WV : :
,’:\/‘/\ UNIVERSITY OF Multi-Event Model Updating

nﬁﬂi i SOUTH CAROLINA for Ship Structures

Introduction Thrust 1 Results Thrust 2 Results

Next-generation naval ships subjected to impact and fatigue events Research outcomes for Thrust 1: Research outcomes for Thrust 2

will benefit from condition assessment technology and the ability to Thrust 1 consisted of designing a test structure to generate distribution A data. The test structure Thrust 2 developed a model updating framework that could update a structure
react appropriately. When implemented properly a digital twin is shown below in Figure 1 where figure 2a) is the original plan and shows how the test structure for two damage cases that happen on two different time scales (fatigue damage
model of a naval ship or ship structure can be used for informed could be deployed in a water-tunnel like setting to collect data. Figure 2b) shows how the test on a long timescale and an impact on a short time scale). A variety of tests with
response management that will increase ship lifespans, structure was updated to allow for this testing at the UofSC. However, due to lab closures, the varying fatigue crack and impact tests were conducted, a fatigue crack that
maintenance intervals, and survivability. These models include test structure was modeled in finite element analysis software (FEA). grows from 2 to 20 mm and “impact” that results in roller displacement of 2
fatigue and load, which will be used to make decisions across the mm. Results for the change in frequency (w) and mode shapes () for these
structure’s timescales (Real-Time to life span). The main obstacle values are presented below in Figure 3. Note that the crack growth and impact
that occurs with multi-model data assimilation is the vast amount of damage both result in changes to the frequency and mode shapes.

data that needs to be updated into multiple models and linked to
the structure’s existing condition to calculate its remaining life. This
data comes from a wide range of sources and locations, including
strain measurements from physical sensors that are attached to a
ship's structure and 3D scans from aerial drones. This research
presents a methodology that updates multiple damage cases
(fatigue and plastic deformation impact) into a single FEA model.
This work uses a scaled model of a structural ship component
subjected to representative wave loadings.

Methodology

Thrust 1: Develop a 1-D test structure.

This thrust will develop a 1-D structural testbed (“beam model”) of a
ship to produce simplified data sets that will be used for validating
multi-model data assimilation algorithms.

Figure 3: The growth of the fatigue and impact damage

Continuing, this thrust also implemented a particle swarm that runs for a
finite number of steps. When this is run on any set of data, each particle

Thrust 2: Develop tools for multi-model data assimilation. travels to the next data point and determines if it is lower than the previous.

Thrust 2 will investigate the assimilation of data into multiple models Figure 1: a) Original design with attached DAQ; b) Updated design capable of testing at This is looped until the number of input steps is reached. Once reached, the

with the goal of developing a well-informed digital twin of a naval UofSC, and; c) FEA model of beam. lowest particle coordinate is saved as the optimal location for the stepper

structural system. , motor boundary conditions for the FEA model. This method was used on the
FEA modeling for test structure Flexibility Matrix and is shown below.

Thrust 3: Investigate multi-timescale decision-making. A key development was the creation of a Python code capable of building, executing, and

This thrust will investigate the use of the updated models for decision- processing FEA models. For this work, the commercial FEA code Abaqus was used as the solver.

making on varying timescales from real-time (impact) responses to life- Various beam configurations were considered, including simply supported, cantilever, single and

cycle decision-making (fatigue). double roller supports, and beams with and without webbing. Finally, a cantilever beam with

single roller support on the right-hand-side was selected, as shown in figure 2a). A fatigue crack

References was modeled in the beam near the left fixity. This crack was modeled as a hole in the beam, as

shown below in figure 2b). The FEA model was developed, executed, and post-processed using
A. Downey, C. Hu, S. Laflamme, Optimal sensor placement within the following processes.

a hybrid dense sensor network using an adaptive genetic algorithm
with learning gene pool, Structural Health Monitoring (2017)
147592171770253d0i:10.1177/1475921717702537.

A. Downey, J. Hong, B. Joyce, J. Dodson, C. Hu, S. Laflamme,
Methodology for real-time state estimation at unobserved

locations for structures experiencing high-rate dynamics, in: Future Improvements

Structural Health Monitoring 2017, Destech Publications, 2019

The continuation of this project is detailed below:

Figure 2: a) 2D representation of the final beam; b) fatigue crack modeled as a hole.

J. Yan, X. Du, A. Downey, A. Cancelli, S. Laflamme, L. Leifsson, A. 1. Finalize and test FEA Model Updating Script (Thrust 3)
Chen, F. Ubertini, Surrogate model for condition assessment of Abaqus CAE was used to create a shell model of the beam. Using both the macro manager and 2. Integrate the solved optimal FEA boundary conditions to the physical test
structures using a dense sensor network, in: H. Sohn (Ed.), Sensors replay files (.rpy), the Python scripting commands for an Abagqus model were created. stand using LabView
and Smart Structures Technologies for Civil, Mechanical, and 1. 2. An Abaqus input file was created from the Python scripts. 3. Integrate various sensors onto the physical test beam
Aerospace Systems 2018, Vol. 10598, SPIE, 2018, pp. 10598-9. 2. 3. Python was used to execute the Python scripts in Abaqus via a command-line prompt. 4. Integrate limit switches as an emergency stop

doi:10.1117/12.2296711. 3. 4. Python was used to post-process the data by extracting all required data from the .odb file

This work is partially supported by the National Science Foundation,

Acknowledgements Grant number 1937535. This work is also partially funded by the
University Of South Carolina through the Magellan Scholar Award, |
Thank you, Dr. Downey, for sponsoring the project, his continuous engagement, mentorship, and for providing us with this valuable opportunity. Also a special thank you award number 1155400-20-52512. The support of these agencies is
L , _ , , gratefully acknowledged. Any opinions, findings, and conclusions or
to the Naval Surface Warfare Center, Carderock Division for the opportunity to work on such a challenging and rewarding project. recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science Foundation

or the University of South Carolina.



