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ABSTRACT

Estimating the state of structures that experience high-rate dynamics requires real-

time model updating capabilities. In this work, high-rate dynamic events are 

characterized by 1) large uncertainties in the external loads, 2) high levels of non-

stationarities and heavy disturbances, and 3) unmodeled dynamics generated from 

changes in system configurations. To achieve real-time model updating, an algorithm 

must circumvent any pre-calculations and be able to update the structure’s state on the 

timescale of 2 ms or less. This can be accomplished in one of two ways: either by 

creating a simplified model of a complex structure or by simplifying the calculations 

needed to determine the state of a complex structure. This work presents a methodology 

that updates a surrogate model of an experimental testbed experiencing varying dynamics 

by utilizing the local eigenvalue modification process (LEMP) to numerically simplify 

solving equations of state. The structure’s state is continuously updated by adjusting the 

associated model through online modal analysis where its future states are estimated 

using a Bayesian search algorithm to compare the measured signals with selected modal 

models. New modal models are built based on the enhanced estimate of the structure's 

state and used for subsequent state estimations.
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CHAPTER 1 

INTRODUCTION

High-rate dynamics is defined as the dynamic response of a system due to a high-

rate (<100 ms) and high- amplitude (acceleration> 100 gn) event such as a blast or impact 

[1]. Such events are characterized by instantaneous and unpredictable changes in the 

loading conditions acting upon a system, which alters the magnitude and location of 

internal and external forces experienced by the structure throughout the event. Because 

the changes experienced by the structure are sudden and unknown, tracking the state of 

the structure throughout the event remains a challenge.  

One area where real-time modeling could offer comparative advantages is in blast 

mitigation technology. The purpose of an active blast mitigation system is to minimize 

the impact of a blast or to counter the effects of the blast after impact. Large forces 

associated with an incoming blast requires that mitigation systems be capable of 

calculating the impact in order to deploy the correct countermeasures. Additionally, 

because most impact blasts originate from short-range threats, the response time for 

mitigation systems is limited. Active blast mitigation systems must be capable of 

detecting the presence of a blast threat, determining the magnitude and location of an 

incoming threat and deploy countermeasures on a millisecond timescale [2]. Additional 

structures that experience high rate dynamics include manned and unmanned aerial 

vehicles, ballistic packages, and vehicle airbags.
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Due to the large fluctuation in loading conditions over a short time interval, it is 

essential that the system is tracked throughout the duration of the high-rate dynamic 

event. One approach to tracking the state of such structures is to utilize structural model 

updating techniques to update a digitized representation of the system state in real-time. 

For accurate state estimations the model updating technique must: (1) be flexible in order 

to adapt and learn the changing external load conditions without relying on pre-trained 

data, and; (2) be capable of updating within a 2 ms timescale in order to allow for 

decisions based on real-time data. 

Real-time modeling allows for the tracking of complex structures experiencing 

high rate dynamic events such as in-flight monitoring and impact mitigation technology. 

In-flight monitoring can be applied to manned and unmanned aerial vehicles as well as 

space crafts. In the case of an unmanned vehicle, a pilot is not present to monitor the 

aircraft and operators on the ground must rely on sensor readings to determine the 

condition of the system. Real-time model updating would allow operating software to 

receive state data almost instantaneously, enhancing the knowledge of the system and its 

surroundings allowing for mission critical actions [3]. In the case of manned vehicles and 

space crafts, the primary mission is to protect the vehicles occupants. Both vehicles are 

susceptible to damage due to accidental collision with debris or as a result of intentional 

attacks conducted by foreign or domestic enemies. In the case of manned vehicles, real-

time updating of the system would allow for reactions faster than human pilots are 

capable of. For instance, if the system experiences damage the amount of sensor updates 

could be overwhelming for a pilot. Between monitoring the craft’s speed and flightpath 

as well as the state of individual components in addition to protecting passenger life and 
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the mission, pilots will likely not be able to assess the situation and respond accordingly 

within a critical time frame to avoid losses. Real-time model updating would allow for 

the incorporation of decision-making software that will respond to changing 

environments faster than its human occupants can in a time of stress [3]. 

 Additionally, real-time modeling can be applied to impact mitigation whether it is 

active blast mitigation, as mentioned previously, or airbag deployment. Airbags are an 

essential safety component in vehicles; however, in some cases, the deployment of 

airbags can cause additional injuries to passengers. The Delphi Dual Depth airbag is an 

adaptive airbag which controls the extent of inflation based on factors which as the size 

and seated position of the passenger as well as the crash severity and location [4]. Crash 

data must be processed quickly for the airbag to respond adequately to the situation in 

order to protect occupants. The incorporation of real-time model updating would allow 

for a response time within 2 ms and allow for additional adaptive measures to be 

incorporated such as modifying the shape of inflated airbag or adjusting the rate of 

inflation to maximize protection. In each application, real-time model updating would 

prioritize occupant’s safety and mitigate of damage experienced by the system by 

providing users with the current state of a system thereby preventing further losses or 

failure. 

Real-time modeling in this work is accomplished using local eigenvalue 

modification procedure or LEMP which simplifies state calculations when only one 

change is made to the system. Advantages to applying LEMP are that all variables for the 

altered state are defined in terms of the initial state and changes made between the two. 

This reduces the number of calculations required since the solutions for the initial state 
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equations are constant. Additionally, through LEMP, the original eigenvalue solution is 

reduced to a set of second order equations. These advantages reduce the number and 

complexity of equations needed to compute the state of the structure allowing for 

applications in real-time structural model updating. 
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CHAPTER 2 

LITERATURE REVIEW 

Real-time model updating can be accomplished in one of two ways: either by 

creating a simplified model of a complex structure or by simplifying the calculations 

needed to determine the state of the complex structure. Previously, Hong et al. estimated 

system state via a simplified model using adaptive finite element analysis (FEA) 

techniques [5]. This work aims to maintain the original structure and simplify state 

calculations by utilizing structural dynamic modification and modal synthesis. 

Additionally, comparison calculations between the actual state and estimated states can 

be simplified by implementing reduced search spaces which decreases the number of 

testing points required. These techniques are further reviewed in the following sections.

2.1 MODAL ANALYSIS: SDM, MODAL SYNTHESIS AND LEMP 

Structural dynamic modification (SDM) is a type of modal analysis that identifies 

physical modifications made to system properties such as mass, stiffness, or damping by 

monitoring changes in the system’s dynamic behavior such as frequencies and mode 

shapes [6, 7].  

SDM utilizes modal synthesis, which was first presented by Hurthy in 1965 [8]. 

Since then several methods employing the technique have been proposed [9].  Modal 

synthesis is the principle that any dynamic response of a vibrating structure can be 

decomposed into a set of individual contributions of single frequencies [10, 11]. The 
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values of each frequency can be found by computing the general eigenvalue (GE) 

solution of the state equations. The corresponding eigenvectors, or modal vectors, are 

used in SDM to model the modal response of the system. 

SDM is accomplished by modeling the modified state as a combination of the 

initial state and the changes made between the two. This is done by incorporating 

changes in mass, stiffness, or damping matrices into the equation of motion (EOM) for 

the system. The modified EOM is then transformed to modal space using the GE solution 

of the initial state. Finally, the updated GE problem is solved to find the new frequencies 

and mode shapes for the modified structure [12].  

SDM utilizes the relationship between the modal properties and spatial properties 

of a structure. This relationship can be used to simplify state estimations for complex 

systems by transforming equations from physical space to modal space [6,7]. One 

advantage of operating in modal space is that the model for the initial structure must only 

contain information for the degrees of freedom (DOF) where modifications are made, 

thereby reducing the number of calculations required [12]. However, initial SDM 

techniques still required processing full GE solutions for matrices which is 

computationally expensive [13]. 

The GE equations can be simplified through modal reduction methods [14]. One 

popular modal reduction technique is LEMP which was originally developed by 

Weissenburger [15]. LEMP was proposed as a means of further simplifying the state 

equations constructed using SDM for mass and stiffness changes and later extended to 

include damping modifications [16, 17]. The benefits of applying LEMP is that the GE 

equation is reduced to a set of second order equations that require less computational 
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power and time to solve. Additionally, that the modified frequency roots are bounded by 

the initial frequencies of the system, which reduces the domain over which the equation 

is solved [15]. 

In its early years LEMP was applied to simple structures such as shafts, beams 

with added support or point masses and systems of mass springs and dampers [18]. 

Recent works have applied LEMP to larger complex structures such as utility-scale wind 

turbine blades [19] and flexible multibodies such as vehicles, aircrafts, and 

manufacturing equipment [20]. 

2.2 REDUCING SEARCH SPACES: THE BAYESIAN APPROACH 

 Point selection for comparisons between the actual state and estimated state is 

based on a Bayesian probabilistic approach. Bayesian approaches are frequently utilized 

in structural health monitoring applications due to their simplicity, adaptability, and 

updatable nature [21]. Bayesian approaches are implemented to assess the estimate of the 

state of the structure given an initial uncertainty about the estimate itself [22]. The 

assessment reflects the relative degree of belief or uncertainty in the estimates. Not only 

is the Bayesian approach capable of accounting for uncertainty in the individual 

predictions (or estimates) made by a model, but also the uncertainty in the model fit itself 

[22]. Bayesian methods incorporate prior information into a model with limited data to 

improve the model for future estimations [23]. With each estimation assessment, the 

resulting posterior distribution becomes a better estimate than the initial prior probability. 

That posterior then and replaces the initial prior for the subsequent estimate improving 

the model estimations [24]. 
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Bayesian frameworks have been used to detect the presence, location, and extent 

of damage in a structure. The applications range from laboratory scale projects such as 

Papadimitriou’s work investigating foundation damage using a small-scaled bridge [24] 

to full-scale structures such as Moaveni’s work investigating earthquake damage in a 

seven-story building [21]. Bayesian approaches can also be used to predict future 

operation and lifetime estimations for mechanical and electrical system components. 

