
Original Article

Structural Health Monitoring

1–11

� The Author(s) 2017

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/1475921717702537

journals.sagepub.com/home/shm

Optimal sensor placement within a
hybrid dense sensor network using an
adaptive genetic algorithm with
learning gene pool
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Abstract
This work develops optimal sensor placement within a hybrid dense sensor network used in the construction of
accurate strain maps for large-scale structural components. Realization of accurate strain maps is imperative for
improved strain-based fault diagnosis and prognosis health management in large-scale structures. Here, an objective func-
tion specifically formulated to reduce type I and II errors and an adaptive mutation-based genetic algorithm for the place-
ment of sensors within the hybrid dense sensor network are introduced. The objective function is based on the linear
combination method and validates sensor placement while increasing information entropy. Optimal sensor placement is
achieved through a genetic algorithm that leverages the concept that not all potential sensor locations contain the same
level of information. The level of information in a potential sensor location is taught to subsequent generations through
updating the algorithm’s gene pool. The objective function and genetic algorithm are experimentally validated for a canti-
lever plate under three loading cases. Results demonstrate the capability of the learning gene pool to effectively and
repeatedly find a Pareto-optimal solution faster than its non-adaptive gene pool counterpart.
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Introduction

Structural health monitoring (SHM) is the automation
of damage detection, localization, and prognosis tasks.
From SHM follows prognostics and health manage-
ment (PHM), which focuses on predicting the remain-
ing useful life of the system based on the inferred health
and making optimal (often profit-maximizing) deci-
sions on operations and maintenance (O&M).1,2 Of
particular interest to the authors is SHM/PHM of wind
turbine blades, where the benefits of condition based
maintenance are well understood.2–4 For example, the
use of PHM combined with a well-designed SHM sys-
tem can enable smart load management for damaged
wind turbine blades resulting in a reduced operating
cost and increased blade life.5

The success of an SHM/PHM system depends heav-
ily on the availability of sensor data and the ability to
detect, localize, and quantify a change in health state
within the data set. This task becomes increasingly

challenging for larger scale systems because of the lack
of scalability of existing sensing solutions.6 A solution
is to deploy sensor networks, which have been pro-
moted by significant technological advances in sensing,
wireless communication, and data processing tech-
niques.7 Also, recent advances in polymers have encour-
aged the development of flexible electronics, which can
be used to form dense sensor networks (DSNs) to moni-
tor large areas at low cost. Such applications are often
compared to sensing skins, which often consist of
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discrete rigid or semi-rigid sensing nodes (cells)
mounted on a flexible sheet (skin).8,9

The authors have previously developed a
capacitance-based sensing skin, termed the soft elasto-
meric capacitor (SEC). The proposed SEC was
designed to be inexpensive with an easily scalable man-
ufacturing process.10 A particular feature of the SEC is
that it measures additives in-plane strain, instead of a
traditional measurement of the linear strain along a sin-
gle direction. When used in a DSN configuration, the
SEC is able to monitor local additive strain over large
areas. The signal can be used to reconstruct strain
maps, provided that the additive strain is decomposed
into linear strain components along two orthogonal
directions. Downey et al. presented an algorithm
designed to leverage a DSN configuration along with
other off-the-shelf sensors (termed hybrid DSN or
HDSN) to enable strain field decomposition.6 The
algorithm assumed a shape function and classical
Kirchhoff plate theory, as well as boundary conditions,
and solved for the coefficients of the shape function
using a least squares estimator (LSE). Results demon-
strated that such algorithm had great promise for pro-
viding strain map measurements, but that its
performance was dependent on sensor placement, and
that it was critical to develop an optimal sensor place-
ment (OSP) strategy for the placement of sensors
within a HDSN.

