ated a finite element model of a large composite plate composed of several materials

working together to support a bridge. They demonstrated that the particle swarm op-

timization can be used to update parameters in real time of the finite element model.

By updating this model continuously, a digital twin of the composite plate structure

was created. When the base finite element model was compared to the model tuned

by particle swarm optimization, the error between the simulation and experimental

data was reduced from 7.67% to 0.12%. The increase in model accuracy will aid in

predicting the deterioration of the structure [34]. Moreover, the particle swarm opti-

mization algorithm has a low computational cost, making it desirable when dealing

with real-time constraints. This idea is explored further in research done on the sys-

tem health monitoring on naval ship structures. Where a mixture of physics-based

and data-driven models utilize the particle swarm optimization algorithm to identify

the probability of failure in a cantilever beam. A variety of different particle swarm

optimization hyper-parameters were explored to find the global minimum while also

considering real-time constraints [30]. The development of real-time model updating

will aid the management of next-generation structures and systems.

All the previously mentioned examples utilized particle swarm optimization as

the parameter updating technique. Particle swarm optimization is a meta-heuristic

algorithm that utilizes simple mathematical rules to minimize error of a given cost-

function. In a study comparing the most popular meta-heuristic algorithms, differ-

ential evolution and particle swarm optimization had the lowest costs on 30 different

benchmark tests. While differential evolution did get closer to the global minimum

than particle swarm optimization, it did it much slower [1]. In the context of real-

time model updating particle swarm optimization is the best option. For this reason
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it was chosen as the parameter updating algorithm in this work.

In this work, a digital twin of a liquid cooled thermal loop intended to mimic that

used to cool a power converter in an electric ship application was developed. The

digital twin was represented by a physics-based model being updated continuously

in real-time on a edge computing device. Particle swarm optimization is used to

select the candidate model parameters for testing. The physical system for this

study is a recirculating liquid thermal loop cooling a simulated electrical load; where

an air-cooled radiator serves as the final heat sink. The loop is instrumented with

thermocouples, flow sensors, and pressure sensors for data collection. To initiate

changes in the experiment, the radiator fan speed and the liquid flow valve were

adjusted during runtime. The digital twin in this work consists of a physics-based

model of the experiment that is updated in real-time using an error-minimization

technique. All computations are done on an Windows edge-computing device with a

Intel i5-7200U processor collecting data from the physical experiment in real-time.

While the collection of data happens continuously, the particle swarm algorithm

updates the model using a sliding window. Here, the particle swarm optimization

algorithm waits for a designated amount of time. The time-series data collected

during this time is known as a window. The particles then attempt to fit the outputs

of the physics-based model to the acquired window, until a new window is collected.

The selection of an appropriate data window length is important.If the window is too

small, the particles may not have sufficient time to find the global minimum in the

search-space, thus producing a digital twin that never fully converges. Conversely,

a large window will increase latency between the physical system and the digital

twin. Rendering the model useless to the user, especially in highly dynamic systems.

A key challenge in this work is ensuring that the updated model is accurate and

represents the current behavior of the system (the thermal loop). If the model is not

an accurate representation of the system, no optimizer will be able to fit a digital

6

Approved, DCN# 2024-11-26-391 12/02/2024

DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited. 15 of 53



twin to the physical system.

The contributions of this work are two-fold, first a numerical approach for the

updating of thermal models within a digital twin for power electronics is presented.

Second, an experimental validation is carried out demonstrating that the proposed

method can update a digital twin within a reasonable time period. By adjusting the

model’s parameters to minimize the RMSE error between experimental sensor data

and the simulation data.

2.3 Materials and Methods

This section presents the verification of the model and methodology behind the par-

ticle swarm optimization algorithm.

2.3.1 Thermal Loop Experiment

The physical system modeled in this work is a thermal Loop. It is a simple thermal

loop outfitted with a centrifugal pump, heating plate, air-cooling radiator and an

expansion tank, with sensors placed throughout the experiment, shown in Figure 2.1.

Each sensor is connected to a National Instruments data acquisition system (NI-

Figure 2.1 Labeled picture of tabletop thermal loop experiment.
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DAQ) to acquire the temperature, pressure, and flow rate measurements. This NI-

DAQ then transmits the data to the x64 edge-computing device running alongside

the experiment. The particle swarm optimization algorithm running on the computer

uses this data to update the digital twin. Figure 2.2 shows how the sensors are linked

to the particle swarm optimization algorithm. The centrifugal pump pumps water

throughout the copper piping. The temperature and flow rate at the exit of the

pump is recorded by a thermocouple and a turbine flow sensor directly after the

pump. Water then flows through a manually controlled valve and into the heating

plate. The water absorbs heat from heating plate with a rise in liquid temperature.