Meeker and Escobar utilized the Bayesian approach in fitting a Weibull distribution to 

field failure data for estimating the operational lifetime of an aircraft engine bearing cage 

[23]. While Hamada performed a Bayesian analysis on degradation paths of lasers to 

estimate remaining lifetime [25].  

Bayesian approaches are advantageous because they can be combined with other 

data analysis techniques to further improve statistical results. Behmanesh and Moaveni 

identified simulated damage on a footbridge by utilizing an adaptive Metropolis–Hastings 

algorithm to sample the posterior probability density function (PDF) for updating 

parameters [26]. Lam et al. extended the concept to detect railway ballast damage under a 

concrete sleeper. In Lam’s approach, damage detection is divided into two phases: model 

selection and model updating, both of which utilize a Bayesian approach [27]. A similar 

approach proposed by Madarshahian et al. [28] utilized a two-layer Bayseian approach to 

minimize the computational cost of estimating prior and posterior distributions. Kurata et 

al. implemented a Bayesian approach conjointly with branch and bound search 

techniques to model the crack growth within aluminum hull structures [29]. 

Bayseian approaches are also advantageous because they can be easily 

implemented into experimental analysis without changing lab setups. Caicedo et al. [30] 



9 

utilized the Acoustic Emission method and a Bayesian approach for estimating crack 

length in steel test specimens. The Acoustic Emission method is based on the principle 

that when a crack grows, energy is released in the form of waves. The energy released 

can be measured by multiple sensors which can determine the location and severity of the 

crack. The measurements are then used in the Bayesian approach to update the posterior 

PDF for crack length.
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CHAPTER 3 

BACKGROUND AND THEORY

This work puts forth and numerically validates an algorithm for estimating the 

location of an additional boundary condition on the Dynamic Reproduction of Projectiles 

in Ballistic Environments for Advanced Research (DROPBEAR) testbed and proposes an 

extension of the theory to removing a boundary condition. This is accomplished by 

utilizing structural dynamic modification and applying LEMP to the system equations. 

Further details of the DROPBEAR testbed, analytical model and LEMP are discussed in 

the following sections. 

3.1 DROPBEAR EXPERIMENTAL TESTBED 

The model created for this work is based on the DROPBEAR testbed which was 

initially developed by Joyce et al. [31]. The DROPBEAR was constructed specifically for 

simulating high-rate dynamic events and features two programable changes: a detachable 

mass that is secured using an electromagnet, and a movable roller boundary condition 

attached to a linear actuator, both of which are used to simulate damage to the structure. 

The DROPBEAR testbed is advantageous when modeling high rate dynamic cases 

because the setup is capable of repeatedly altering test parameters quickly. Additionally, 

these parameters can be changed during a test as opposed to between test runs, allowing 

researchers to gain insight into the system’s real-time response. In this work, only the 

movable roller is utilized, the experimental configuration is shown below in Fig. 3.1 [32]. 
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Figure 3.1  Modified DROPBEAR testbed used in this work. 

The experimental configuration features an accelerometer (PCB Piezotronics- 

model 393B04) mounted at the free end of a 51 x 6 x 350 mm steel cantilever beam with 

Density of 7800 kg/m3, Young’s Modulus of 2e11 N/m2  and Poisson’s Ratio of .26. The 

design also features a sliding roller cart on a linear actuator that constrains beam bending 

between 48-175 mm from the fixed end as well as a magnetic displacement sensor that 

measures the roller’s displacement throughout the test. Adjusting the roller location 

during tests simulates damage to the system by producing a user-defined change to the 

system input which results in a change to the measured system output (acceleration). The 

use of rollers ensures the repeatability of each test, as the damage is simulated.  

3.2 LOCAL EIGEN VALUE MODIFICATION PROCEDURE (LEMP) 

 A study conducted by Carroll et al. [33] investigated the computation speeds for 

various eigenvalue solutions and FEA models of the DROPBEAR testbed. Their work 

concluded that for a GE solution to accurately estimate the state of the DROPBEAR 

testbed within a 1 ms timeframe, the FEA model must be limited to 23 nodes. 

Additionally, for a 23-node model, solving for the system’s frequencies accounted for 
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90% of the algorithms iteration time. Furthermore, as the model increased the calculation 

time grew exponentially as shown on Fig. 3.2, which reports the algorithm timing for a 

FEA model with 2-100 nodes.  

 

Figure 3.2 Computation speed of GE solutions for various number of nodes. 

Accelerating computations would allow for the use of more complex models such 

as those with additional nodes or various element types. More complex models would 

greatly enhance the usefulness of physics-informed state estimation of structures 

experiencing high-rate dynamic events. Moreover, these high-quality models are critical 

to performing prognostics and enabling decision-making for these structures. One 

approach for solving state equations with computational efficiency is to avoid eigen 

solutions all together by applying LEMP for modal analysis.   

LEMP is a means of structural dynamic modification to simplify state calculations 

when only one change to the system is made. In the case of this work, the change is the 

addition of a roller support, which can be modeled as an increase in stiffness along the 

beam. LEMP reduces the number and complexity of equations needed to compute the 
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state of the structure which equates to less computing time than the previously mentioned 

GE solutions. To do so, LEMP utilizes a single GE solution for the initial system and 

simplifies altered state equations by transforming them into modal space, isolating the 

DOFs that contribute to the changes between states and defining equations in terms of the 

initial state. A general flowchart illustrating the steps in LEMP is shown in Fig 3.3 and 

discussed in further detail throughout this section. 

 

Figure 3.3 Flowchart of LEMP steps. 

The EOM for the initial state of a system while ignoring the effects of damping 

can be seen in Eq. (1) below. 

 𝑴𝟏�̈� + 𝑲𝟏𝑿 = 0 (1) 

Here, �̈� and 𝑿 are the acceleration and displacement in physical space. Additionally, M1 

and K1 are the mass and stiffness matrices of the initial system in physical space. Both 

matrices are square symmetric and have dimensions of (n x n) where n is the DOF for the 

system.  
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By definition, the GE problem for Eq. (1) is 𝑲𝟏𝑼𝟏 = 𝑴𝟏𝑼𝟏𝛌, where 𝛌 are the 

eigenvalues and 𝑼𝟏 are the eigenvectors. The GE problem can be solved using Eq. (2) 

and Eq. (3) below. 

 det[𝑲𝟏 − 𝛌𝑴𝟏] = 0 (2) 

 [𝑲𝟏 − 𝛌𝑴𝟏]𝑼𝟏 = 0 (3) 

Which yield the squares of the first n natural frequencies and the first n modal vectors for 

the system as shown in Eq. (4) and Eq. (5) respectively.  

 

𝛌 =

(

 

ꙍ1
2 0 0 0

0 ꙍ2
2 0 0

0 0 ⋱ 0
0 0 0 ꙍ𝑛

2)

  

(4) 

 𝑼𝟏 = (𝑢1
1⃗⃗⃗⃗ 𝑢2

1⃗⃗⃗⃗ ⋯  𝑢𝑛1⃗⃗ ⃗⃗ ) 
(5) 

Where ωn and 𝑢𝑛1⃗⃗ ⃗⃗  are the n-th frequency and modal vector for the initial state of system. 

Note that the modal matrix is not equivalent to mode shapes but can be used to calculate 

them [34]. 

To simplify future calculations, the system response is transformed from physical 

space to modal space using relations shown in Eqs. (6) and (7), where 𝑷𝟏 and 𝑷�̈� are the 

system displacement and acceleration in modal space.   

 𝑿 = 𝑼𝟏𝑷𝟏    

 �̈� = 𝑼𝟏𝑷�̈� 

(6) 

(7) 

Substituting these equations into Eq. (1) yields Eq. (8) below. 

 𝑴𝟏𝑼𝟏𝑷�̈� +𝑲𝟏𝑼𝟏𝑷𝟏 = 0 (8) 

By multiplying each term by 𝑼𝟏
𝑇 the mass and stiffness matrices are normalized in modal 

space yielding diagonal matrices shown in Eq. (9).  
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 diag(𝑴𝟏
̅̅ ̅̅ )𝑷�̈� + diag(𝑲𝟏̅̅ ̅̅ )𝑷𝟏 = 0 (9) 

Here 𝑴𝟏
̅̅ ̅̅  and 𝑲𝟏̅̅ ̅̅  represent the mass and stiffness matrices in modal space. Additionally, 

scaling Eq. (9) to unit modal mass yields Eq. (10) where 𝑰 is the identity matrix.  

 𝑰𝑷�̈� + 𝛌𝑷𝟏 = 0 (10) 

The benefit of scaling to modal mass is that the state equation for the initial state in 

modal space can be written in terms of the eigenvalues, which were already obtained by 

Eq. (4).  

The equations in modal space above effectively define the initial system of n DOF 

as a set of n independent single degree of systems as illustrated in Fig. 3.4. Here each 

DOF responds to one natural frequency of the physical system and is related to physical 

system response through modal transformations shown in Eqs. (6) and (7). 

 

Figure 3.4  n independent single DOF systems representing the initial state 

The EOM for the altered state, while ignoring the effects of damping can be seen 

in Eq. (11) below.  

 𝑴𝟐�̈� + 𝑲𝟐𝑿 = 0 (11) 

Where M2 and K2 are the mass and stiffness matrices of the altered state in physical 

space, respectively. These matrices can be defined in terms of the initial mass /stiffness 

matrices and the changes made between the two states. In the case of this work, the 

change between system states is the addition of a roller support. Therefore, there is no 
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change in the mass matrix, only a change made to the stiffness matrix denoted by ∆𝑲𝟏𝟐 

as shown in Eq. (12) and Eq. (13) respectively. 