The objective of an OSP is to identify the optimal
locations of sensors such that the measured data pro-
vide a rich level of information. An OSP can be
expressed as a classical combinatorial problem general-
ized as: given a set of n candidate locations, find m
locations, with m \ n, providing the best possible per-
formance. For optimization problems where m or n are
limited, the solution can be solved using a trial-and-
error approach. However, for large sizes of m or n, the
search becomes computationally demanding; a sys-
tematic and efficient sensor placement approach is
required. Naturally, two questions arise with regard to
sensor placement: which type of sensor placement
objective function should be implemented and what
algorithm can be applied for an OSP.11

A large number of formulations of the objective
function have been developed in prior literature. These
can be grouped as:

(a) Fisher information matrix (FIM) for minimizing
the covariance of the parameter estimation
error;12–14

(b) modal assurance criterion (MAC) for minimizing
the maximum off-diagonal value (or the highest
degree of linearity between different modal vec-
tors) in the MAC matrix;15

(c) information entropy for minimizing the uncer-
tainty in model parameter estimates;16

(d) probability of detection for maximizing the prob-
ability of damage detection or minimizing the false
alarm rate;17

(e) mean squared error in estimating the structural
parameter of interest (e.g. mode shape).14

An objective function chosen to validate sensor place-
ment will vary greatly with respect to the application.
Certain objective functions may perform well in select-
ing sensor locations for global parameter identification
(e.g. changes in stiffness) but fail to detect changes in
local damage cases (e.g. crack growth). A solution is the
formulation of sensor placement as a multi-objective
optimization problem.18 For the case of optimizing sev-
eral conflicting objectives, there does not exist a single
solution that simultaneously optimizes every considered
objective. However, there is a set of (possibly infinite)
optimal solutions known as Pareto-optimal solutions.
These solutions reside on the Pareto frontier.

After an appropriate formulation of the objective
function is determined, the remaining task is to select
the optimal sensor locations from the predefined set of
candidate locations. Various solvers for this discrete
optimization problem have been proposed. In SHM,
sensor placement for the extraction of modal shapes
has been extensively researched due to the significant
importance of modal shapes in structural model updat-
ing.7,11,13,19,20 Some solvers that show good promise for
optimizing sensor placement within a HDSN are
reviewed here. Sequential sensor placement offers a sys-
tematic approach by selecting the sensor location that
results in the highest addition in information entropy
for one added sensor and setting that as the first opti-
mal sensor position. All subsequent sensor location
selections are made in a similar manner. While compu-
tationally efficient, sequential sensor placement solvers
lack the ability to find optimal sensor locations because
its search tree is limited by previously selected sensor
locations.12,16 The monkey search algorithm, in its
most basic form, seeks to expand on the sequential sen-
sor placement in searching multiple branches of the
search tree for local optimal solutions. The algorithm is
capable of looking at and jumping to other branches
whose objective values exceed those of the current solu-
tions, allowing it to search multiple branches rapidly.15

Particle swarm optimization addresses the problem of
sensor placement by allowing a set of particles to trans-
verse a search-space while each particle interacts with
the global best-fit particle. In comparison to the solvers
presented above, swarm optimization does not build an
OSP solution but rather seeks to improve on a candi-
date solution (often termed an initial guess) until a
solution of acceptable performance is found.14
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Genetic algorithms (GAs), based on the mutation of
genes over generations, have been proposed as an effec-
tive solution to the limited search space of the sequential
sensor placement and monkey search algorithms.13 They
are bio-inspired global probabilistic search algorithms
that mimic nature’s ability to pass genes from one gener-
ation to the next.21 GAs greatly lend themselves for use
as an OSP solver. Sensor locations can be directly linked
to genes that are mutated through the generations and
have been widely used for the simultaneous placement of
sensors in an OSP.22 After multiple generations, only the
strongest genes remain and form the set of sensor loca-
tions for optimal sensor placement.20

In this paper, a specialized case of an OSP is pre-
sented for application to a HDSN. The HDSN consists
of a sensing skin capable of covering large areas at low
cost for SHM of large-scale components. The intention
is to equip the HDSN with optimally placed resistive
strain gauges (RSGs) for the realization of accurate
strain maps through providing precise strain measure-
ments at key locations. It will enable HDSNs for
strain-based fault diagnosis and prognosis health man-
agement techniques and empower low-cost large-area
electronics such as the SEC. Sensor placement design
for an HDSN should attain three objectives:

(a) optimize the sharing of sensor network resources;
(b) reduce type I errors (false positive for damage

detection damage);
(c) reduce type II errors (fail to detect damage).

