Measuring Precipitation through Raindrop Conductivity

Christopher Heaps¹, Jasim Imran², and Austin R.J. Downey^{2,3}

¹Department of Aerospace Engineering, University of South Carolina, Columbia SC ² Department of Civil and Environmental Engineering, University of South Carolina, Columbia SC ³ Department of Mechanical Engineering, University of South Carolina, Columbia SC

Introduction

Measuring the Rain

- Primary objective is to create a sensor package capable of accurately measuring precipitation by counting raindrops
- Data will be logged into a .csv (Excel) file
- Python can be used to interpret data, such as precipitation rate and identifying times of greatest rainfall

Conserving Power

- Sensor package is meant to be deployed for weeks at a time
- Package is powered by a 7.4V Lithium-Polymer battery
- A sleep function is used to power down the Arduino, and a Real-Time Clock (RTC) module sends a wake-up signal to power the system back up

Pictured above: funnel and nozzle assembly (left) and sensor package with cup to drain into (right)

Methods

Nozzle and Funnel

- Funnel is used to collect rainwater from storms and drip through nozzle
- Nozzle ensures water droplets have consistent size

Electrodes

- Principal concept is to allow droplets to fall through and send a charge through them
- Conductivity data goes back to Arduino and is counted
- This is then logged to a .csv file through MicroSD card
- Electrodes have had many designs, current one is using graphite rods

Pictured above: Graphite electrodes in funnel

Humidity and RTC

- Sensor package has a BME280 temperature and humidity sensor to keep track of humidity
- The humidity level will act as a sleep/wake interrupt for the sensor package
- RTC module logs time of conductivity readings and wake up the Arduino to check humidity on certain intervals

Results

- the rods

Pictured above: sample data depicting water droplets being logged by the sensor package over time

Acknowledgements and References

Special thanks to the McNair Junior Fellows program for guidance and funding on this project, as well as the USC ASPIRE I grant #80004440

References

[1] Github: Heaps, C., Brown, R., Smith, C., & Downey, A. (2023). Rain-Gauge-Sensor-Package [Github Repository]. https://github.com/ARTS-Laboratory/Rain-Gauge-Sensor-Package

• The sensor package can accurately count raindrops over time and log them, generating data that can be analyzed • Sensor package wakes and sleeps as it should, can change wake interrupt interval, power is conserved as desired • Electrodes can count raindrops and handle conductivity as desired, however they are difficult to get into position to properly count raindrops without the droplets clinging to

> Feel free to check out the project Github repository! \rightarrow