   𝑴𝟐 = 𝑴𝟏 (12) 

 𝑲𝟐 = 𝑲𝟏 + ∆𝑲𝟏𝟐 (13) 

Here ∆𝑲𝟏𝟐 represents the changes made in the physical space from the initial state to the 

altered state where diagonal values represent spring stiffness change from each elemental 

mass to ground and off-diagonal values couple elemental masses together. Because this 

work utilizes a moving roller, only diagonal values will be affected. Furthermore, for 

each altered state the only non-zero term in the ∆𝑲𝟏𝟐 matrix is the diagonal value 

associated with the DOF where the roller is located. 

Substituting Eqs. (12) and (13) into Eq. (11) and transforming the state equation to 

modal space using Eqs. (6) and (7) yields Eq. (14) below. 

 𝑴𝟏𝑼𝟏𝑷�̈� + (𝑲𝟏+∆𝑲𝟏𝟐)𝑼𝟏𝑷𝟏 = 0 (14) 

By multiplying each term by 𝑼𝟏
𝑇 the mass and stiffness matrices are normalized in modal 

space which yield the diagonal matrices shown in Eq. (15).  

 diag(𝑴𝟏
̅̅ ̅̅ )𝑷�̈� + [diag(𝑲𝟏̅̅ ̅̅ ) + ∆𝑲𝟏𝟐̅̅ ̅̅ ̅̅ ̅]𝑷𝟏 = 0 (15) 

Additionally, scaling Eq. (15) to unit modal mass gives Eq. (16). 

 𝑰𝑷�̈� + [𝛌 + ∆𝑲𝟏𝟐̅̅ ̅̅ ̅̅ ̅]𝑷𝟏 = 0 (16) 

Here ∆𝑲𝟏𝟐̅̅ ̅̅ ̅̅ ̅ represents the changes made in modal space from the initial state to the 

altered state where diagonal values represent spring stiffness change from each system 

shown in Fig. 3.4 to ground and off-diagonal values couple individual systems together 

as shown in Fig. 3.5. 
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Figure 3.5  Coupled single DOF systems representing altered state. 

Additional simplifications occur by truncating the n independent single degree of 

systems to only include the m modes of interest. This results in a modal matrix U1 of 

dimensions (n x m) which further simplifies the altered state equations. 

To solve for the updated natural frequencies that occur as a result from coupling 

the systems, the following procedure is implemented. The eigen solution of Eq. (16) is set 

up, but not solved according to Eq. (17) and Eq. (18) below. 

 det[(𝛌 + ∆𝑲𝟏𝟐̅̅ ̅̅ ̅̅ ̅) − 𝜦𝑰] = 0 (17) 

 [(𝛌 + ∆𝑲𝟏𝟐̅̅ ̅̅ ̅̅ ̅) − 𝜦𝑰]𝑷𝟏𝟐 = 0  (18) 

Where the diagonals of 𝜦 are the squares of the updated frequencies and 𝑷𝟏𝟐 is the modal 

change between the states. The terms in Eq. (18) are then rearranged to yield Eq. (19). 

 [(𝛌 − 𝜦) + ∆𝑲𝟏𝟐̅̅ ̅̅ ̅̅ ̅]𝑷𝟏𝟐 = 0 (19) 

Noting that the only non-zero values in ∆𝑲𝟏𝟐 are those associated with the degree(s) of 

freedom that experience a change in stiffness from the initial to altered state, the equation 

for ∆𝑲𝟏𝟐̅̅ ̅̅ ̅̅ ̅ can also be simplified to only contain information from the contributing nodes. 

This is accomplished through spectral decomposition of ∆𝑲𝟏𝟐 as shown in Eq. (20). 

 ∆𝑲𝟏𝟐 = 𝑻 diag(𝜶) 𝑻
T (20) 
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Where 𝑻 is the tie matrix and 𝜶 is a matrix of single values obtained from the single 

value decomposition of ∆𝑲𝟏𝟐. Equation (20) is then transformed to modal space by 

multiplying each term by 𝑼𝟏
𝑇 as shown in Eq. (21). 

 ∆𝑲𝟏𝟐̅̅ ̅̅ ̅̅ ̅ = 𝑼𝟏
T𝑻 diag(𝜶) 𝑻T𝑼𝟏  (21) 

The only non-zero or contributing values of  ∆𝑲𝟏𝟐̅̅ ̅̅ ̅̅ ̅ are found using the rows of U1 

associated with the degree(s) of freedom experiencing a stiffness change. This is shown 

in Eq. (22), where 𝑣  is the one-dimensional contribution vector as noted in Eq. (23). 

 𝑣 =  𝑼1c
T  𝑡 ⃗⃗  ⃗ (22) 

 𝑣 =  (𝑣1 𝑣2 . . . 𝑣𝑚) (23) 

Plugging the relation from Eq. (22) into Eq. (21) yields the equation for the modal 

stiffness change in terms of contributing nodes only as shown in Eq. (24) 

 ∆𝑲𝟏𝟐̅̅ ̅̅ ̅̅ ̅ = 𝑣  diag(𝜶) 𝑣 T (24) 

Plugging in Eq. (24) for the original eigenvalue problem in Eq. (19) yields the following 

equations: 

 [(𝛌 − 𝜦) + 𝑣  diag(𝜶) 𝑣 T]𝑷𝟏𝟐 = 0  (25) 

 (𝛌 − 𝜦)𝑷𝟏𝟐 + 𝑣  diag(𝜶) 𝑣 
T𝑷𝟏𝟐 = 0 (26) 

To further simplify state equations, S is defined as an arbitrary variable according to Eq. 

(27). 

 𝑺 =  𝑣 T𝑷𝟏𝟐 (27) 

Equation (27) is then plugged into Eq. (26) to yield Eq. (28) below. 

 (𝛌 − 𝜦)𝑷𝟏𝟐 + 𝑣  diag(𝜶) 𝑺 = 0 (28) 

Equation (28) can be rearranged to solve for 𝑷𝟏𝟐 as shown in Eq. (29). 

 𝑷𝟏𝟐 =
−�⃗�  diag(𝜶)𝑺

(𝛌−𝜦)
  (29) 
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Then, Eq. (29) is multiplied by 𝑣 Tto yield Eq. (30). 

 
𝑣 𝑇𝑷𝟏𝟐 =

−𝑣 T𝑣  diag(𝜶)𝑺

(𝛌 − 𝜦)
 

(30) 

Which can be rewritten as Eq (31) using the relation from Eq. (27). 

 
𝑺 =

−𝑣 T𝑣  diag(𝜶)𝑺

(𝛌 − 𝜦)
 

(31) 

Since 𝑣  is a one-dimensional vector, 𝑣 T = 𝑣 . Additionally, S on either side cancels 

leaving the matrix equation shown in Eq. (32). 

 −𝟏

diag(𝜶)
= 

�⃗� 2

(𝛌−𝜦)
  (32) 

Breaking Eq. (32) into components yields the following equation, where the only 

unknown is Ω2or the natural frequency of the altered system and r ranges from 1 to m, 

where m is the number of modes used to describe the system. 

 −1

𝛼
= ∑

𝒗𝒓
𝟐

ꙍ𝒓
𝟐−Ω𝟐

𝒎
𝒓=𝟏    

(33) 

In summary, LEMP consists of two main parts: a single GE solution for the initial 

state of the system and an eigenvalue modification process for the altered system state 

that is updated for each roller position. The eigenvalue modification process consists of 

simplifications to state equations accomplished by defining the system in terms of the 

initial state and changes made between the two states, utilizing modal representation, and 

isolating contributing nodes. An example of LEMP implementation using experimental 

values can also be found in Appendix A. 

3.3 ANALYTICAL MODEL FOR THE INITAL STATE 

 Initial state calculations are made using a finite element model and utilizing the 

Euler-Bernoulli beam theory. As shown in Fig. 3.6, the modified DROPBEAR testbed is 

modeled as a cantilever beam with the far-left end fixed no roller (i.e. support) present 
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initially. The beam is split into N elements of equal length resulting is N+1 evenly spaced 

nodes along the beam. The selection of N is discussed further in Chapter 4.  

 

Figure 3.6  Finite Element Model for modified DROPBEAR testbed. 

By definition, each Euler-Bernoulli element is exposed to two forces and two 

moments as shown in Fig. 3.7. The elemental mass (Mi) and stiffness (Ki) matrices of the 

element i are defined in Eq. (34) and Eq. (35) respectively. 

 

Figure 3.7  Forces and moments for a Euler-Bernoulli element. 

 

𝑴𝒊 =
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Where 𝜌, Ac, l, and E are the material and geometric properties of the experimental 

testbed as given in Table 3.1. 

Table 3.1 Material and geometric properties for modified DROPBEAR testbed. 

 

Density-𝜌 (kg/m3) 7800  

Cross-sectional area-Ac (m
2) 0.000306 

Total length-l (m) 0.35 

Elemental length- li (m) 0.35
𝑁⁄  

Young’s Modulus-E (Pa) 2E11 

These element matrices are combined to construct the global mass (M1) and 

stiffness (K1) matrices for the initial sate. The eigen solution of the global matrices yield 

the eigenvectors and eigenvalues which are used in modal analysis to compute natural 

frequencies of the altered structure. Sample calculations for the analytical model can also 

be found in Appendix A. 

3.4 BAYESIAN METHOD 

 The model updating utilized in this work is based on a Bayesian probabilistic 

approach which utilizes system parameters that come from past state estimations [21]. 

