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WHAT IS NUCLEAR MAGNETIC RESONANCE (NMR)?

• “a powerful analytical technique that uses the magnetic 
properties of atomic nuclei to study molecular structure, 
dynamics, and interactions.” – Google AI Overview

• Choose a reference isotope
• H1, C13, P31 are the most common

• Measure that isotope and other magnetic material
• By probing magnetization



HOW CAN IT BE USED?

• Biology
• Protein structure and interactions

• Chemistry
• Material Composition

• Medicine
• MRI

• Physics
• Nanoscale NMR



PHYSICS BEHIND NMR



NUCLEAR SPIN - I

• I = j + s – sum of orbital angular momentum and spin angular 
momentum

• Multiplicity of states – 2I + 1
• Nuclear spin quantum number m = -I, -I+1, … , I-1, I

• Energy of each state:



PARTICLES IN A MAGNETIC FIELD, B0

• Start with population of nuclei in thermal equilibrium

• Degenerate nuclear spin states

• Random orientation

• Place in magnetic field – equal 

aligned and anti-aligned
B0



BIG PROBLEM

• No net magnetization of population

• If M = 0, how can NMR be done?



BOLTZMANN DISTRIBUTION

• Higher energy states less likely to 
be occupied

• More nuclei aligned with B0 than 
anti-aligned

• Results in net magnetization B0
M



QUANTUM MECHANICS PROBLEM

• If each magnetic moment’s direction is known, Sz is known
• Knowing SZ means Sx and Sy are also known

• Violating uncertainty

• Each magnetic moment is off-axis

• Magnetization is unaffected B0
M



LARMOR PRECESSION

• Much like a spinning top, the nuclear spin will precess
• Angular momentum

• Torque due to B0

• Larmor frequency
• Dependent only on B and the gyromagnetic ratio, gamma

B0



OVERVIEW
• Placing a population nuclei in a magnetic field results in a net 

magnetization aligned with the field

• Quantum mechanics causes each the magnetic moment of 
each nuclei to be off-axis and precess due to angular 
momentum and torque

B0M



SECONDARY OSCILLATING MAGNETIC FIELD

• Oscillates at the Larmor frequency

• Used to rotate magnetization to the x-y plane

• Resonant effect
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IMPORTANT CONSEQUENCE

• The Magnetization has a component now oscillating in the x-y 
plane

• This causes an induced current in nearby conductors via 
Faraday’s Law



ROTATING REFERENCE FRAME
• Reference frame denoted by x’, y’, 

z’

• Frame is rotating at the Larmor 
frequency

• Allows for more simple graphs and 
visualization
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SPIN-SPIN (TRANSVERSE) RELAXATION

• Use resonant oscillating magnetic field to get magnetization 
perpendicular to applied field

• Describes time it takes for magnetization in x-y plane to decay 
back to 0

• Characterized by T2 time



TRANSVERSE RELAXATION

• Processes that reduce the magnetization in the x-y plane 
contribute to transverse relaxation

• If fewer nuclei contribute towards the magnetization, then the 
magnetization decreases

• Processes that cause nuclei precessing with the magnetization 
to change their precession, contribute to transverse relaxation



TRANSVERSE RELAXATION PROCESS

• Dipole-dipole interaction
• Results in temporary increase/decrease in oscillation frequency

• Loss of phase coherence

• Strength dependent on gyromagnetic ratio
• Electrons of paramagnetic material have much stronger interactions

B0

Bloc

B0+Bloc



MEASURING TRANSVERSE RELAXATION

• Inhomogeneity in magnet causes differences in frequency for 
different nuclei

• Causing a spread in rotating reference frame
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MEASURING TRANSVERSE RELAXATION

• Apply another oscillating magnetic field to rotate magnetization 
180 degrees

• Due to geometry the differences in frequencies will realign
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SPIN ECHOES

• Every time Mxy reaches its maximum



SIGNIFICANT RESULT

• Transverse relaxation is unharmed by magnet 
inhomogeneities

• This makes it perfect for small, portable magnets that are 
constrained by homogeneity

• NMR can be induced by an oscillating magnet field

• NMR signal can be observed via induced current



PAPER 1 GOAL: CREATE A CUSTOM 
COMPACT AND PORTABLE NMR SYSTEM



NMR COIL

• Produces oscillating magnetic field to generate NMR signal

• Receives NMR signal through induced current

• Most important piece of NMR system

• Allows measuring of T2 time
Janvrin, Martin, Hancock et al.