Thermocouples are placed on top of the heating plate, as well as in the copper pipe

after the heating plate. The radiator is a fan that cools the water passing through

the pipe. The heating plate, radiator and control valve are controllable parameters

that are changed during the runtime. The final component of the thermal loop is the

expansion tank, this ensures that the pressure of the loop is kept at the desired level

for safe operation during the experiment.

8
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Figure 2.2 Diagram of the thermal loop experiment.

2.3.2 Model Verification

The physics-based model has numerous parameters that can significantly change the

outcome of the model. There are two different methods through which these model

parameters were determined. The first way is by solving for them directly. Pa-

rameters such as the cross-sectional area, mass, and length of the pipe can easily

calculated, but some of the parameters cannot be easily solved for. The second way

was using experimental data to characterize component thermal resistances, masses,

convection coefficients, and other properties. Multiple experiments involving varying

run times, valve openings, heat from the heating plate, and radiator fan speeds were

performed. A grid search was conducted on each of these tests to find the optimal

model parameters.

9
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2.3.3 Particle Swarm Optimization Online Updating

Figure 2.3 illustrates the data flow of the proposed algorithm. The edge device

acquires a window of sensor data and the particles’ positions are initialized. The

particles’ positions represent the model’s radiator fan speed and the valve opening.

The window of time series data is not a sliding window. Instead, the window is a

user defined amount of time. The data for each window never overlaps with the prior

or succeeding window. Once the window is acquired by the edge device, the main

loop of the algorithm begins. The newly acquired window is held and the model is

updated by the particle swarm for the duration of that window. Meanwhile, new

data is collected for the next window.

When a new window of sensor data becomes available, temperature data from

the heating plate is obtained. After the model’s heating plate temperature is set,

the particles positions are updated for the duration of the window. First, a particle’s

position is configured to be the model’s valve opening and radiator fan speed. Then

the model is ran for a simulation time equal to the duration of the window. After

the simulation, the acquired temperature data is evaluated by a cost function. The

cost function calculates the root mean squared error (RMSE) between the simulation

data and the acquired sensor data. The particle’s cost is then used to calculate the

velocity to update the particle’s next position, as shown in equation 3.4.

X t+1
i = V t+1

i + X t
i (2.1)

If a particle has a high-cost relative to the other particles, its next velocity and

position will change dramatically. On the contrary, if a particle’s cost is low, its

next velocity and position will remain largely unaffected. The velocity is influenced

by three components, shown in equation 2.2. The first component is Inertia wV t
i .

The particle’s velocity is inherited from the previous step and influences the particles

next position. The second component is the cognitive component r1ϕ1(Pi − X t
i ).

10
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The cognitive component is the difference between a particle’s personal best position

and its current position. This difference is multiplied by a user defined acceleration

constant ϕ1 and a uniformly random number r1, between zero and one. The final

component is the social component r2ϕ2(Pg − X t
i ). The social component finds the

difference between the particle’s current position and global best position. Then the

difference is multiplied by a user defined acceleration constant ϕ2 and a uniformly

random number r2, between zero and one [16].

V t+1
i = wV t

i + r1ϕ1(Pi − X t
i ) + r2ϕ2(Pg − X t

i ) (2.2)

The particles’ positions will continue to be updated until a new window of sensor

data is available. Once a new window is available, the model with the lowest cost

is returned to the user and the particles’ global cost and personal costs are reset. A

random number between [-1, 1] is added to each of the particles’ positions, before

a new window of sensor data is assessed. This is an essential step to continuously

update the model of a dynamic physical system. When the physical system changes

the optimal model parameters to reach a global minimum also change. Introducing

another degree of randomness at the beginning of a new window will prevent the

particles from getting trapped at the local/global minimum of a previous window.

The calibrated digital twin can then be used to gain insight on the behavior of the

system. The variables used in this work for the particle swarm optimization are:

• X t
i : Position of particle i at time t

• V t
i : Velocity of particle i at time t

• Pi: Personal best position of particle i at time t

• Pg: Global best position found by any particle in the swarm at time t

• w: Inertia weight, damping the impact of the previous velocity

11
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• ϕ1: Cognitive coefficient, controlling the influence of the personal best position

• ϕ2: Social coefficient, controlling the influence of the global best position

• r1, r2: Random values in the range [0,1] used to introduce stochasticity in the

velocity update equation

return calibrated
model

run the model for the
duration of the window

and evaluate using
 cost function

window of
sensor data

initialize partiacles

reset particles' costs
and global cost

configure model's
heating plate 
temperature 

use partcle's position
to set the model's

valve opening 
and fan speed

new window of
sensor data
available?

update particle's
position and switch to

the next particle.

no

yes

add random number
from [-1, 1] to each

particle position

Figure 2.3 Particle swarm optimization digital twin calibration flow chart.
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2.4 Results and Discussion

To test the ability of the particles to calibrate the digital twin to the thermal loop.