Furthermore, each estimate contains a level of uncertainty that is accounted for here by 

utilizing the likelihood function which represents the error that exists between the “true” 

structure and the LEMP “estimated” model [23]. In other words, when a new roller 

location is estimated, that value becomes the mean around which a new Gaussian 

distribution is created. Values from the updated probability density function (PDF) are 

selected and either accepted or rejected using the likelihood function and Bayes equation. 
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These points are then used as comparison points for future state estimations. A flowchart 

describing the process can be seen in Fig. 3.8 below. 

 

Figure 3.8 Analytical application of the likelihood function and Bayes algorithm. 

The following discussion outlines the procedure illustrated in Fig. 3.8. Let R 

denote that the hypothesis that the direction of roller movement is right. It is initially 

assumed that the roller is located at the center of the beam and is moving right with a 

probability 𝑃(𝑅) =. 6(∴ 𝑃(𝐿) = .4); all future calculations assess the probability that the 

roller will continue to move right. Weighting initial directional probabilities is equivalent 

of making predictions about the way a system will degrade based on previous knowledge. 

For example, when modeling structures, the equivalent stiffness will decrease over time 

as the structure degrades; therefore, the initial weighted prediction and future estimations 

would assess a decrease in stiffness. 

Given a PDF of normal distribution centered about the previous roller position, s 

roller locations are sampled. The first location is taken to be the previous mean (𝜇𝐵), 

assuming that there is no damage occurring between the two estimations. The second 
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location is a randomly chosen location (x) above the mean value. The likelihood 

functions for the selected point are calculated according to the two previous distributions 

Eq. (35) and Eq. (36) respectively where B represents the previous distribution and A 

represents the distribution prior to that. 

 
𝑃(𝐸|𝐵) =  

1

√2𝜋𝜎2
∗ 𝑒

−
1
2
∗
(𝑥−𝜇𝐵)

2

2𝜎2  
(36) 

 
𝑃(𝐸|𝐴) =  

1

√2𝜋𝜎2
∗ 𝑒

−
1
2
∗
(𝑥−𝜇𝐴)

2

2𝜎2  
(37) 

Here, σ is the standard deviation of the position distribution, 𝜇𝐵 is the last 

estimated roller location, 𝜇𝐴 is the estimated roller location from two iterations ago. If 

𝜇𝐵 > 𝜇𝐴 the roller was last moving right, if 𝜇𝐴 > 𝜇𝐵 then the roller was last moving left. 

The likelihood function is then used in the Bayes’ theorem as follows: 

 
𝑃(𝑅|𝐸) =

𝑃(𝑅)𝑃(𝐸|𝐵)

𝑃(𝑅)𝑃(𝐸|𝐵) + 𝑃(𝐿)𝑃(𝐸|𝐴)
 

(38) 

The output of Eq. (37) is the posterior or updated distribution for the roller 

location after information regarding the previous location selections and likelihoods are 

taken into consideration [23]. If 𝑃(𝑅|𝐸) > .5 then then it is assumed that the roller is 

currently moving to the right therefore the remaining locations are selected from above 

the previous mean value. If 𝑃(𝑅|𝐸) < .5 then then it is assumed that the roller is currently 

moving to the left therefore the remaining locations are selected from below the previous 

mean value. If 𝑃(𝑅|𝐸) =.5 then the remaining locations are selected at random.  
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CHAPTER 4 

SURROGATE MODEL CREATION

Before LEMP is applied, a model must be selected to maximize calculation 

efficiently. In other words, the goal is to include enough information about the system 

that estimates contain minimal error, but not too much information that calculation time 

is negatively affected. Model selection includes determining the number of modes and 

nodes to include when modeling the initial and altered systems. Not all initial modes will 

contribute equally to altered frequencies, but missing modes that do contribute will 

drastically increase the estimation error due to truncation. Therefore, predetermining 

which initial modes contribute and how much each contributes to altered states is 

essential. The number of nodes determines how refined the solution is, with more nodes 

offering a more accurate estimation but requiring a longer calculation time and less nodes 

saving time but offering rougher estimates. Mode and node selection are covered further 

in the following sections. 

4.1 MODE SELECTION 

The number of independent single DOF systems used to represent the initial state 

(as shown in Fig. 3.2) depends on the participation factors (𝑼𝟏𝟐). Recall from Eq. (14) in 

Section 3.2 that the EOM for the altered state in modal space is: 

 diag(𝑴𝟏
̅̅ ̅̅ )𝑷�̈� + [diag(𝑲𝟏̅̅ ̅̅ ) + ∆𝑲𝟏𝟐̅̅ ̅̅ ̅̅ ̅]𝑷𝟏 = 0 (14) 

The initial modal response can be rewritten as a function of the modal response of 

the altered state and the participation factors as shown in Eq. (39). 
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 𝑷𝟏 = 𝑼𝟏𝟐𝑷𝟐 (39) 

If LEMP were not applied, the GE solution of equation 14 given the 

transformation shown in Eq. (39) can be solved using Eq. (40) below. 

 {[diag(𝑲𝟏̅̅ ̅̅ ) + ∆𝑲𝟏𝟐̅̅ ̅̅ ̅̅ ̅] − 𝑼𝟏𝟐 diag(𝑴𝟏
̅̅ ̅̅ )}𝑷𝟐 = 0 (40) 

Where the eigenvectors of Eq. (40) are U12, or the participation factors, which offer 

insight into the weight each initial mode carries in defining the altered modes. Values 

range between -1 and 1, where absolute values closer to 1 correspond with larger modal 

contribution. Prior work by Avitabile explains how the modes of a free-free beam can be 

weighted using participation factors and combined to create modes for other beam types 

[35]. Figure 4.1 illustrates a matrix of participation factors for the initial free-free and an 

altered cantilever beam. The first five modes of the free-free beam are used to create the 

first modal response for a cantilever beam (circled in red).  

 

Figure 4.1 Participation factors for two beam types. 

Figure 4.2 plots the first five modes of the free-free beam and uses the 

participation factors marked in Figure 4.1 to create the first mode for a cantilever beam. 

Based on the participation factors, the first and second modes of the free-free beam 

contribute most to the first mode of a cantilever with weights of .7967 and .5974 

respectively.  
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Figure 4.2 Participation factors and modal synthesis for two beam types. 

 Figures 4.1 and 4.2 illustrate the general concept utilized in this chapter. In the 

case of this work, the initial system is the modal response of a cantilever beam and 

altered modes are the responses of the system when a roller is added. To determine the 

participation factors of the system used in this work, the number of nodes was initially set 

to 10 which can be seen in Fig. 4.3. This setup yields 20 DOF due to the characterization 

of the system as a Euler-Bernoulli beam.  
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Figure 4.3 Model used to determine participating mode shapes. 

The participation factors were then calculated at each node along the beam, 

excluding n1 and plotted according to the key in Fig. 4.4. The participation factors were 

not calculated for the node at the leftmost end of the beam because a fixed boundary 

condition already exists at that point and adding a roller would not change the system 

response. 

 

Figure 4.4 Participation weight key. 

Figures 4.5 - 4.13 illustrate the modal participation factors for a roller located at 

nodes ranging from n2 – n10 using the key presented in Fig. 4.4. The initial modes of the 

cantilever beam are listed on the vertical axes and altered modes of the cantilever beam 

with a roller placed at a node are listed along the horizontal axes. Boxes are color- coded 

based on the value of the participation factor where white boxes representing little to no 

contribution and yellow representing high levels of contribution. Future analysis will 

focus on contributions greater than 0.2 from initial modes. For example, in Fig. 4.5, the 

altered modes (horizontal axis) are the modes for the system when the pin is at n=2. In 

this case, the 5th mode for the altered shape can be represented as a combination of 

modes 4, 5, and 6 from the initial cantilever beam with participation factors of .2383, 

.7717, and .5489, respectively. 
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Figure 4.5 Modal participation factors for the altered state with roller at n2. 
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Figure 4.6 Modal participation factors for the altered state with roller at n3. 
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Figure 4.7 Modal participation factors for the altered state with roller at n4. 
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Figure 4.8 Modal participation factors for the altered state with roller at n5. 
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Figure 4.9 Modal participation factors for the altered state with roller at n6. 
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Figure 4.10 Modal participation factors for the altered state with roller at n7. 
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Figure 4.11 Modal participation factors for the altered state with roller at n8. 
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Figure 4.12 Modal participation factors for the altered state with roller at n9. 
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Figure 4.13 Modal participation factors for the altered state with roller at n10. 

Using Figs. 4.5 – 4.13, the contributions from initial modes were tallied based on 

participation factors. The total counts and contribution percentage for initial modes 

whose contribution factors were greater than 0.2 are summarized in table 4.1.  
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Table 4.1 Counts and percentages for contributing initial modes.  

 

  Participation Factors   

Contributing 

mode 

Yellow 

(.8 - 1) 

Green 

(.6 - .8) 

Blue 

(.4 - .6) 

Purple 

(.2 - .4) 

Total 

Counts 

Contribution 

Percentage (%) 

1 5 2 6 13 26 6.3725 

2 4 4 4 18 30 7.3529 

3 4 3 6 20 33 8.0882 

4 6 2 1 14 23 5.6372 

5 2 7 7 15 31 7.5980 

6 4 5 3 18 30 7.3529 

7 8 1 2 10 21 5.1470 

8 5 4 4 13 26 6.3725 

9 9 0 1 18 28 6.8627 

10 9 0 0 1 10 2.4509 

11 9 0 0 8 17 4.1666 

12 9 0 0 12 21 5.1470 

13 9 0 2 8 19 4.6568 

14 9 0 0 9 18 4.411 

15 9 0 0 11 20 4.9019 

16 9 0 0 7 16 3.9215 

17 9 0 0 3 12 2.9411 

18 9 0 0 0 9 2.2058 

19 9 0 0 0 9 2.2058 

20 9 0 0 0 9 2.2058 

Total 146 28 36 198 408 100 
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Participating modes were selected if their contribution percentage was 

comparatively significant (5% or greater). Therefore, initial modes 1-9, and 12 were 

selected. However, in addition to participation factors, modes representing the initial state 

are also limited by the experimental setup. To utilize a mode in state estimations, the data 

acquisition system must be capable of measuring that mode experimentally. Therefore, it 

is important that each mode type and frequency be considered when selecting modes. The 

experimental setup in this work utilizes a single-axis accelerometer mounted at the far 

end of the beam which limits measurable modes to those with bending in the Y direction. 

