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Introduction

* High-rate dynamics consists of structures subjected
to Impact loading that results in accelerations greater
than 100 g during time periods of less than 100

milliseconds.

* An Important research objective Is to create data-
driven models capable of producing state prediction

from a time-domain signal.

DROPBEAR Testbed

« The DROPBEAR testbed consists of cantilever beam
with a controllable roller to alter “state” of the

system.
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Topological data analysis

* Topology Is the study of geometric constants which
persist under deformation.

* Topological data analysis attempts to ascertain
whether experimental data lies on certain topologies.
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Methods

Feature extraction

The acceleration signal was windowed into sections

of 0.05 s and embedded using the Takens’ embedding.

y(t) = [x(t),x(t + 1), x(t + 27), ..., x(t + (d — 1)71]

Our analysis found an imbedding dimension of d = 6
to be optimal.
29 topological features were extracted from
persistence diagrams.
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feature 1. H, Wasserstein amplitude. feature 2: H; longest persistence
birth. feature 3. H, Betti number.

Machine learning

A machine learning function correlates the extracted
topological features to roller location.

Feature importance Is heuristically measured using Its
gradient.
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Results

Performance was examined using signal-to-noise

ratio (SNR ), RMSE.

model prediction
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Model demonstrated SNR of 18.6 dB and RMSE of

10.1 mm.
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feature

Gradient analysis identified H, Wasserstein
amplitude, H, first birth, and H, Betti number as the
three most important features.

Conclusion

TDA/ML methods achieved comparable accuracy to
previously investigated pure-ML methods [2].

ML allowed an investigation into feature importance.
Future work will focus on Improving computation
speed under high-rate dynamical constraints.
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