The experiment was run alongside the digital twin for two and a half hours while

changes to the experiment were made periodically. Before the edge device began

sampling data, the pump was turned on and power was supplied to the heating plate.

After a couple of seconds, the edge device began acquiring data. The experiment was

ran uninterrupted without any changes for 30 minutes. Until the radiator was turned

on and the water began to cool. After another 30 minutes, the temperature of the

water converged to about 29◦C. Then the radiator was turned off and the control

valve was adjusted to be 50% open. Finally, the power to the heating plate was

turned off and the radiator was turned back on until the temperature converged. The

edge device stopped acquiring data and the experiment was turned off. Figure 2.4

shows the results from the particle swarm optimization algorithm running alongside

the experiment for two and a half hours.

Figure 2.4 Particle swarm optimization updating a digital twin every 5 minutes
using online temperature data.
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The swarm consists of five particles updating on a five-minute window. Each

particle updated an average of five times per window. Initially, the particles’ rep-

resentation of the thermal loop experiment results in an unfitted model. This is to

be expected, as all the particles are initialized with random radiator fan speeds and

valve openings. The starting temperature of the Simscape model is unknown and as-

sumed to be ambient temperature. These initial guesses skew the starting parameters

of the particles, producing an inaccurate model initially. However, the information

gained from the previous window is then used to improve the initial guess on the next

window. The recovery from bad guesses is shown in Figure 2.5.

0 5 10 15 20 25 30
processed windows

0

0.5

1

1.5

2

2.5

R
M

S
E

 (
 C

)

radiator
turned on

radiator
turned on

heating plate
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Figure 2.5 Particles positional improvement over time.

Table 2.1 Performance metrics of the concatenated windows.

thermocouple
location

SNR (dB) RMSE (°C) MAE (°C)

after pump 39.60 0.323 -0.031
after radiator 39.07 0.342 0.070
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The particles’ parameters are also able to recover from changes during the thermal

loop experiment. As the components are turned on and off, the forecast of the model

changes. This results in more initial bad guesses, as the information gained from the

last window skews the results of the latest window. Despite the changes throughout

the experiment, the particles can recover in about two windows of data.

An investigation into the consistency of the simulation times was performed and

reported on in Figure 2.6. For this test, 1000 simulations were run on the same

five-minute window. The recorded results demonstrate an average runtime of 21.76

seconds and a standard deviation of 2.8 seconds. As expected from a windows OS the

timing distribution is heavily skewed to the left with large outliers. The max simu-

lation time was 38.4 seconds. The max time limiting factor for how many particles

can be used, while ensuring each particles’ parameters converge.

Figure 2.6 Logarithmic timing distribution of a 1000 simulations.
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Table 2.2 1000 simulation timing report.

metrics time (s)
mean 21.76
standard deviation 2.8
max time 38.4

2.5 Conclusion

As naval systems become increasingly complex, the need for data driven solution

will become essential in maintaining the overall health of a ship. In this research,

a thermal loop experiment was modeled in Simscape to act as a digital twin. The

model was updated by using online sensor data to inform a particle swarm algorithm.

Where five particles would find the optimal radiator fan speed and valve opening to

fit the model to a window of temperature data. The results demonstrate the ability

of the particle swarm to return an accurate representation of the experiment every

five minutes in the form of a digital twin.
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Chapter 3

Autonomous real-time model updating within

digital twin frameworks for thermal systems

3.1 Abstract

The next generation of naval high-power weapons and systems will significantly strain

current naval ship cooling systems. Throughout the lifecycle of a system this strain

will alter its behavior and its virtual representation will become outdated as the

system components age. Digital twins are a trending tool that can help alleviate

this stress by providing ship operators with prognostication and strategic planning

capabilities. To enable these complex power systems throughout their lifecycles, data-

driven solutions for model updating will become essential. This paper investigates

the application of a digital twin framework to enhance the performance of a multi-

physics model. The digital twin framework comprises an updating scheme, a physical

testbed designed to emulate the cooling system of a ship, and a multi-physics repre-

sentation of that system. The updating scheme leverages a swarm of particles and

online sensor data to evaluate permutations of model parameters to update the digital

representation periodically. Two scenarios were applied to evaluate the performance

of the digital twin framework. Results demonstrate that the digital twin framework

can adapt to system changes in real-time and improve the accuracy of a static virtual

model by more than 90%.
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3.2 Introduction

At the beginning of the 21st century, the Navy expressed interest in switching its

fleet to fully electric ships. Since then, threats against its fleet have only increased in

scale and complexity [12]. Consequently, modernizing the power and energy systems

on ships has become more imperative than ever to support new combat systems

and high-power laser weapons [21]. New high-power weapons dissipate a substantial

amount of heat, which, if not properly managed, could necessitate the shutdown of

power and energy systems for indeterminate periods. Virtual models are tools for

thermal management that operators use to simulate system behavior under various

conditions without the need for the physical system. However, the virtual model

of the system will no longer be accurate as the physical system changes whether

due to degradation or operator actions. Digital twins (DT) can address this issue

by assimilating real-time sensor data to continuously update a virtual model of the

cooling system, linking virtual and physical spaces.