Mode shapes are shown for all participating modes in Table 4.2. 

Table 4.2  Participating mode numbers, types, and shapes.  

 

Mode  Frequency (Hz) Mode type Shape 

1 37.6956 Bending-Y 

 

2 248.561 Bending-Y 

 
3 713.463 Bending-Y 

 
4 1416.4 Bending-Y 

 
5 2353.62 

 

Bending-Y 

 
6 3519.66 Bending-Z 

 
7 4918.5 Torsional 

 
8 6569.9 Bending-Y 

 
9 8422.02 Bending-Y 

 
12 15420.6 Torsional 
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From this table the possible modes were further reduced to modes 1-5, 8 and 9. 

Additionally, the accelerometer used in this work has a maximum frequency range (±3 

dB) of 0.02 - 1700 Hz [36], which encompasses the natural frequencies for modes 1-4 as 

shown in Table 4.2. Therefore, the first four modes were selected to model system states 

and used to determine the number of nodes required in subsequent chapters. 

4.2 NODE SELECTION 

From the previous section, it was determined that the system would be modeled 

using the first four modes; however, the number of nodes to be used in the model is still 

unknown. To determine the number of nodes required, the first four natural frequency 

responses are plotted as the roller moves along the beam for models with varying node 

numbers. The “true” frequency is defined using LEMP with 101 nodes which is then 

plotted against a reduced model containing 50, 25, or 21 nodes. The first four natural 

frequencies of the system plotted using a 51-node reduced model are shown in Figs. 4.14-

4.17. Those using a 26-node reduced model are shown in Figs. 4.18-4.21 and those with a 

21-node reduced model are shown in Figs. 4.22-4.25. 

Figures 4.14 - 4.25, show that the relative error between the true and reduced 

models increases as the number of nodes decreases. However, the relative error does not 

exceed the maximum allowable error of 15 mm until the number of nodes is reduced to 

21. Therefore, the reduced model with 25 nodes is selected to represent the system. 

4.3 MODEL CREATION 

 Based on the results from Section 4.1 and 4.2, the model selected to 

represent the system is composed of 4 modes and 25 nodes. This initial model is 

illustrated in physical and modal space by Figs. 4.26 and 4.27 respectively.
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Figure 4.14  First frequency response for a 51-node model (a) and relative error (b).  



 

 

4
1
 

 

Figure 4.15 Second frequency response for a 51-node model (a) and relative error (b).  



 

 

4
2
 

 

Figure 4.16 Third frequency response for a 51-node model (a) and relative error (b). 
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Figure 4.17 Fourth frequency response for a 51-node model (a) and relative error (b). 
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Figure 4.18 First frequency response for a 26-node model (a) and relative error (b). 
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Figure 4.19 Second frequency response for a 26-node model (a) and relative error (b). 
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Figure 4.20 Third frequency response for a 26-node model (a) and relative error (b). 
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Figure 4.21 Fourth frequency response for a 26-node model (a) and relative error (b). 
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Figure 4.22 First frequency response for a 21-node model (a) and relative error (b).  
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Figure 4.23 Second frequency response for a 21-node model (a) and relative error (b).  
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Figure 4.24 Third frequency response for a 21-node model (a) and relative error (b).  
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Figure 4.25 Fourth frequency response for a 21-node model (a) and relative error (b).



 

52 
 

 

Figure 4.26 Initial model in physical space 

 

 
 

Figure 4.27 Initial model in modal space. 

 

 As the roller moves along the beam, the models are updated. Assuming the roller 

is at the midpoint of the beam, Figs. 4.28-4.30 illustrate the corresponding updated 

models. Where Fig. 4.28 represents the model in physical space, Fig. 4.29 is LEMP 

model with increased nodal stiffness, and Fig. 4.30 shows the model in modal space. 

 
 

Figure 4.28 Altered model in physical space. 

 

Figure 4.29 Altered LEMP model in physical space. 

The initial model will remain constant; however, the altered models will adjust 

based on roller location. The initial and altered models will be used in LEMP and the 

Bayesian search space to determine the state of the system. Details of how this is 

accomplished are discussed further in the next chapter. 
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Figure 4.30 Altered model in modal space. 
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CHAPTER 5 

METHODOLOGY 

Once a surrogate model is created, the overall procedure can be divided into two 

main parts: the experimental procedure and the analytical procedure. The analytical 

procedure can be further decomposed into two procedures: selecting roller locations 

using the Bayesian search space and computing the modal state estimation using LEMP. 

The overall procedure and integral steps are shown in Fig. 5.1 below. 

 
 

Figure 5.1 Flowchart of overall procedure and integral steps used in this work. 

 

The experimental procedure will be covered in Section 5.1, selecting roller 

locations using the Bayesian search space will be covered in Section 5.2, and modal state 

estimation will be covered in Section 5.3. Surrogate model creation was covered entirely 

in chapter 4. 
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5.1 EXPERIMENTAL PROCEDURE 

The purpose of the experimental procedure is to determine the “true” system response of 

the DROPBEAR testbed with varying boundary conditions. This is accomplished by 

collecting acceleration data from the system using the accelerometer mounted on the free 

end of the beam. Before the acceleration data is processed, a sliding Hann window is 

applied to smooth the time-series data. The natural frequency of the beam is then 

obtained by taking the Fast Fourier Transform (FFT) of the acceleration data. This “true” 

system response is then compared to the various analytically solved models and a state 

estimation is made using comparison criteria. The test profile used to define the roller 

location for this procedure can be seen in Fig. 5.2. 

 
 

Figure 5.2 Roller testing parameters used in this work. 

The experimental data collected from DROPBEAR allows for the evaluation of 

algorithms that create real-time models of systems experiencing high-rate dynamic 

events. These models can then be expanded to more complex structure with the goal of 

detecting and quantifying damage that occurs using natural frequency estimations.  
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5.2 BAYSIAN SEARCH SPACE 

 The function of the Bayesian search space is to select the most probable roller 

locations at which to apply LEMP. This is done to improve initial estimations and reduce 

the number of comparison points selected and error calculations required. Figure 5.3 

illustrates the role of the Bayesian search space loop within the analytical procedure. 

 
 

Figure 5.3 Bayesian search space loop within the analytical procedure. 

When a state estimation is made, a new PDF is created about the updated roller 

location. Points are selected from this distribution and either accepted or rejected using 

the likelihood function and Bayes conditions (as discussed in Section 3.4). The Bayes 

procedure refines roller positions to select probable locations based on past estimates and 

uncertainty. The selected points are then used as input for LEMP which calculates the 

analytical frequency at each point. The analytical frequencies are then compared to the 

“true” experimental frequency to make state estimations and the analytical loop repeats 

itself. 
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5.3 REAL-TIME MODEL UPDATING  

 Real-time model updating can be completed in two steps: 1) calculating the 

analytical frequency at selected roller positions and 2) choosing the best estimation to 

represent the current system state using comparison criteria. Initially it is assumed that 

the roller is located at the midpoint of the beam and is moving to the right. Three 

comparison points are then selected at which to compare the analytically solved 

frequency with the true measured frequency.  

Analytical solutions for system states in this work are calculated using three 

methods: GE solutions, LEMP solutions and LEMP solutions using a Bayesian search 

space. All three methods mentioned above utilize an adaptive standard deviation (SD) 

equal to the percentage error found in the frequency domain as shown in Eq. (41). This 

technique for altering the size of a search space is adopted from Hong et al. [5]. The 

ability to alter search space size is advantageous because it expands the search space 

when the sampled states differ from the measured states, allowing the algorithm to 

estimate sudden changes in systems. Additionally, the search space is reduced when 

sampled states and measured states are similar, allowing the algorithm to model constant 

system without much variation.  

 
𝜎 =  

𝜔𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 − 𝜔𝑡𝑟𝑢𝑒

𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝜔𝑡𝑟𝑢𝑒
𝑐𝑢𝑟𝑟𝑒𝑛𝑡  

(41) 

Here, σ is the SD of a normal distribution about the last roller position,  𝜔𝑡𝑟𝑢𝑒
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

is the current measured frequency from experimental data and 𝜔𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠

 is the previously 

estimated frequency using the analytical methods and comparison criteria. As noted in 

Hong’s study [5], Eq. (41) assumes that the percentage error in frequency is equivalent to 

the percentage error in position; however, since roller location and frequency are not 
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linearly related (as shown in Figs. 4.13-4.24), this assumption is not necessarily true for 

every case. 

The analytical solutions discussed previously are used to estimate system states 

by two methods: error minimization and bounded regression, each using three 

comparison points. The error minimization method compares the “true” (measured) 

frequency with the frequency at each of the three testing points and selects the location 

that minimizes absolute error. The bounded regression approach was adopted from Hong 

et al. [5], where the linear model by least-squares method is given in its general form by 

Eq. (42) [37]. 