All three objectives are considered in the OSP devel-
oped for increasing the accuracy of the reconstructed
strain maps. Sharing of sensor network resources
allows the HDSN to increase information entropy
without the cost and complexity of additional sensors.
A sensor placement algorithm that reduces the prob-
ability of type I errors can reduce the maintenance cost
and provide the operator with a high level of confi-
dence in the system.23 Additionally, the choice of sen-
sor placement that reduces the probability of type II
errors may reduce the risk of catastrophic failure and
the potential for loss-of-life events. Sharing of sensor
resources within the HDSN is obtained through the
implementation of the enhanced LSE algorithm, while
the reduction of type I and type II errors is obtained
through the consideration of multiple objectives.

This work introduces an objective function based on
the linear combination method and validates simulta-
neous sensor placement while increasing information
entropy. The objective function allows for a sensor place-
ment that decreases the likelihood of the SHM system
experiencing a type I or type II error. The single objective
function and adaptive GA with a learning gene pool are

experimentally validated through an OSP problem for-
mulated for a cantilever plate under three loading cases.

For an OSP solver, we adopt a mutation-based GA
through investigating the concept that not all sensor
locations in m offer the same information potential.
We introduce an adaptive mutation-based GA with a
gene pool that is capable of learning as the generations
advance. Utilizing the basic knowledge that some sen-
sor locations inherently add more information to the
system than others, the adaptive GA continuously
alters the algorithm’s gene pool in reference to the
effect of an individual gene on offspring fitness.

Contributions in this article are threefold:

(a) definition of a multi-objective optimization prob-
lem to reduce the occurrence of type I and type II
errors in an SHM system, and solving the multi-
objective problem as a single objective problem by
linear scalarization;

(b) development of the case study of an adaptive
mutation-based GA with learning gene pool for
placement of sensors within a HDSN;

(c) formulation of the optimal deployment of a
HDSN utilizing flexible electronics to monitor
local changes on a global scale and RGSs for the
enforcement of boundary conditions.

Background

This section provides the background on the SEC sen-
sor, including its electro-mechanical model and reviews
the enhanced LSE algorithm developed in previous
work.

Soft elastomeric capacitor

The SEC is a robust and highly elastic flexible electronic
that transduces a change in its geometry (i.e. strain) into
a measurable change in capacitance. The fabrication
process of the SEC was documented by Laflamme
et al.24 The sensor’s dielectric is composed of a styrene-
ethylene-butylene-styrene (SEBS) block co-polymer
matrix filled with titania to increase both its durability
and permittivity. Its conductive plates are also fabri-
cated from an SEBS, but filled with carbon black parti-
cles. All of the components used in the fabrication
process are commercially available, and its fabrication
process is relatively simple, making the technology
highly scalable.

The SEC is designed to measure in-plane strain (x2y
plane in Figure 1) and is pre-stretched and adhered to
the monitored substrate using a commercial two-part
epoxy. Assuming a relatively low sampling rate
(\ 1 kHz), the SEC can be modeled as a non-lossy
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capacitor with capacitance C, given by the parallel plate
capacitor equation

C = e0er

A

h
ð1Þ

where e0 = 8.854 pF/m is the vacuum permittivity, er
is the polymer relative permittivity, A = d � l is the sen-
sor area of width d and length l, and h is the thickness
of the dielectric as denoted in Figure 1.