A digital twin is a collection of dynamic digital models that faithfully represent

an existing physical system or subsystem, known as the Physical Twin (PT) [28]. A

digital twin comprises two key elements: a virtual representation and a feedback loop

between the virtual and physical counterparts[22]. The digital twin is continuously

updated using real-time sensor data to accurately replicate and adapt to the behavior

of the physical twin during its operational state [27]. While the concept of digital

twins has been around since the early 2000s, their implementation was hindered by

the technology of that time [37]. Recently, digital twins have gained popularity with

the advent of the fourth industrial revolution, as evidenced by the increased number of

publications and patents in recent years [32]. As engineering problems become more

complex and improving the efficiency of existing systems becomes more challeng-

ing, digital twins have emerged as an attractive tool for performing functions such

as prognostication, optimization, testing, and control [31]. For instance, a digital
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twin updated using fuzzy logic and operational data from a power plant has demon-

strated the feasibility of creating an accurate virtual representation of the plant [4].

This approach allowed for safer training of new control room operators and studying

different control schemes. Other digital twin applications include online parameter

optimization to increase the efficiency of a system. The cooling water system of a

district plant behavior was reproduced and helped in optimization efforts, achieving

2-3% in energy saving from the previous year [19]. Another example of increased

system performance boosted by digital twins, is using online measurements from a

heat pump to calibrate a model to reduce fouling and unplanned downtime [3]. Real-

time health monitoring is also an area that significantly benefits from digital twin

implementation. A digital twin of cooling fans achieved a 95% fault detection success

rate, informing a user of a fault before it had occurred [23]. A complete digital twin

implementation enables real-time monitoring, improves system reliability, enhances

risk management, and increase system efficiency [2]. In naval applications, a digital

twin can be coupled with other existing combat systems and electrical models to en-

hance the survivability of a ship. Digital twins allow operators to address dynamic

changes in the system and support strategic decision-making. Most importantly, this

tool can aid in the operational management of the next generation of naval electric

ships and high-power weapons.

Since the development of digital twin frameworks is still in its infancy, there is no

unified way to develop and deploy a digital twin. A study evaluating 50 publications

on this subject failed to reach a consensus on a universal digital twin framework

while stressing the importance of this tool and the need for a generic digital twin

framework[32]. As a result, further exploration into this topic is necessary, as different

physical systems may require different frameworks [33]. In the case of naval vessels,

the framework should work in real-time, be computationally efficient, and be relatively

accurate. When constructing a digital twin framework, an important question arises:
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how will the virtual representation be updated to reflect changes in the physical

system?

Population-based optimization algorithms have recently gained considerable trac-

tion for updating digital twin frameworks. Data-driven algorithms can learn from a

large amount of data to model the complex behavior of a system that other tech-

niques fail to capture [10]. These meta-heuristic algorithms seek an optimal solution

to a cost function by utilizing a swarm of model instances to systematically explore a

search-space [38]. Swarm algorithms have shown successful implementation in updat-

ing multi-physics model parameters for heat management, such as optimizing cooling

strategies in a data center [42], enhancing prediction performance of CNCMT spindle

thermal error [18], digital twin controller of HVAC systems [20]. A comprehensive

review of the most popular swarm optimization algorithms was done by testing them

on 30 different benchmark functions [1]. It was concluded that Differential Evolution

(DE) performed the best, closely followed by Particle Swarm Optimization (PSO).

However, DE was the second slowest algorithm. In an environment where computa-

tion cost and speed are necessary, PSO outperforms DE. This idea is further backed

by a similar study directly comparing DE and PSO [25]. While PSO model updating

for thermal virtual representations of power electronics has been discussed in previ-

ous publications [36], [17], [40]. These publications focus on the performance of the

digital twin rather than the speed at which it is updated. In the context of updating

a virtual representation of a cooling system to form a digital twin, speed is of the

utmost importance [5]. For these reasons, PSO was chosen as the model updating

method.

The contribution of this work is the development of a generic digital tuning frame-

work of a physical asset within digital twin systems. The framework works to auto-

tune representation parameters to adapt to changes in the physical system in real-

time. Ensuring the digital twin can accurately reflect the dynamic behavior of the
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physical system, thereby improving model accuracy in real-time applications. To

demonstrate the capabilities of this framework, it was deployed onto a thermal sys-

tem representative of a ship cooling system. The remainder of this paper is organized

as follows. Section 2 discusses the methodology behind the proposed DT framework,

the cooling system, and modeling methods. The results and discussion are presented

in Section 3. The final section provides a conclusion to this work.