 (
𝑎
𝑏
) =  (𝑋𝑇𝑋)−1𝑋𝑇𝑌 (42) 

For this work where three locations selected for comparison of frequency based 

on roller location, X and Y are defined as below: 

 

𝑋 = (
𝑥1 1
𝑥2 1
𝑥3 1

) 

(43) 

 
𝑌 = (

𝜔1 − 𝜔𝑡𝑟𝑢𝑒
𝜔2 − 𝜔𝑡𝑟𝑢𝑒
𝜔3 − 𝜔𝑡𝑟𝑢𝑒

) 
(44) 

Where 𝑎 and 𝑏 are regression parameters such that ω−ωtrue= ax+b. Therefore, 

ω=ωtrue when x=−𝑏 𝑎⁄ . However, because errors in the regression model propagate where 

sample data is limited, the estimated roller location is bound between the minimum and 

maximum comparison locations as shown in Eq. (45). Furthermore, for solutions using 

the Bayes approach, the past estimate will be the minimum comparison location if the 

roller is moving right or the maximum comparison location if the roller is moving left. 
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𝑥𝑐 = {

𝑥𝑚𝑖𝑛
𝑥𝑚𝑎𝑥
−𝑏

𝑎⁄
|
 −𝑏

𝑎⁄  <  𝑥𝑚𝑖𝑛

 −𝑏
𝑎⁄  > 𝑥𝑚𝑎𝑥

 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

(45) 

While the error minimization approach yields better estimations, the bounded 

regression method allows estimations of roller locations that are not located on 

preselected nodes. This advantage yields smoother estimation curves, which are shown in 

the following chapter.
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CHAPTER 6 

RESULTS AND DISCUSSION

Roller locations obtained from each method: GE solutions, LEMP solutions and 

LEMP solutions using a Bayesian search space are selected as state estimations using the 

error minimization and bounded regression techniques as comparison criteria. For each 

method three comparison points are selected, and the initial estimated roller position is 

set to the center of the beam which accounts for the spike in error at the start of each test. 

The estimated results are compared to the measured values by absolute mean error and 

Time Response Assurance Criterion (TRAC) to assess the viability of each method. 

TRAC was developed to quantify the similarity between time traces [38, 39]. In 

this work it is used to compare the transient displacement responses of the various 

estimation methods by considering the error and time delay of each as shown in Eq. (46).  

 
𝑇𝑅𝐴𝐶 =  

[{𝑡𝑚}
𝑇{𝑡𝑒}]

2

[{𝑡𝑚}𝑇{𝑡𝑚}][{𝑡𝑒}𝑇{𝑡𝑒}]
 

(46) 

Where 𝑡𝑚 and 𝑡𝑒 are time traces of the measured and estimated data, respectively. A 

TRAC value of one indicates perfect correlation, and a value of zero indicates no 

correlation.

Figures 6.1-6.3 illustrate GE estimations, LEMP estimations and LEMP 

estimations using a Bayesian search space with error minimization approach used for 

comparison criteria.
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Figure 6.1 GE roller estimations using error minimization. 
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Figure 6.2 LEMP roller estimations using error minimization. 
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Figure 6.3 Bayesian LEMP roller using error minimization.



 

64 
 

The fluctuation in estimations between Fig. 6.1 and Fig. 6.2 are similar, therefore 

it cannot be concluded that LEMP alone provides smooth estimates. However, as seen in 

Fig. 6.3 the implementation of a Bayesian search space with LEMP solutions allows for 

less fluctuation and smoother estimates since the comparison points are not selected at 

random, but rather by using a probabilistic approach. This is most advantageous when the 

roller is stationary as estimates remain constant for the most part. 

The absolute mean error between the estimates and measured location and TRAC 

values are shown for each of the calculation methods using error minimization technique 

in Table 6.1 below.  

Table 6.1 Assessment of error minimization as comparison criteria 

 

Solution Type Absolute Mean Error (mm) TRAC 

GE 49.721 .9596 

LEMP 48.804 .9577 

LEMP with Bayesian Search Space 48.121 .9592 

The GE method has an absolute mean error of 49.721 mm with a TRAC value of 

.9596 compared to LEMP with an error of 48.804 mm with a TRAC value of .9577 and 

LEMP with a Bayesian search space error of 48.121 mm and TRAC value of .9592. 

Therefore, its concluded that LEMP somewhat improves the estimated value with 

Bayesian approach offering a slightly better estimate.  

Figures 6.4-6.6 illustrate the GE solutions, LEMP solutions and LEMP solutions 

using a Bayesian search space with bounded regression approach used for comparison 

criteria. 
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Figure 6.4 GE roller estimations using bounded regression. 
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Figure 6.5 LEMP roller estimations using bounded regression. 
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Figure 6.6 Bayesian LEMP roller using bounded regression.
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Again, the fluctuation in estimations between Fig. 6.4, Fig. 6.5 and Fig. 6.6 are 

similar, but there is slightly less fluctuation in the LEMP approach that utilizes a 

Bayesian search space. 

The absolute mean error between the estimates and measured location are shown 

for each of the calculation methods using bounded regression technique in Table 6.2. 

Table 6.2 Assessment of bounded regression as comparison criteria 

 

Solution Type Absolut Mean Error (mm) TRAC 

GE 51.01 .9637 

LEMP 46.564 .9580 

LEMP with Bayesian Search Space 46.249 .9575 

  

The GE method has an absolute mean error of 51.01 mm and TRAC value .9637 

compared to LEMP with an error of 46.564 mm and TRAC value of .9580 and LEMP 

with a Bayesian search space with an error of 46.249 mm and TRAC value of .9575. 

Note that the error for LEMP using a Bayesian search space is greater when linear 

regression is applied than when the error minimization technique is applied. This is due 

to the conflicting approaches of Bayes and linear regression when the roller is stationary. 

When minimizing error, the previous location is selected as a roller location and chosen 

as a state estimation when roller is stationary. However, for linear regression the 

approach creates a line of best fit which might not contain the previous location. 

Overall, the bounded regression approach offers a better estimate of the roller’s 

location; however, LEMP solution with a Bayesian search space utilizing error 

minimization as the comparison criteria offers the smoothest estimations with less 

fluctuation.
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CHAPTER 7 

USING LEMP TO MODEL UNSUPPORTED STRUCTURES 

 Chapters 4-6 propose and validate an algorithm that estimates the state of a 

structure that is altered by the addition of a boundary condition. It is proposed here that 

the procedure can be extended to altering structures by removing boundary conditions as 

well. Extending LEMP to model the removal of boundary conditions would be beneficial 

for modeling unsupported structures, such as potted printed circuit boards (PCB) with 

gaps in the potting or large structures supported by eroding soil subjected to seismic 

activity. 

PCBs are potted to increase survivability when exposed to harsh environments 

such as High-G forces or extreme thermal conditions [40]. Potting is a process of coating 

a PCB with an epoxy to secure PCB components and eliminate contaminants. It increases 

resistance to shock and vibration, adds protection from environmental factors and 

insulates electrical leads. Potting electronics is one of the most viable and cost-effective 

solutions to enhance electronic package survivability [41]. However, inconsistencies in 

potting such as air bubbles, soft spots, or contaminants in the epoxy lead to unsupported 

structures. 

When modeling a PCB using LEMP the board components are represented by a 

mass supported by a system of springs which represent the potting material. The presence 

of airgaps or impurities within the potting supporting the PCB is represented by the 

removal of a spring in the corresponding model location. Applying LEMP in this case 
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would allow researchers to determine the location of gaps more easily. In the case of 

large structures, LEMP allows for the modeling of unsupported structures such as those 

subject to erosion or seismic activity. One application is modeling steel or concrete 

storage tanks. Storage tanks are either buried or rest on topsoil and are used to hold water, 

gasoline, and other chemicals. To avoid failure and leakage that could pose a threat to 

plant operation, human safety and the environment, the interactions between the soil, tank 

foundation and walls must first be considered in the design and analysis phases [42]. Past 

works have used power series to describe soil infiltration, collocation methods to estimate 

remotely sensed moisture levels, as well as FEA and energy analysis to determine 

structure-soil interactions [43]. However, errors arise when the structure experiences 

changing conditions that are not taken into account in model parameters such as soil 

erosion. Another application is modeling bridges or building foundations subject to 

seismic activity. Current modeling techniques conduct seismic analysis by representing 

structures resting on the ground as masses supported by springs [44]. Expanding this 

technique using LEMP would allow for modeling shifting ground under foundations for 

damage analysis. 

When modeling large structures using LEMP the structure itself represented by a 

mass supported by a system of springs which represent the soil. The redistribution of soil 

beneath the structure due to erosion or seismic activity is represented by the removal of a 

spring in the corresponding model location. Applying LEMP in these cases would allow 

engineers to determine the location of foundational damage more easily.  

The procedure discussed for unsupported structured is illustrated using a modified 

version of the DROPBEAR model discussed in Section 4.2. The initial system is modeled 
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as a cantilever beam fixed on left end with 25 nodes. At each node a spring of stiffness 

1E10 N/m is inserted connecting the system to ground. The initial model used for 

analysis of an unsupported structure is shown in Fig. 7.1. 

 

Figure 7.1 Initial model for a supported structure. 

The first procedure tracked the response of the system as the stiffness value for a 

single spring was varied. n25 was chosen as the location for spring modification because 

removing the spring at the end of the beam yielded the largest frequency response change 

for the system. The first four frequency responses of the system are shown in Figs. 7.2-

7.5. The figures plot the natural frequency of the system according to LEMP and GE 

approaches for the spring at n25 with stiffness values ranging from zero to 1E10 N/m. The 

plots are used to determine the frequency response of the system with and without a 

spring which are summarized in Table 7.1 below. 

Table 7.1 Frequency response for a system varying spring stiffness at n25. 

