Online Structural State-Estimation in Extreme Dynamic Environments

Introduction

- High-rate dynamic structures are subjected to impact loading with accelerations greater than 100 g over time periods of less than 100 milliseconds.
- Goal: create a data-driven model capable of producing low-latency state prediction from a timedomain signal.

DROPBEAR Testbed

Austin R.J. Downey

Department of Mechanical Engineering, University of South Carolina

Model Development

Long short-term memory (LSTM) is a commonly used recurrent neural network architecture.

LSTM deployed as a hardware accelerator in a field programmable gate array (FPGA) in both a 16-bit fixed point and a 32-bit float version.

16-bit fixed point model performance,

- SNR_{dB} of 19.54 dB.
- RMSE of 9.1 mm.
- Time step of $16.7 \,\mu s$.
- Standard deviation: 0.0509 µs.
- 50X speed up over RTOS.

32-bit floating point model performance:

- SNR_{dB} of 22.02 dB.
- RMSE of 6.8 mm.
- Time step of $64.9 \ \mu s$.
- Standard deviation: 0.0379 µs.
- 12X speed up over RTOS.

Both implementations consume less the 10% of FPGA resources (Xilinx Virtex 7 - VC707).

Model	Freq. (MHz)	Data Precision	LUT	FF	BRAM 36 k	DSP
16, 15, 15, 15, 1	200	32bit Float	91611	107964	211	142
16, 15, 15, 1 <mark>5,</mark> 1	200	16bit Fixed	126633	109186	229	212