Assuming small strain, an expression relating the
sensor’s change in capacitance to signal can be
expressed as

DC

C
= lðex + eyÞ ð2Þ

where l = 1/(1 2 n) represents the gauge factor of the
sensor, with n being the sensor material’s Poisson ratio.
For SEBS, n ’ 0.49, which yields a gauge factor l’ 2.
The electro-mechanical model is derived in the work by
Laflamme et al.25 Equation (2) shows that the signal of
the SEC varies as a function of the additive strain ex +
ey. The linearity of the derived electro-mechanical model
holds for mechanical responses up to 15 Hz.25 An
altered electro-mechanical model has been derived in the
work by Saleen et al. for modeling mechanical responses
up to 40 Hz, but is not shown here for brevity.26 The
SEC’s electro-mechanical model has been validated at
numerous occasions for both static and dynamic strain,
see for example some cited references.24–26 Additionally,
the SEC has been shown to operate successfully in the
relatively noisy environment of a wind tunnel mounted
inside a wind turbine blade model.27

Strain decomposition algorithm

The SEC signal comprises of the additive in-plane
strain components, as expressed in equation (2). The
enhanced LSE algorithm was designed to decompose
strain maps by leveraging a HDSN configuration. The

algorithm is presented by Downey et al.,6 and is sum-
marized in what follows.

The enhanced LSE algorithm assumes a parametric
displacement shape function. For simplicity, consider a
cantilever plate that extends into the x–y plane with a
constant thickness c, and is fixed along one edge (at
x = 0). A pth order polynomial is selected due to its
mathematical simplicity to approximate the plates
deflection shape. The deflection shape w is expressed as

w x; yð Þ=
Xp

i = 2; j = 1

bijx
iyj ð3Þ

where bi,j are regression coefficients, with i . 1 to sat-
isfy the displacement boundary condition on the
clamped edge where w(0,y) = 0. Taking a HDSN with
m sensors and collecting displacements at sensors’ loca-
tions in a vector W, equation (3) becomes
W= w1 � � � wk � � � wm½ �T =HB. Where H encodes
sensor location information and B is the regression
coefficients matrix such that B= b1 � � � ba½ �T where
ba represents the last regression coefficient.

The H location matrix is defined as H = [GxHxjGy

Hy] where Hx and Hy account for the SEC’s additive
strain measurements. Gx and Gy are added as appropri-
ately defined diagonal weight matrices holding the sca-
lar sensor weight values gx,k and gy,k, associated with
the k-th sensor. For instance, an RSG sensor k orien-
tated in the x-direction will take weight values gx,k = 1
and gy,k = 0. Virtual sensors, treated as RSG sensors
with known signals, may also be added into H. Virtual
sensors are analogous to RSG sensors, except they are
located at points where the boundary condition can be
assumed to a high degree of certainty. The matrices are
developed from quantities contained in equation (3)

Hx =Hy =
yn

1 x1yn�1
1 � � � xn�1

1 y1 xn
1

yn
m xmyn�1

m � � � xn�1
m ym xn

m

� �
ð4Þ

Linear strain functions ex and ey along the x- and y-
directions, respectively, can be obtained from equation (3)
through the enforcement of Kirchhoffs plate theory as

exðx; yÞ= � c

2

∂2wðx; yÞ
∂x2

= GxHxBx ð5Þ

eyðx; yÞ= � c

2

∂2wðx; yÞ
∂y2

= GyHyBy ð6Þ

where B = [BxjBy]
T.

Linear strains at sensors’ locations along the x- and
y-directions can be obtained from sensors transducing
ex(x, y) and ey(x, y). The signal vector S is constructed
in terms of the sensors strain signal S = s1 � � �½
sk � � � sm�T. Thereafter, the regression coefficient matrix
B can be estimated using an LSE

Figure 1. Sketch of an SEC’s geometry with reference axes.
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bB = ðHTHÞ�1
HTS ð7Þ

where the hat denotes an estimation. It results that the
estimated strain maps can be reconstructed using

bEx = GxHxB̂x
bEy = GyHyB̂y ð8Þ

where Ex and Ey are vectors containing the estimated
strain in the x- and y-directions for sensors transducing
ex(x, y) and ey(x, y), respectively.

A HDSN without a sufficient number of RSGs will
result in H being multi-collinear because Hx and Hy

share multiple rows, resulting in H
T
H being non-inver-

tible. This can be avoided by integrating a sufficient
number of RSGs into the HDSN.

