Online Vibration Signal Compensation with LSTM and Low-Rank Approximation

Joshua McGuire^{1,3}, Joud Satme¹, Daniel Coble^{1,4}, Jason Bakos³, Austin Downey^{1,2}

¹Department of Mechanical Engineering, University of South Carolina

²Department of Civil and Environmental Engineering, University of South Carolina

³Department of Computer Science and Computer Engineering, University of South Carolina

⁴Department of Mechanical Engineering and Materials Science, Duke University

Background

SHM sensing node deployment

Drone-deployable sensor package

Experimental setup

Degrees-of-Freedom Decomposition

$$Ax_1 = Bx$$
 $Ax_2 = Cx_1$ $Ax = P\begin{bmatrix} Ax_1 \\ Ax_2 \end{bmatrix}$

$$U = \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} \qquad B = U_1 \Sigma V^{\mathrm{T}} \qquad C = U_2 U_1^{-1}$$

$$B: r \times n$$
 $C: (m-r) \times r$

Degrees-of-freedom decomposition definition

Degrees-of-freedom matrix-vector multiplication

Compensation model parameter count

- Reduces the number of parameters and operations required for inference
- Removes barrier-to-entry associated with direct use of SVD
- Generalizable to any application requiring matrix-vector multiplication

Performance

Conclusion

- LSTM is shown to be an effective non-linear compensator
- The LSTM weight matrix was reduced from rank 51 to rank 6 using truncated SVD
- Degrees-of-freedom decomposition allowed for significant spatial and computational savings
- Memory footprint improved to 6,884B from 41,804B
- Inference latency improved to 40µs from 201µs

