WATER QUALITY MONITORING AND MAPPING USING RAPIDLY DEPLOYABLE SENSOR NODES

Mohamed Abdelwahab

Advisor: Dr. Austin Downey

Thesis Defense

Masters of Science in Mechanical Engineering College of Engineering and Computing University of South Carolina

2023

OUTLINE

- Overview
- Methodology
- System Hardware
- Kriging
- Validation
- Results & Discussion

OVERVIEW

WATER

- Water covers 70% of planet Earth.
- Clean water is a fundamental human right and a critical factor in public health, agriculture, and ecosystems.
- However, the quality of our water resources is under constant threat due to various pollutants, industrial activities, and climate change.

WATER QUALITY MONITORING

- Continuous water quality monitoring is crucial to ensure the ongoing safety and sustainability of our water resources.
- However, It can be challenging to perform continuous water quality monitoring using traditional methods.

REASONS

- High costs.
- Labor intensive.
- Limited Data.
- Delays in Data Reporting.
- Limited Coverage.
- Spatial Variability.
- Incomplete Monitoring.

ADVANCING METHOD CHARACTERISTICS

- Real-time Data collection.
- Autonomous system.
- Data logger.
- Multi-parameter monitoring.
- Data Processing and Interpolation.
- Cost effective.
- Long deployment duration.

METHODOLOGY

DEPLOYING MECHANISM

- An electromagnetic is used as a deploying mechanism
- Electromagnets use electric current in a coil to create a magnetic field.
- The current controls the magnetic field's strength and can be toggled on and off as needed.

WATER QUALITY MAPPING

- To determine the quality of the tested water bodies, we will employ kriging to create a spatial representation of the water parameters on a map.
- This will help us identify areas of concern and assess the overall water quality.

IN-SITU WATER QUALITY SENSOR PACKAGE

- Real time monitoring
- On-site Data Storage
- Data Accessibility
- Data Processing and Interpolation
- Aerial deployment
- Multi-parameter monitoring
- Power efficient
- Long-term testing capability
- Floating capability
- Fully waterproof

COMPONENTS

FLOW CHART

 Sensor package data collection mission algorithm breakdown.

SENSORS

- pH sensor.
- TDS (Total Dissolved Solids).
- Turbidity.
- Temperature.

REASONS FOR CHOOSING THOSE SENSORS

- pH: Measuring the acidity and the alkalinity of water.
- TDS: Measuring the dissolved substances in water.
- Turbidity: Indicates water cloudiness.
- Temperature: Measures the water temperature.

SYSTEM HARDWARE

SENSORS

- pH sensor
- TDS (Total Dissolved Solids)
- Turbidity
- Temperature

- Analog Sensor
- Vcc: 5V
- Power consumption= 3mA
- Range: 0 14 pH

Analog Sensor

Power consumption= 11mA

Range: 0 – 100 NTU

Vcc: 5V

٠

- Digital Sensor
- Vcc: 5V
- Power consumption= 2mA
- Range: -55 125 Celsius

- Analog Sensor
- Vcc: 5V
- Power consumption= 6mA
- Range: 0 1000 ppm

DATA LOGGER

- DS3231M
- Micro SD Card Module
- LED

 Acting as an indicator while saving the Data on the SD card

- Surface mount IC
- Vcc: 2.3V 5V
- Includes a coin cell battery backup
- Compact size

- Vcc: 3.3 V
- Compact size

MICROCONTROLLER

- Arduino Nano:
- Power consumption: 15 30 mA
- Vcc: 7V 12
- Compact size
- Low cost

SENSOR PACKAGE CIRCUIT DESIGN

- To ensure effective operating procedure
- Error prevention

PRINTED CIRCUIT BOARD (PCB)

- A compact PCB was designed to fit all the electronic components into a limited space.
- Size: 97 x 32 mm

POWERING SOURCE

- Rechargeable Li-po battery
- 7.4V & 1000mAh

BLOCK DIAGRAM

 Displaying the internal component of the sensor package.

KRGING

KRIGING METHOD

 Used for estimating data in the unsampled location by considering the sampled points and their spatial relation.

SEMI VARIOGRAM

• A spatial relationship map illustrates how data points become more similar or different as their distance from each other changes.

Components:

- Nugget: Represents the variation of the data at very small distances.
- Range: The distance in which the data become less similar and beyond this range, the data points become uncorrelated.
- Sill: The total amount of variation in the data set

distance (h)

EXAMPLE

- $B = |h_{11} \ h_{12} \ h_{13}|$ $|h_{21} \ h_{22} \ h_{23}|$ $|h_{31} \ h_{32} \ h_{33}|$
- $D = |h_{10}| \\ |h_{20}| \\ |h_{30}|$

CALCULATIONS

Hyperparameters:

Sill (C): Variance of the Data set

Nugget (C_0): Variation of the Data at a very small distance

Range (a): ¹/₂ the maximum distance between the sampled points

$$\gamma(h) = \begin{cases} c_0 + c \left(\frac{3h}{2a} - \frac{1}{2} \left(\frac{h^3}{a^3}\right)\right) & 0 < h \le a \\ c_0 + c & h > a \\ 0 & h = 0 \end{cases}$$

V =	V11 V12 V13	$V_0 =$	V ₁₀
	V21 V22 V23		V ₂₀
	V31 V32 V33		V ₃₀

$$\lambda = |\lambda_1| = V(\text{inverse}) \times V_0$$
$$|\lambda_3|$$

 $Z_0 = \sum \lambda_i Z_i$

VALDATON

KRIGING

 Generated a fake lake to mimic a distribution of pH values across its surface.

KRIGING VALIDATION RESULTS

Number of Sampled Points	Mean Absolute Error	RMSE	Maximum Error
4	0.36	0.46	0.91
6	0.32	0.41	0.86
8	0.28	0.36	0.81
10	0.25	0.33	0.77
15	0.22	0.29	0.71
20	0.20	0.26	0.66
25	0.18	0.24	0.62
30	0.16	0.22	0.59

DEPLOYING MECHANISM

SENSOR'S VALIDATION

Parameters	Sensor package value	Reference Sensor Value	Absolute Error (%)
pН	6.62	6.71	1.34%
TDS	181	172	5.23%
Temperature	25	24.8	0.81%

RESUITS

REAL TEST

SAMPLED LOCATIONS

POWER MANAGEMENT TEST (32:48)

41

TESTING IN DYNAMIC WATER BODY

ONGOING RESEARCH PUBLICATIONS

- Title: Spatial and Temporal In-Situ Water Quality Monitoring and Mapping via UAV-Deployable Smart Semi-Permanent Sensor Nodes.
- Journal: MDPI Sensors
- Estimated Submission Date: December 2023

THANKS

QUESTIONSP