3.3 Materials and Methods

This section provides an overview of the digital twin framework, the cooling system

of the power & energy testbed, the faithful representation, data acquisition, and

updating scheme that form the digital twin framework.

3.3.1 Digital Twin Framework

The digital twin framework aims to assimilate real-time sensor data to link a physical

counterpart to its virtual representation. An overview of the digital twin framework is

showcased in Figure 3.1. During the operation of a system, operators control various

mechanical and electrical components to meet certain objectives. Throughout the

lifecycle of the system, these actions will cause the system to degrade, forever chang-

ing its behavior. These changes are captured by sensors instrumented throughout

the system, and data is relayed to the digital twin via data acquisition equipment.

Running alongside the physical system, the digital twin utilizes the acquired data to

tailor the virtual model to its physical counterpart. To accomplish this goal, a digital

twin tuning using an updating technique within the digital twin autonomously tunes

parameters in the faithful representation. The tuned faithful representation outputs

simulation data and is evaluated against the real-world data. The process of assessing

permutations of model parameters happens continuously until the optimal parame-

ters are found. Once the optimum is found, the virtual representation is deemed
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calibrated and the projected digital twin response is returned to the operator. The

operator can then leverage the digital twin to perform strategic planning, system

optimization, or increase operational efficiency.

operator
actions

sensor
data

operator

physical 
counterpart

model
updater

virtual
represention

simulation
data

model
parameters

projected 
DT

response

digital
twin

Figure 3.1 Diagram of the digital twin framework.

3.3.2 Testbed Configuration Overview

In this study, a notional shipboard power system is used as an example to validate

and study the proposed digital twin framework. The power system is replicated by a

testbed composed of six power electronic converters that interface with various loads

as illustrated in the electrical setup diagram Figure 3.2. These converters are part

of a microgrid designed to emulate the power and energy systems of a naval ship,

effectively replicating the onboard power system [15]. Each module is designed to

manage specific voltage inputs and outputs while supporting a load. The efficiency

of these converters typically results in power losses ranging from approximately 100

to 150 W [14]. Typically, these power losses would handled by the cooling system.

However, the power modules were not operational in this work and only act as heat
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sinks. Instead, the dissipated heat from the power modules was emulated by a water

heater.
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Figure 3.2 Electrical diagram of power converter system within the testbed. Note.
Reprinted from “Digital Shadow-based Detection of Blockage Formation In
Water-Cooled Power Electronics” by Richard Hainey, 2024, IMECE, Volume, page
number. Copyright Year by "Name of copyright holder".

The testbed is outfitted with a cooling loop for heat management and designed to

mimic the cooling system of a naval ship. The cooling loop composed of a submersible

pump, tank, water heater, the six power modules, and a three-fan radiator, as shown

in Figure 3.3. The testbed is also instrumented with nine thermocouples that record

temperature data during experiments. There are four points where these thermocou-

ples are located: six on the heat sinks of the power modules, one submerged in the

tank, and one after both the heater and radiator. The direction in which the water

flows through the cooling loop is shown in Figure 3.4. Distilled water is circulated

throughout the loop at one gpm by a submersible pump inside a 10-gallon tank. Wa-

ter first flows through a water heater coupled with a power supply, where dissipated
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heat produced by ship systems is emulated. This heated water then flows through

the coolant plates of six power modules. While the power modules can produce heat,

they were not operational during testing and only act as thermal masses. After the

power modules, water enters the fan radiator and the chilled water returns to the

tank. These components help form the cooling system that deploys a 40-hour load

profile simulating a battle-time scenario.

FRONT LEFTRIGHT BACK

radiator

tank

pump

power
supply

power
modules

heater

thermocouples

Figure 3.3 Labeled image of the testbed from the front, left, right, and back.

3.3.3 Characterization of The Multi-physics Representation

A multi-physics modeling approach was used to capture the complex behavior of

the testbed cooling system. The model was constructed in MATLAB Simscape to

handle non-linearities and changing operating conditions effectively. Before imple-

menting the model into the digital twin framework, the model must be characterized

to ensure that the model is faithfully representing the physical system. While the

updating scheme can fit an inaccurate model to a physical system, it will reduce its

accuracy of future predictions. To ensure the highest level of accuracy in the model,

the cooling loop components were explored, and their parameters were found. The

parameters of each component were found using three different methods: measuring,
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experimentally, and estimation. Measuring is the easiest method for identifying the

parameters of a component. They can be found by physically measuring the dimen-

sions of the components or by finding them in documentation/manuals provided by

the manufacturer. Experimentally, it involves collecting temperature, pressure, and

flow rate data for long periods. Once the experimental data is collected, the model

can be calibrated. Most parameters can be found by measuring or using experimental

data. Certain parameters cannot be calculated without making idealistic assumptions

about the system. Model parameters such as thermal resistances, thermal conductiv-

ities, and convection coefficients are not easily solved. These parameters were either

estimated using Simulink Parameter Estimation or assigned as tunable parameters

for the updating scheme.