CUSTOM NMR SYSTEM
• Designed for radiofrequency (RF) applications

• Lots of filtering and amplification

• Utilizing National Instruments equipment to generate waveform 
required to generate NMR signal

Janvrin, Martin, Hancock et al.



MAGNET DESIGN

• Designed to maximize simplicity, strength, and homogeneity

Janvrin, Martin, Hancock et al.



THAT IS THE SYSTEM, WHAT CAN WE 
MEASURE WITH IT?



MAGNETIC MATERIALS

• Paramagnetic ions and solid particles
• Cu(II), Ch(II), Mn(II), solid Al

• Environmental hazards, affecting wildlife and people

• Adding lots of small magnetic moments to the system
• Affects the relaxation process

• Linear relationship with T2 rate



SYSTEM VALIDATION

• Test multiple concentrations of Cu(II) contaminated water

• R2 of 0.998

• Less accurate 

data below 12 

mg/L

Cu(II) ion concentration (mg/L)

Janvrin, Martin, Hancock et al.



PAPER 2 GOAL: ADAPT SYSTEM FOR 
FIELD DEPLOYMENT AND ESTIMATE 

COPPER CONCENTRATION WITH DATA 
FROM FIELD DEPLOYMENT



ADAPTATION FOR FIELD DEPLOYMENT

• Temperature Control
• Magnet strength changes 

• RF electronic behavior changes

• Add pumps and tubing to transport new water

• Add an embedded controller

• Measure water quality data as well
• Conductivity, pH, temperature



ADAPTATION FOR FIELD DEPLOYMENT



GOAL

• Measure T2 and water quality on different contamination 
concentrations of Cu(II)

• Train a ML model on the Cu(II) data

• Measure remotely at Rocky Branch Creek

• Use that model to predict magnetic content in Rocky Branch 
Creek



DATA COLLECTION
• Spread of copper 

contaminations from 0 
mg/L to 1,000 mg/L

• Slow-drip providing near-
continuous 
concentrations from 0 
mg/L to 25 mg/L



CU(II) DATA

conductivity



MACHINE LEARNING MODEL

• Decision trees
Warm blooded?

Yes                      NoLay eggs? Gills at birth?

Yes       No Yes          No

Bird Mammal ReptileLungs as adult?

Yes          No

Amphibean
Fish



Warm blooded?

Yes                      NoHas feathers? Gills at birth?

Yes       No Yes          No

Bird Mammal ReptileHas legs?

Yes          No

Amphibean
Fish



MACHINE LEARNING MODEL

• Random forest
• Multiple decision trees, each with random sampling of training dataset

• Averages result from all trees



MODEL RESULTS
• Mean squared error of ~9 mg/L

• R2 of 0.998



INTERPRETABILITY METHODS

• Partial dependence plot
• Shows how each features affects the predicted value

• Feature importance
• Shows how important each feature is to the model’s predictions



PARTIAL DEPENDENCE PLOT



FEATURE IMPORTANCE PLOT



ROCKY BRANCH CREEK DATA



MODEL PREDICTIONS
• Model used to predict magnetic content from data from Rocky 

Branch Creek



PREDICTION PDP



CONCLUSION

• Remote testing works great

• Fantastic results on training and test data

• Promising results on predictions
• The predicted values are higher than expected

• Other paramagnetic content?

• Can we find a way to use Cu(II) training data to generalize 
paramagnetic content (magnetic moment per volume)



FUTURE WORK

• Look at using Cu(II) to generalize magnetic content

• Expand training and creek datasets

• Add ligands
• Let us detect other materials
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