

A Compact TD-NMR System for the Estimation of Jet Fuel DCN Using Interpretable Machine Learning

Parker Huggins^{1,2}; Jacob Martin^{2,3}; Austin Downey²; Sang Hee Won² ¹Department of Electrical Engineering; ²Department of Mechanical Engineering; ³Department of Physics and Astronomy

Background

Nuclear magnetic resonance (NMR):

- Atomic nuclei with a nonzero (magnetic) dipole moment will align with an external magnetic field
- An oscillating magnetic field applied perpendicular to the external field can then "tip" the nuclei
- The "relaxation" of the nuclei back to equilibrium can be measured as an induced voltage using a pickup coil
- The relaxation behavior of a sample gives insight into its molecular structure

Derived cetane number (DCN):

- The DCN is a common metric that summarizes fuel ignition characteristics
- Traditionally, the DCN of jet fuels are determined using ASTM standards involving sophisticated instrumentation
- New research has focused on alternative approaches, including the use of NMR and IR spectroscopy

Objectives:

- Demonstrate the viability of TD-NMR for fuel analysis
- Estimate DCN from raw T_2 relaxation data

Datasets

- Both hydrocarbon and jet fuel datasets generated for analysis
- All samples probed 3 times, and averaging performed for data augmentation

Tab. 1	Hydrocarbon	and jet fuels	samples used	d for dataset	generation.
	•	5	1		e

hydrocarbons	jet fuels			
name	DCN	name	POSF	DCN
toluene	6.0	Gevo-ATJ	10151	15.5
1,3,5-trimethylbenzene	8.0	JP-8/Gevo-ATJ	10153	30.5
iso-cetane	14.2	Sasol IPK	7629	31.3
iso-octane	18.9	Shell CPK	13690	37.2
n-propylbenzene	19.5	JP-8/IPK	7718	40.0
methylcyclohexane	22.5	JP-5	10289	40.9
n-butocyclohexane	47.8	Jet-A	4658	47.1
n-heptane	56.0	JP-8	6169	47.3
n-octane	64.4	JP-8	10264	49.6
n-decane	66.4	Jet-A	10325	50.0
n-hexadecane	73.5	JP-8/HRJ Tallow	7719	53.3
n-dodecane	100.3	HRJ Tallow	6308	58.1
_	-	Shell SPK	5729	58.4
<u> </u>	-	S-8	4734	58.7
		HRI Camelina	7720	58 9

$$\rho_H = \frac{\rho_s N_H}{M_w}$$

https://github.com/ARTS-Laboratory/Dataset-