 

Frequency 

Response  

Frequency with no 

spring at n25 (Hz) 

Frequency with a spring 

of 1E9 N/m at n25 (Hz) 

Change in Frequency 

1 56.21 287.79 231.58 

2 372.09 932.28 560.19 

3 1073.85 1943.47 869.62 

4 2149.76 3323.31 1173.55 
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Figure 7.2 First frequency response for various spring values (a) and percent error (b). 
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Figure 7.3 Second frequency response for various spring values (a) and percent error (b). 
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Figure 7.4 Third frequency response for various spring values (a) and percent error (b). 
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Figure 7.5 Fourth frequency response for various spring values (a) and percent error (b).
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One challenge that arises when creating an analytical model of a structure is 

deciding the number and strength of springs to include. This is because models with more 

springs allow for smaller areas of damage detection, but also require that more springs be 

removed to achieve a change in dynamic system response. Additionally, if the spring 

stiffness is too small, the system will not deviate from cantilever beam behavior, but if 

the stiffness is too large the removal of one spring won’t achieve a change in dynamic 

system response. 

Figures 7.2-7.5 illustrate significant changes in system response between the 

initial system and the system with a spring stiffness reduction. This procedure effectively 

verifies the initial model. Based on the results from Table 7.1, using a 25-spring model 

with stiffness value of 1E10 N/m was sufficient for describing the system. 

The second procedure tracked the response of the system as each spring support 

was removed, excluding n1. The spring at the leftmost end of the beam was not removed 

because a fixed boundary condition already exists at that point and removing a spring at 

that location would not change the system response. The first four frequency responses of 

the system are shown in Figs. 7.6-7.9. The figures plot the natural frequency of the 

system according to LEMP and GE approaches for the removal of springs at different 

beam locations. 

From the figures it is seen that the percent error between the true GE solution and 

the estimated LEMP solution remained below the maximum error of 8% for the first four 

frequency responses of the system. Therefore, it is concluded that LEMP offers an 

accurate estimate for the state of an unsupported structure. 
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Figure 7.6 First frequency response for spring removal (a) and percent error (b). 
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Figure 7.7 Second frequency response for spring removal (a) and percent error (b). 
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Figure 7.8 Third frequency response for spring removal (a) and percent error (b). 
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Figure 7.9 Fourth frequency response for spring removal (a) and percent error (b).
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CHAPTER 8 

CONCLUSION 

 Roller estimations were calculated by GE solutions, LEMP solutions and LEMP 

solutions utilizing a Bayesian search space using both error minimization and bounded 

regression as comparison criteria. In general, the error minimization technique resulted in 

sharp transient errors during roller movement and fluctuation when the roller remained 

stationary. The application of the bounded regression technique reduced estimation 

fluctuation during roller movement but not during stationary periods.  

The GE and LEMP solutions offered similar accuracy, with LEMP preforming 

slightly better for both comparison criteria. The LEMP solutions with a Bayesian search 

space yielded smoother results with less fluctuation during roller movements and 

stationary periods which is advantageous when tracking an unchanging system as false 

reports of damage would be minimal. 

From this work, it can be inferred that LEMP solutions with a Bayesian search 

space not only reduces the number and complexity of calculations required for state 

estimations, but also provides a better estimate for unchanging systems. Additionally, the 

bounded regression comparison criteria offer more consistent state estimations. It is 

concluded from this work that LEMP solutions with a Bayesian search space using 

bounded regression provides a viable method for updating models in real-time. 
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It was also concluded that LEMP can be applied to assess models that experience 

the removal of boundary conditions. Extending LEMP to model the removal of boundary 

conditions is beneficial for modeling unsupported structures. In small structures such as 

PCBs, the application of LEMP would allow for pinpointing the exact location of damage 

within the structure. In large structures such as bridges, buildings and storage tanks, the 

application of LEMP would narrow the search area for possible damage. 
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APPENDIX A

LEMP IMPLEMENTATION USING EXPERIMENTAL VALUES 

The example discussed here assumes a beam with similar properties as the one 

used in the body of this work; therefore, material properties are the same as those shown 

in Table 3.1. The model contains eight nodes, which corresponds to 16 DOF for a Euler-

Bernoulli beam (n =16). Additionally, only the first five modes are utilized for tracking 

the state of the system (m =5). The initial model is shown below. 

 
Figure A.1 Model used in LEMP example. 

 The elemental mass and stiffness matrices are calculated using the beam 

properties according to Eqs. (34) and (35) and combined to define the global mass matrix 

as Eq. (A1) shown in Fig. A.2 and global stiffness matrix as Eq. (A2) shown in Fig. A.3. 

The global mass and stiffness matrix are then used in the initial EOM represented by Eq 

(1), for which the GE problem is defined as 𝑲𝟏𝑼𝟏 = 𝑴𝟏𝑼𝟏𝛌. Here, 𝛌 are the eigenvalues 

and 𝑼𝟏 are the eigenvectors. The GE solution is solved using Eqs. (2) and (3), which 

yields the squares of the first n natural frequencies and the first n modal vectors for the 

initial system. In this case n=16, so the squares of the first 16 natural frequencies are 

given along the diagonal in Eq. (A3) as shown in Fig. A.4. 

 

 



 

 

8
8
 

𝑴𝟏 = 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

0.0476651 0.000338501 0.0164995 −0.000200023 0 0 0 0 0 0 0 0 0 0 0 0
   0.00000309926 0.000200023 −0.00000232445 0 0 0 0 0 0 0 0 0 0 0 0
  0.0953303 0 0.0164995 −0.000200023 0 0 0 0 0 0 0 0 0 0
   0.00000619853 0.000200023 −0.00000232445 0 0 0 0 0 0 0 0 0 0
    0.0953303 0 0.0164995 −0.000200023 0 0 0 0 0 0 0 0
     0.00000619853 0.000200023 −0.00000232445 0 0 0 0 0 0 0 0
      0.0953303 0 0.0164995 −0.000200023 0 0 0 0 0 0
       0.00000619853 0.000200023 0 0 0 0 0 0 0
        0.0953303 0.00000619853 0.0164995 −0.000200023 0 0 0 0
         0.000200023 0.000200023 −0.00000232445 0 0 0 0
          0.0953303 0 0.0164995 −0.000200023 0 0
           0.00000619853 0.000200023 −0.00000232445 0 0
            0.12133 0.000184643 0.0254995 −0.000309131
             0.00000788909 0.000309131 −0.00000359237
              0.0736651 −0.000523144
               0.00000478982 )

 
 
 
 
 
 
 
 
 
 
 
 
 

      

(A1) 

Figure A.2 Eq. (A1)- global mass matrix for LEMP example. 

𝑲𝟏 = 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

10000000000 537300 −21339600 537300 0 0 0 0 0 0 0 0 0 0 0 0
   10000000000 −537300 9018.96 0 0 0 0 0 0 0 0 0 0 0 0
  42679100 0 −21339600 537300 0 0 0 0 0 0 0 0 0 0
   36075.9 −537300 9018.96 0 0 0 0 0 0 0 0 0 0
    42679100 0 −21339600 537300 0 0 0 0 0 0 0 0
     36075.9 −537300 9018.96 0 0 0 0 0 0 0 0
      42679100 0 −21339600 537300 0 0 0 0 0 0
       36075.9 −537300 9018.96 0 0 0 0 0 0
        42679100 0 −21339600 537300 0 0 0 0
         36075.9 −537300 9018.96 0 0 0 0
          42679100 0 −21339600 537300 0 0
           36075.9 −537300 9018.96 0 0
            42679100 0 −21339600 537300
             36075.9 −537300 9018.96
              21339600 −537300
               18037.9 )

 
 
 
 
 
 
 
 
 
 
 
 
 

         

(A2) 

Figure A.3 Eq. (A2)- global stiffness matrix for LEMP example. 
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𝝀 = 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

56841.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
   2502950 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  20521600 0 0 0 0 0 0 0 0 0 0 0 0 0
   79947500 0 0 0 0 0 0 0 0 0 0 0 0
    2.18947𝐸8 0 0 0 0 0 0 0 0 0 0 0
     4.92401𝐸8 0 0 0 0 0 0 0 0 0 0
      9.71232𝐸8 0 0 0 0 0 0 0 0 0
       2.07264𝐸9 0 0 0 0 0 0 0 0
        3.57992𝐸9 0 0 0 0 0 0 0
         6.19089𝐸9 0 0 0 0 0 0
          1.05039𝐸10 0 0 0 0 0
           1.73962𝐸10 0 0 0 0
            2.70764𝐸10 0 0 0
             3.75065𝐸10 0 0
              2.6818𝐸11 0
               2.35413𝐸16)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

(A3) 

Figure A.4 Eq. (A3)- eigenvalues of the EOM for initial state in LEMP example.
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As noted in section 3.2, simplification of state equations occurs by reducing the 

initial state to only include the modes of interest. As a result, 𝝀 is reduced to a matrix of 

size (m x m) and 𝑼𝟏 is reduced to a matrix of (n x m). In the case of this example n=16 

and m=5. Therefore, the eigenvalue matrix is reduced to a (5x5) matrix and a modal 

matrix is reduced to a matrix with dimensions (16x5). The reduced matrices are shown in 

Eq. (A4) and (A5) depicted in Fig. A.5. 

To find the natural frequency in rad/s, the square root of each eigenvalue is taken 

and to convert to Hz, Eq. (A6) is applied. The first five natural frequencies for the initial 

system in Hz are summarized in Eq. (A7). 

