

Liang Cao¹, Austin Downey¹, Simon Laflamme^{1,2}, Douglas Taylor³ and James Ricles⁴

Motivation

- > Passive are generally only applicable to limited bandwidths of excitation and do not perform well against near-field earthquakes due to the nature of the impact that comes in the form of a shock rather than an energy build-up.
- Active systems are not widely used in structural engineering due to high power requirements, controller robustness, and possible actuator saturation.
- > Semi-active damping systems can have considerable economic benefits over passive energy dissipation systems, in addition to enhanced earthquake and wind mitigation. However, limited research work has been conducted.

Experimental Investigation

Phase I : The MFD was prototyped from the duo servo drum brake of a car, due to the readily availability of the components.

Figure 1: Prototype of the MFD

Damper Frame

Brake Shoe

 N_2

Figure 2: Schematic of the braking mechanism in the MFD

Phase II : A single and repeated harmonic test has been conducted at a frequency of 0.5 Hz, amplitude of +/- 1 inch, 1500 psi hydraulic pressure corresponding to approximately 50% of the braking capacity, over 20 cycles per test.

Figure 3: Experimental Set-up for the MFD Dynamic Tests

A NOVEL VARIABLE FRICTION DEVICE FOR NATURAL HAZARD MITIGATION

¹ Dept. of Civil, Construction, and Environmental Engineering, Iowa State University ² Dept. of Electrical and Computer Engineering, Iowa State University ³ Taylor Devices, North Tonawanda, NY ⁴ Dept. of Civil and Environmental Engineering, Lehigh University

