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The purpose of this research project is to investigate a
physics-informed machine learning approach to dry
friction modeling in a semi-active damper.

Purpose

Introduction

Dynamic properties
• The BRFD produces a large amplification of friction force compared to applied force.
• Self-energizing effect: contact pressure increases linearly across the contact surface

of the drum.
• The backlash effect: self-energizing effect depletes during reversal of travel.

Testing procedure
• Characterization tests consisted of sinusoidal displacement profiles with varying

frequency and tension force.
• Validation data collected from five hybrid simulations of the BRFD installed in a

structure under wind loading.

Device Characterization

Results

Discussion

• In the characterization dataset, the physics-informed ML
model outperformed the LuGre model fits to each
dataset. NRMSE decreased from 4.5% to 2.8%, a
reduction of 37%.

• Most of the error reduction comes from the ability to
reproduce the backlash effect.

• Overall, NRMSE for the wind loading hybrid simulation
was 14.7%, showing limited ability to generalize outside
the dataset.

• Expanding the frequency sweep and tension range could
result in better fits to the wind profiles.
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Passive damping systems are now in widespread use in
structural controls and are used to mitigate damage from
wind and earthquake events (Saaed et al. 2015). Semi-active
dampers, which provide active control by altering their
mechanical properties, have the potential to be more
effective and less costly. Among semi-active dampers,
variable friction dampers can provide the highest reaction
force but have highly nonlinear behavior that is difficult to
model such as the stick-slip phenomenon (Downey et al.
2016). Furthermore, friction dampers exhibit highly
nonlinear behavior during reversal of travel, termed
backlash. Though multiple friction models have been
proposed which account for most friction phenomena, thus
far, backlash has not been well understood or modeled (Cao
et al. 2016).

Background

Displacement (m) 

• The LuGre model is a widely used dry friction model but is not capable of modeling semi-active
control or backlash effects.
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𝑔 𝑣
𝑧 𝐹 = 𝜎0𝑧 + 𝜎1 ሶ𝑧 + 𝜎2𝑣

• Two LSTM models produce time-series predictions of 𝐹𝑐, 𝐹𝑠, and 𝜎0.
• Input to LSTM models is band tension.
• Two training methodologies:

• LSTM Training for 𝐹𝑐 and 𝐹𝑠 was performed using values identifiable in the 
characterization data.

• The LSTM prediction for 𝜎0 was trained from error backpropagated from the LuGre 
prediction.

                     

             
              

            

             

              

              

                          

          

    

     
     
  

       

 

    

       

    

        

    

       

    

        

  
   

 
 
   

   
 
 

 

 
 

• To provide comparison, a LuGre model was parameterized to each characterization dataset using a least squares method.

Conclusion

The objective of this project was to develop a physics-
informed ML model capable of capturing the backlash effect
and semi-active control of a dry friction damper. To that
end, a modified LuGre model was created which accepted
time-dependent 𝐹𝑐 , 𝐹𝑠 , and 𝜎0 parameters. Two LSTM
models were developed to predict these parameters from
the actuator tension. This model improved prediction in the
characterization dataset but poorly generalized when
applied to a hybrid simulation of a wind event. Future work
will look at improvements to combined physics and
machine learning models, including improving
generalization to tests of both wind and earthquake events.
Future work will also investigate embedding models into
real-time hybrid simulations to gauge model accuracy.

• The banded rotary friction device (BRFD) is a semi-active
friction damper based on a band brake system.

• As the internal drum rotates, energy is dissipated from
the friction contact between the band and drum surface.

• Electric actuators connected to the band control the
applied tension.

Model Development

Fig. 2. Flow chart of LSTM forward pass.

• Long short-term memory (LSTM) is a type of recurrent
neural network (RNN). RNNs are characterized by time
series prediction and an internal state.

Fig. 6. (a) Time series of a portion of one test with the physics-ML 

model and wind loading simulation. (b) Force-velocity plot of a 

characterization dataset with LuGre model fit and (c) physics-ML 

model.
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25 lb 5.2% 5.5% 5.7% 5.8%
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70 lb 4.8% 4.9% 5.3% 5.9%
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35 lb 4.4% 3.9% 3.1% 3.9%
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80 lb 4.5% 3.8% 3.3% 3.7%
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Fig. 1. BRFD test set-up.

Fig. 3. Self-energizing effect of the BRFD. 

Fig. 4. (a) Force-displacement and (b) force-velocity plots 

from a characterization test.(a) (b)

Table 1. NRMSE error of LuGre parameterization to characterization datasets 

Table 2. NRMSE error of physics-ML model to characterization datasets 

Fig. 4. Diagram of physics-informed ML 

model.
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Fig. 7. (a) Box plot distribution of characterization and validation forces. (b) Frequency 

distribution of velocity in the validation dataset.