 

𝝀 =

(

 
 

56841.4 0 0 0 0
 2502950 0 0 0
  20521600 0 0
   79947500 0
    218947000)

 
 

 

(A4) 

𝑼𝟏 = 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

0.00000444313 0.000105744 −0.000504132 −0.0013903 −0.00294468
0.00000118569 0.00000802108 −0.0000229865 −0.0000451469 −0.0000746068
0.0620527 0.349269 −0.816928 −1.25315 −1.54163
2.38187 11.9194 −23.3996 −26.2011 −15.5753
0.231619 1.01204 −1.59513 −1.1493 0.0438785
4.27116 12.6763 −2.44326 32.2782 59.6107
0.484142 1.47835 −0.91485 0.968009 1.34074
5.67982 4.71355 27.2397 34.944 −25.848
0.796067 1.41495 0.651034 1.15596 −1.14801
6.63702 −7.50038 28.5669 −28.7843 −38.1148
1.14587 0.739498 1.39865 −0.876493 −0.452089
7.19489 −18.7738 −2.35769 −34.5521 55.3922
1.5153 −0.393289 0.382619 −0.979679 1.2892
7.43253 −25.2407 −35.2469 33.9712 −15.0867
1.891 −1.71165 −1.71428 1.79216 −1.85613
7.47023 −26.5139 −44.0478 63.5753 −83.3884 )

 
 
 
 
 
 
 
 
 
 
 
 
 

  (A5) 

Figure A.5 Eq. (A5)- reduced eigenvector matrix for initial state in LEMP example  

 
𝑓𝑛 =

1

2𝜋
𝜔𝑛 

(A6) 

 𝑓1⃗⃗  ⃗ = (37.9448     251.794     720.984     1423.06     2354.99) 
 

(A7) 
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The altered case for this example is defined as the addition of a roller at node 4 

which can be modeled as the addition of a spring with an equivalent stiffness of 1e10 

N/m. Based on the definition of a Euler-Bernoulli beam, the addition of a roller at node 4 

corresponds to applying a boundary condition at DOF 8. The EOM for the altered state in 

physical space was given by Eq. (14). 

As discussed in Section 3.2, ∆𝑲𝟏𝟐 represents the changes made in the physical 

space from the initial state to the altered state where diagonal values represent spring 

stiffness change from each elemental mass to ground and off-diagonal values couple 

elemental masses together. Because this example sets the roller at DOF 8, the only non-

zero term in the ∆𝑲𝟏𝟐 matrix is the 8th diagonal value. This term will have a value equal to 

the equivalent spring stiffness used to model the roller i.e. 1e10 N/m as shown in Eq. (A8). 

The simplified EOM in modal space is given by Eq. (16) where ∆𝑲𝟏𝟐̅̅ ̅̅ ̅̅ ̅  is obtained by pre-

multiplying the ∆𝑲𝟏𝟐𝑼𝟏 term by 𝑼𝟏
T and is given by Eq. (A9). This equation represents the 

changes made in modal space from the initial to altered state and is depicted in Fig. A.6.  

The next step is to spectrally decompose the ∆𝑲𝟏𝟐 matrix according to Eq. (20). 

For this example, the spectral decomposition yields a simple tie and alpha matrix; 

however, for more complex changes between system states, the matrices will also be 

more complex. The tie and alpha matrices for this example can be seen in Eq. (A10) and 

(A11) respectively as shown in Fig A.7. The stiffness change matrix is then transformed 

into modal space and simplified with the contributing DOF using Eq. (24).  

Recall from Eq. (22) that 𝑣 =  𝑼𝑐
T 𝑡 ⃗⃗  ⃗. Noting that only DOF 8 is affected by the 

addition of a spring at the 4th node, the contributing vectors are reduced to only those 

values in the 8th row of each matrix. Therefore, the contributing modal and tie vectors can 
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be written according to Eqs. (A12) and (A13) respectively which results in a change 

vector 𝑣  as shown in Eq. (A14). Rearranging the terms in the eigen solution problem for 

the altered state yields Eq. (33), which represents five second degree equations bounded 

by the initial frequencies of the system. Solving for Ω𝟐 yields the squares of the updated 

natural frequencies shown in Eq. (A15). The conversion in Eq. (A6) is then applied to 

find the updated natural frequencies in Hz as shown in Eq. (A16). 

 

 

 

 

 

 

 

∆𝑲𝟏𝟐 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  0 0 0 0 0 0 0 0 0 0 0 0 0 0
   0 0 0 0 0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0
      0 0 0 0 0 0 0 0 0 0
       1𝑒10 0 0 0 0 0 0 0 0
        0 0 0 0 0 0 0 0
         0 0 0 0 0 0 0
          0 0 0 0 0 0
           0 0 0 0 0
            0 0 0 0
             0 0 0
              0 0
               0)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

(A8) 
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∆𝑲𝟏𝟐̅̅ ̅̅ ̅̅ ̅ = 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

6337230000 11263900000 0.01649955182670000 9202200000 −9138930000 6196220000 011953600000 −1427190000 −11439700000 −2790240000 9999260000 5596650000 4352020000 2356790000 199783000 241627000
   11263900000 20020700000 9211780000 16356200000 −16243700000 11013300000 021246500000 −2536720000 −20333100000 −4959420000 17772900000 9947600000 7735370000 4189010000 355099000 429473000
 5182670000  9211780000 4238460000 7525680000 −7473940000 5067360000 9775800000 −1167170000 −9355520000 −2281890000 8177530000 4577020000 3559140000 1927420000 163385000 197606000
9202200000  16356200000  7525680000 13362400000 −13270500000 8997450000 17357600000 −2072400000 −16611400000 −4051660000 14519800000 8126820000 6319510000 3422260000 290102000 350863000
 −9138930000  −16243700000  −7473940000 −13270500000 13179300000 −8935590000 −17238300000 2058150000 16497200000 4023810000 −14420000000 −8070940000 −6276060000 −3398730000 −288108000 −348451000
 6196220000  11013300000 5067360000  8997450000 −8935590000 60583600003 11687600000 −1395430000 −11185100000 −2728150000 9776780000 5472130000 4255190000 2304350000 195338000 236251000
 11953600000 21246500000  9775800000  17357600000  −17238300000 11687600000 22547400000 −2692030000 −21578100000 −5263080000 18861100000 10556700000 8208990000 4445490000 376841000 455769000
−1427190000  −2536720000  −1167170000  −2072400000  2058150000  −1395430000  −2692030000 321413000 2576300000 628382000 −2251900000 −1260410000 −980106000 −530766000 −44992600 −54416200
 −11439700000 −20333100000  −9355520000  −16611400000  16497200000  −11185100000  −21578100000  2576300000 20650400000 5036810000 −18050200000 −10102800000 −7856060000 −4254370000 −360639000 −436174000
−2790240000  −4959420000  −2281890000  −4051660000 4023810000  −2728150000  −5263080000  628382000  5036810000 1228520000 −4402600000 −2464170000 −1916160000 −1037680000 −87963100 −106387000
 9999260000  17772900000 8177530000  14519800000 −14420000000  9776780000  18861100000  −2251900000  −18050200000  −4402600000 15777400000 8830730000 6866880000 3718690000 315230000 381254000
 5596650000  9947600000 4577020000  8126820000  −8070940000  5472130000  10556700000  −1260410000 −10102800000  −2464170000  8830730000 4942620000 3843440000 2081370000 176436000 213390000
 4352020000  7735370000 3559140000  6319510000 −6276060000  4255190000 8208990000  −980106000 −7856060000 −1916160000 6866880000  3843440000 2988700000 1618500000 137199000 165935000
2356790000  4189010000 1927420000  3422260000 −3398730000  2304350000 4445490000  −530766000  −4254370000  −1037680000  3718690000  2081370000  1618500000 876481000 74298600 89860200
199783000  355099000 163385000  290102000  −288108000  195338000 376841000  −44992600  −360639000  −87963100  315230000  176436000  137199000  74298600 6298230 7617370
 241627000  429473000 197606000 350863000 −348451000 236251000 455769000 −54416200  −436174000 −106387000 381254000  213390000 165935000 89860200  7617370 9212810 )

 
 
 
 
 
 
 
 
 
 
 
 
 

 

(A9) 

Figure A.6 Eq. (A9)- modal stiffness change between initial and altered state for LEMP example. 

𝑻 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
   1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  1 0 0 0 0 0 0 0 0 0 0 0 0 0
   1 0 0 0 0 0 0 0 0 0 0 0 0
    1 0 0 0 0 0 0 0 0 0 0 0
     1 0 0 0 0 0 0 0 0 0 0
      1 0 0 0 0 0 0 0 0 0
       1 0 0 0 0 0 0 0 0
        1 0 0 0 0 0 0 0
         1 0 0 0 0 0 0
          1 0 0 0 0 0
           1 0 0 0 0
            1 0 0 0
             1 0 0
              1 0
               1)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

(A10) 𝜶 = 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  0 0 0 0 0 0 0 0 0 0 0 0 0 0
   0 0 0 0 0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0
      0 0 0 0 0 0 0 0 0 0
       1𝑒10 0 0 0 0 0 0 0 0
        0 0 0 0 0 0 0 0
         0 0 0 0 0 0 0
          0 0 0 0 0 0
           0 0 0 0 0
            0 0 0 0
             0 0 0
              0 0
               0)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

(A11) 

Figure A.7 Eqs. (A10) & (A11)- tie and alpha matrices for LEMP example. 
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 𝑼𝑐
T = (5.67982      4.71355      27.2397      34.944     − 25.848) (A12) 

  𝑡 ⃗⃗  ⃗= (0    0    0     0    0    0    0    1    0    0    0    0    0    0    0    0) (A13) 

 

𝑣 =

(

 
 

5.67982

4.71355

27.2397

34.944

−25.848)

 
 
  

(A14) 

 

Ω𝟐 =

(

 
 

15881.79 0 0 0 0
 443939.69 0 0 0
  1395068.08 0 0
   4483806.25 0
    1449142170)

 
 

 

  

(A15) 

 𝑓2⃗⃗  ⃗ = (126.023     666.288     1181.13     2117.5     38067.6) (A16) 

 


