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WHAT IS NUGLEAR MAGNETIC RESONANGE (NMR)2

 “a powerful analytical technique that uses the magnetic
properties of atomic nuclei to study molecular structure,
dynamics, and interactions.” — Google Al Overview

* Choose a reference isotope

« H', C'3, P37 are the most common

* Measure that isotope and other magnetic material
* By probing magnetization
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HOW CAN IT BE USED?

* Biology

* Protein structure and interactions

e Chemistry
« Material Composition

 Medicine
« MRI

* Physics
 Nanoscale NMR
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PHYSICS BEHIND NMR
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NUGLEAR SPIN - |

* | =) + s — sum of orbital angular momentum and spin angular
momentum

« Multiplicity of states — 2| + 1

* Nuclear spin quantum number m=-|, -I+1, ..., |-1, |
* Energy of each state:

h B
27

,}/
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PARTICLES IN A MAGNETIC FIELD, B,

» Start with population of nuclei in thermal equilibrium p

/

» Degenerate nuclear spin states

« Random orientation

Place in magnetic field — equal
aligned and anti-aligned
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BiG PROBLEM

* No net magnetization of population

* If M =0, how can NMR be done?
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BOLTZMANN DISTRIBUTION

* Higher energy states less likely to
be occupied

* More nuclei aligned with B,than
anti-aligned

* Results in net magnetization
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QUANTUM MECHANICS PROBLEM

* If each magnetic moment’s direction is known, S, is known
* Knowing S; means S, and S, are also known
 Violating uncertainty

« Each magnetic moment is off-axis

« Magnetization is unaffected
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LARMOR PRECESSION

* Much like a spinning top, the nuclear spin will precess
« Angular momentum
 Torque due to B,

« Larmor frequency
* Dependent only on B and the gyromagnetic ratio, gamma

Cdo:’}/B
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 Placing a population nuclei in a magnetic field results in a net
magnetization aligned with the field

* Quantum mechanics causes each the magnetic moment of
each nuclei to be off-axis and precess due to angular
momentum and torque
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SEGCONDARY OSCILLATING MAGNETIC FIELD

 Oscillates at the Larmor frequency
» Used to rotate magnetization to the x-y plane
* Resonant effect
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IMPORTANT CONSEQUENGE

* The Magnetization has a component now oscillating in the x-y
plane

* This causes an induced current in nearby conductors via
Faraday's Law
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ROTATING REFERENGE FRAME

» Reference frame denoted by x', v,
Z,

* Frame is rotating at the Larmor
frequency

* Allows for more simple graphs and
visualization
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SPIN-SPIN (TRANSVERSE) RELAXATION

» Use resonant oscillating magnetic field to get magnetization
perpendicular to applied field

« Describes time it takes for magnetization in x-y plane to decay
back to O

» Characterized by T, time

My, (t) = Mmy(o)e_t/TQ
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TRANSVERSE RELAXATION

* Processes that reduce the magnetization in the x-y plane
contribute to transverse relaxation

* |f fewer nuclei contribute towards the magnetization, then the
magnetization decreases

* Processes that cause nuclei precessing with the magnetization
to change their precession, contribute to transverse relaxation

=3 Arts and Sciences
4l UNIVERSITY OF SOUTH CAROLINA




TRANSVERSE RELAKATION PROGESS

* Dipole-dipole interaction

» Results in temporary increase/decrease in oscillation frequency
» Loss of phase coherence

« Strength dependent on gyromagnetic ratio
» Electrons of paramagnetic material have much stronger interactions

W = f)/(BO T Bloc)

IB@T e, |

BO-l-BIoc:
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MEASURING TRANSVERSE RELANATION

* Inhomogeneity in magnet causes differences in frequency for
different nuclei
« Causing a spread in rotating reference frame

7 Z
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MEASURING TRANSVERSE RELANATION

* Apply another oscillating magnetic field to rotate magnetization
180 degrees

* Due to geometry the differences in frequencies will realign

180 Pulse Time
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* Every time M,, reaches its maximum

90° 180° 9 extracted 75 relaxation

X
W M e “
M . | nl“n 'W _h | \

.W”