water
heater

tank

power modules

radiator

pump

thermocouples

Figure 3.4 Cooling loop diagram.
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3.3.4 Digital Twin Updating Scheme

The objective of the updating scheme is to continuously adjust tunable parameters

and calibrate the multi-physics representation of the testbed cooling loop. To find the

optimal model parameters, a meta-heuristic algorithm systematically tests permuta-

tions of model parameters to reduce the error between simulation and experimen-

tal temperatures. Particle swarm optimization is a popular stochastic optimization

technique that follows simple mathematical rules to solve complex problems. This

meta-heuristic algorithm is based on the foraging behavior of birds [16]. In this

swarm-based algorithm, particles are initialized with random positions and velocities

in a search space. In this case, the positions of the particles represent various model

parameters. These particles work together to find the global minimum in the search

space of a given cost function. After a particle position is evaluated, its next position

is calculated by adding its velocity to its current position as shown in (3.1). Three

different components contribute to the velocity of each particle. The first is the in-

ertia component; each particle is given a random initial magnitude and direction at

the beginning. To reduce the influence this random component has on future posi-

tions, a damping factor W is applied to the inertia component W.V t
i . The second

factor is the cognitive component; the personal best position of a individual particle

will influence its own velocity r1ϕ1(Pi − X t
i ). The final factor is the social compo-

nent; this updates the velocity based on the global best position of the whole swarm

r2ϕ2(Pg − X t
i ). The social and cognitive components also have hyperparameters r

and ϕ, which can affect the performance of the algorithm. These components dictate

how the swarm navigates the search space form equation (3.2) and can be modified

using the hyperparameters to suit its particular problem better.

X t+1
i = V t+1

i + X t
i (3.1)
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V t+1
i = W.V t

i + r1ϕ1(Pi − X t
i ) + r2ϕ2(Pg − X t

i ) (3.2)

Before implementing the PSO into the updating scheme, the challenge of handling

online sensor data must be solved. While sensor data is continually relayed to the

digital twin, the model is not continuously updated. Instead, the model is updated

periodically using windows of time-series data. After the particles are initialized,

the algorithm waits a designated amount of time until a data window is collected.

The time-series data acquired during this time is referred to as a window. Then, the

particle swarm attempts to fit the simulation output to the acquired window. The

positions/parameters of the particles are continually evaluated until enough time has

passed for a new window. Where the particle swarm will begin to fit the model to

the new window of data, and the updated model is returned to the operator. The

process of periodically updating the model using windows of sensor data is illustrated

in Figure 3.5.
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Figure 3.5 Algorithm updating the hyper-parameters and cost function according
to the performance of the previous window.
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The accuracy of the newly updated model is highly contingent on the final state

of the previous window. To account for this problem, the hyper-parameters and

cost function of the particle swarm are updated depending on the error between

the initial experimental and simulation temperatures. If the error is large enough, a

"recovery" window is initiated where the cost function and the PSO hyper-parameters

are adjusted to encourage a much more rapid but less precise exploration of the

search space as shown in (3.3). The "recovery" window only seeks to rectify the error

between final temperatures so that the new window can start from an accurate state.

Conversely, if the error is small, a "calibrated" window will be prompted. The cost

function and the PSO hyper-parameters are adjusted to slow the particle movement

to fine-tune the model parameters better as shown in (3.5). The “stall" window is

a mix of both "recovery" and "calibrated" windows. The cost function is illustrated

in (3.4), which is a combination of (3.3) and (3.5) to tune model parameters. These

three window types reduce the calibration time of the updating scheme.

|T n
exp − T n

sim| (3.3)

|T n
exp − T n

sim| +

√√√√(T i
exp − T i

sim)2

nSamples
(3.4)

√√√√(T i
exp − T i

sim)2

nSamples
(3.5)

Choosing an appropriate window size is paramount for the performance of the

updating scheme. The size of the update window is largely depends on the simulation

runtime. If the window is too small, the updating scheme may not have enough time

to find the optimal parameters before a new window is available. Conversely, if the

window is too large, the latency between the physical system and the virtual model

will reduce the ability of the digital twin to adapt to dynamic changes in the physical

system. An investigation into the consistency of simulation run times was performed
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to determine the appropriate size for an update window Figure 3.6. The simulation

was run 10,000 times on the same five-minute window to gather run-time metrics.

The average run time of the simulation was 4.636 seconds, with a standard deviation

of 0.634 seconds. The shape of the distribution is expected from a Microsoft Windows

OS, as it is heavily skewed to the left with a few large outliers. The max simulation

time was 16.925 seconds. While the max time deviates significantly from the average

time, a simulation time of sixteen seconds or more only occurred twice out of 10,000

instances. As a result of this investigation, a ten-minute window was chosen.
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Figure 3.6 Timing distribution of 10,000 model instances.

The updating algorithm utilizes windows of online sensor data and modifies the

PSO cost function, and hyper-parameters morph to create a robust updating scheme.

How the updating algorithm functions is shown in Figure 3.7. The algorithm starts by

initializing a swarm of particles with random positions and velocities. Once enough

data is collected to fill a window, the main loop begins. The same dissipated heat

load profile (W) deployed onto the water heater is also set for the model, linking the
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virtual representation to the physical system. Once the load profile is configured, the

PSO update loop begins. The values of various model parameters are tuned using the

position of a particle. The configured model is then run, and the simulated tempera-

ture is evaluated against the window of experimental data using a cost function. If a

new data window is not available, the next position of the particle will be calculated,

and the next particle will be evaluated. This PSO update loop continues, evaluating

particle positions until a new data window is collected. Once a new window is ac-

quired, the RMSE score of the model is used to determine whether or not the model

is calibrated. If the RMSE of the global best model is less than 0.1 °C, the user is

flagged that the model is calibrated; if not, the model state is discarded, and the

main loop continues. The cost and acceleration factors of particle swarm are reset,

and a number from [-1, 1] is added to each of the positions. This element of ran-

domness is essential to keep the particles from getting stuck at the global minimum

of the previous window. Next, the algorithm updates the PSO cost function and the

hyper-parameters according to the error between the experimental and the simulation

initial temperatures. Once the cost function and hyper-parameters are adjusted, the

following data window is configured and the main loop of the algorithm repeats.
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Figure 3.7 Flowchart of the multi-physics model updating scheme.

3.3.5 Test Scenario

An arbitrary ten-hour test scenario was deployed onto the testbed to gather data

for model characterization. The scenario was created to replicate a battle-time sce-

nario while keeping in mind the limitations of the testbed cooling system. Many ship

systems were considered while designing a load profile. The electrical loads of the sys-
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tems were calculated, and dissipated heat was dumped into the system via the power

supply and water heater. However, not every system was modeled in the same way.

Hotel and communication systems are air-cooled and are only modeled electrically.

The water-cooled, propulsion, navigational, and directed energy systems are modeled

electrically and thermally. The propulsion system is throttled throughout the test

and represents the majority of the load for the duration of the test. The navigational,

communication, and radar systems have a constant load throughout the test. Unlike

these systems, hotel and directed energy systems are applied intermittently, depend-

ing on the time. The load of each system is combined to create a ten-hour load profile

deployed onto the power supply Figure 3.8.
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Figure 3.8 Top: Distribution of dissipated heat per ship system during a ten-hour
scenario. Bottom: The cumulative dissipated heat of a ship during a ten-hour
scenario.

The ten-hour load profile was repeated four times, creating a 40-hour experiment;

the results are shown in Figure 3.9. During the experiment, temperature readings

were taken at four points along the cooling system (heater, power modules, radiator,

and tank). As previously mentioned in section 3.3.3, experimental data was used to
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fit the model. Results of this manually tuned model are shown in Figure 3.10. The

simulation results show that the manually tuned model is relatively accurate. One

significant benefit of a calibrated model is that it can be leveraged to conduct test sce-

narios without physically altering the testbed. In later sections, This manually tuned

model will synthesize experimental data to assess the performance of the updating

scheme when handling discontinuities.
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Figure 3.9 Recorded temperature at the tank, heater, power modules, and
radiator, during the 40-hour experiment.

Figure 3.10 Manually tuned model simulation results of the 40-hour experiment.
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3.4 Results and Discussion

This section investigates the robustness of the proposed digital twin updating scheme

and its ability to handle physical discontinuities.

3.4.1 Updating Scheme Investigation

To understand how much the updating scheme improves the virtual model, it was

directly compared against a model without updating Figure 3.11. The model was

run for the first three and a half hours of the experiment without updating any

model parameters. At the three-and-a-half-hour mark, the model parameters were

randomized; this was done to determine if the updating scheme could recover from a

bad initial state. The randomization of the model parameters causes a drastic increase

in the simulation temperature. After two ten-minute windows of data, the updating

scheme improves the model and returns it to its initial accuracy. After these two

windows, the accuracy of the model continues to improve, exceeding the performance

of the static model, best shown by RMSE percent improvement in Table 3.1.

Table 3.1 Metric results for a model continuously updated at four locations,
numerical case study.