+

T/2




SIGNIFIGANT RESULT

* Transverse relaxation is unharmed by magnet
inhomogeneities

* This makes it perfect for small, portable magnets that are

constrained by homogeneity
 NMR can be induced by an oscillating magnet field

* NMR signal can be observed via induced current
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PAPER 1 GOAL: CREATE A CUSTOM
GCOMPAGT AND PORTABLE NMR SYSTEM
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NMR CGOIL

* Produces oscillating magnetic field to generate NMR signal
* Receives NMR signal through induced current

* Most important piece of NMR system

* Allows measuring of T, time
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GCUSTOM NMR SYSTEM

» Designed for radiofrequency (RF) applications
* Lots of filtering and amplification

« Utilizing National Instruments equipment to generate waveform
required to generate NMR signal

P e data acquisition & control
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MAGNET DESIGN

» Designed to maximize simplicity, strength, and homogeneity
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THAT IS THE SYSTEM, WHAT CAN WE
MEASURE WITHIT?
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MAGNETIC MATERIALS

« Paramagnetic ions and solid particles
« Cu(ll), Ch(Il), Mn(ll), solid Al

* Environmental hazards, affecting wildlife and people

« Adding lots of small magnetic moments to the system
 Affects the relaxation process
* Linear relationship with T, rate
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SYSTEM VALIDATION

 Test multiple concentrations of Cu(ll) contaminated water

® measured data ® R2 Of 0998

linear fit

 Less accurate
data below 12
mg/L

T2 rate (1/s)

1 ]
400 600
Cu(ll) ion concentration (mg/L)
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PAPER 2 GOAL: ADAPT SYSTEM FOR
FIELD DEPLOYMENT AND ESTIMATE
GCOPPER CONGENTRATION WITH DATA

FROM FIELD DEPLOYMENT
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ADAPTATION FOR FIELD DEPLOYMENT

« Temperature Control
* Magnet strength changes
* RF electronic behavior changes

« Add pumps and tubing to transport new water

« Add an embedded controller

* Measure water quality data as well
« Conductivity, pH, temperature
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ADAPTATION FOR FIELD DEPLOYMENT

external power

B creek inflow/outflow
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GOAL

* Measure T, and water quality on different contamination
concentrations of Cu(ll)

 Train a ML model on the Cu(ll) data

* Measure remotely at Rocky Branch Creek

. 839 that model to predict magnetic content in Rocky Branch
reek
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DATA COLLECTION

« Spread of copper
contaminations from 0
mg/L to 1,000 mg/L

 Slow-drip providing near-
continuous
concentrations from O
mg/L to 25 mg/L

environmental chamber

power supply and
signal processing hardware

NMR magnet, coil,

—

and Faraday cage

external components

NMR testing solution

CD

solution mixing

—>

!

water disposal
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MACGHINE LEARNING MODEL

 Decision trees

Warm blooded?

4+>

Lay eggs? Yes No Gills at birth?

No ¥ Yes

Mammal Lungs as adult?
Yes No N\

Amphibean
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Warm blooded?

Has feathers? Yes

No N\

4+>

No Gills at birth?

W Yes

Mammal

Has legs?

Amphibean
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MACGHINE LEARNING MODEL

« Random forest
* Multiple decision trees, each with random sampling of training dataset

* Averages result from all trees
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MODEL RESULTS

* Mean squared error of ~9 mg/L
* R20f 0.998
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INTERPRETABILITY METHODS

 Partial dependence plot
* Shows how each features affects the predicted value

* Feature importance
« Shows how important each feature is to the model’s predictions
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PARTIAL DEPENDENGE PLOT
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ROCKY BRANGH CREEK DATA
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MODEL PREDICTIONS

* Model used to predict magnetic content from data from Rocky
Branch Creek
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* Remote testing works great
* Fantastic results on training and test data
* Promising results on predictions

* The predicted values are higher than expected
« Other paramagnetic content?

« Can we find a way to use Cu(ll) training data to generalize
paramagnetic content (magnetic moment per volume)
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FUTURE WORK

* Look at using Cu(ll) to generalize magnetic content

» Expand training and creek datasets

« Add ligands
* | et us detect other materials
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