Metrics After
Heater

Average of
Power

modules

After
Radiator

Inside Tank

mean absolute error
(°C)

0.032 0.016 0.048 0.014

mean square error
(°C)

0.03 0.001 0.005 0.001

root mean square er-
ror (°C)

0.051 0.024 0.024 0.021

normalized root mean
squared error

0.03 0.001 0.005 0.001

percent improvement
RMSE (°C)

93% 95% 96% 93%
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Figure 3.11 Model without updating v.s. model with updating scheme

3.4.2 Test Case Scenarios

Two scenarios were deployed to test the adaptability of the updating scheme in han-

dling discontinuities in the physical system. Using the manually tuned model previ-

ously discussed, experimental data of two scenarios was synthesized. In each scenario

the static model was ran for first three and a half hours. Then a physical change

would be made to the virtual representation to adjust its behavior. The model up-

dating scheme would then begin evaluating permutations of model instances to find

the optimal parameters.

In the first scenario, the power modules dissipate heat into the system three and

a half hours into the experiment. The results from this scenario are shown in Fig-

ure 3.12. After an initial struggle, The updating scheme can identify the optimal
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parameters after a few windows. While the virtual representation initial seems cal-

ibrated, there is large discrepancy at the four and a half hour mark. This error

between the synthetic and simulation radiator temperatures can be attributed to the

random nature of PSO. The random number added to the particle positions in be-

tween windows of data can sometimes be to large enough to cause needless exploration

of search space. This problem can be addressed by tuning the hyper-parameters of

the algorithm.
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Figure 3.12 Scenario 1: Power modules dissipate heat into the cooling loop.

The second scenario is a situation where insulation on the tank is removed. Again,

the updating scheme can recover after a few windows. However, when analyzing the

simulation temperatures after the discontinuity, one would expect the largest error

to be at the tank. However, the most significant error occurs at the heater due to

the PSO cost function. The cost function is the cumulative error at each of the four

points. So, the particle swarm can find model parameters that satisfy three out of

the four points for the first couple of windows after the discontinuity. Only after the

recovery window is initiated the swarm of particles escape the local minimum and

find the global minimum, ultimately calibrating the model.
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Figure 3.13 Scenario 2: Insulation removed from the tank.

3.5 Conclusion

As modern systems become increasingly complex, maintaining accurate and up-to-

date virtual representations of these systems poses a significant challenge. Through-

out the lifecycle of a system, discrepancies between itself and its virtual counterpart

can lead to reduced performance and inaccuracies. To address this, data-driven ap-

proaches have emerged as an option for enabling real-time model updating. This

paper investigates the application of a digital twin framework to enhance the accu-

racy of a multi-physics model. The digital twin framework comprises an updating

scheme, a physical testbed designed to emulate a cooling system of a ship, and a

multi-physics model of that system. The updating scheme leverages a swarm of par-

ticles and online sensor data to evaluate permutations of model parameters. Two

scenarios were considered to evaluate the performance of the digital twin framework

where a physical change in the cooling system would occur. Results demonstrate that

the digital twin framework can adapt to system changes in real-time and improve the

accuracy of its static virtual representation by more than 90%.
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Chapter 4

Conclusion

As naval systems and subsystems increase in complexity, maintaining accurate virtual

representations will be crucial to ensure optimal performance and reliability. This

work emphasizes the importance of digital twin frameworks when addressing the

challenge of sustaining up-to-date virtual models over the lifecycle. To address this

problem, a novel model updating scheme within a digital twin framework is proposed,

which incorporates real-time sensor data and particle swarm optimization (PSO).

The updating scheme periodically updates a virtual representation using windows of

data to calibrate its physical counterpart. After the virtual representation is deemed

calibrated, a proposed digital twin response is returned to its user, where it can be

used to optimize, test, and perform lookahead predictions of its physical system.

Two thermal management systems were investigated to evaluate the performance

of the updating scheme. The first investigation involved adjusting the radiator fan

speed and valve positioning of a cooling loop during its run time. Results demon-

strate that the model updating scheme could recalibrate the model every five minutes,

maintaining an accurate digital twin representation. In the second investigation, a

more complex electro-thermal system, designed to represent a notional shipboard,

was successfully characterized. The updating scheme further improved the accuracy

of the model by more than 90% when compared to a static virtual model. These

outcomes validate the ability of digital twins to adapt to the current state of their

physical counterparts and enhance their predictive accuracy.

The success of this methodology emphasizes the potential of digital twins in real-
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time system monitoring and decision-making. By maintaining accurate virtual rep-

resentations of physical systems, digital twins empower operators with insights to

address potential issues preemptively, thus optimizing system health and longevity.

As such, integrating real-time sensor data assimilation and population-based opti-

mization techniques within digital twins holds promise for revolutionizing system

management across complex naval and industrial applications, establishing a robust

foundation for the next generation systems.
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