Optimal sensor placement

This section proposes a single objective function that
solves the multi-objective problem of decreasing the
likelihood of type I and type II errors through the pla-
cement of RSGs in the HDSN. The objective function
is based on the linear combination method, borrowed
from the field of robust design that seeks to find a solu-
tion on the Pareto frontier.28 Thereafter, an adaptive
GA specially formulated through the use of a learning
gene pool for applications in sensor placement is
introduced.

Bi-optimization objective function

The occurrence of type I and type II errors in a struc-
ture depends, in part, on the strain-based fault diagnos-
tic techniques applied to the extracted strain maps. In
general, a type I error is the incorrect calcification of a
healthy state as a damage state caused by consistently
inaccurate strain maps being construed for a structural
component. In comparison, a type II error is the failure
to detect a structural fault that the properly selected
strain-based fault diagnostic technique was designed to
detect.

For the purpose of reducing the occurrence of type I
errors within the HDSN’s extracted strain maps, an
optimization problem based on minimizing the mean
absolute error (MAE) between the system and its esti-
mated response is utilized. The use of the MAE for
validation provides a simple yet effective representation
of how a structure will perform under static and
dynamic loading. However, sensor placement valida-
tion based solely on the sensor network’s MAE value
may result in locations of high disagreement between
the estimated and real systems. In the case of a moni-
tored system, such an occurrence could result in a sys-
tem component being stressed past its design limit,
leading to an undetected localized failure (i.e. type II

error). To reduce the occurrence of type II errors in a
HDSN, a second optimization problem based on mini-
mizing the maximum difference between the system
and its estimated response per any individual point on
a strain map is introduced, defined as b. The bi-
objective optimization problem for placing m sensors
can be formulated as

minimize
P

f ðPÞ= ðMAEðPÞ;bðPÞÞ

subject to P= ½p1 . . . pm�T 2 P

0 < m < n

ð9Þ

where P is a unique vector consisting of m unique sen-
sor locations p taken from the global set of sensor loca-
tions, P, with size n.

These multi-optimization problems can be combined
to form a single objective optimization function with
solutions that lie on the Pareto frontier. While various
methods have been proposed for finding solutions on
the Pareto frontier, a straightforward scalarization
approach formulated as a linear combination method
is applied here. The linear combination method finds
the minimum of a weighted linear combination of
objectives, resulting in a Pareto-optimal solution. This
approach allows for trade-offs between the two objec-
tives, thereby increasing the usability of the optimiza-
tion function. The single objective problem for
optimizing the placement of m sensors can be formu-
lated as

minimize
P

fit= ð1� aÞMAEðPÞ
MAE

0 + a
bðPÞ

b0

subject to P= ½p1 . . . pm�T 2 P

0 < m < n

0 < a < 1

ð10Þ

where a is a user-defined scalarization factor to weight
both objective functions. MAE# and b# are factors
used for normalizing MAE and b. The optimization
problem expressed in equation (10) can be converted to
a MAE value minimization problem for a = 0, or a b

minimization problem for a = 1. Selection of an
appropriate value for a is based on the abilities of the
selected strain-based fault detection techniques to avoid
type I and type II errors. Additionally, selection of a

depends on the structure’s capability to tolerate type I
or type II errors.

Adaptive genetic algorithm

The proposed adaptive GA leverages the intuitive idea
that some sensor locations (pk) add little or no informa-
tion (i.e. low-information gene) to the estimated system
when selected for use in a set (i.e. offspring) of potential
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sensor locations P. Conversely, some genes add a mea-
surable amount of information to the system when
selected for use in P (i.e. high-information gene). This
concept is enforced into the GA through the use of a
learning gene pool. The proposed adaptive GA intro-
duces a selection weight dk to each gene. Selection
weights evolve with each generation through a percent-
age change (D%). Therefore, increasing the likelihood
that a high-information gene is selected in the next gen-
eration from the gene pool

dk;generation+ 1 = dk;generation � 1 +
D%

100

� �
ð11Þ

Here k is a high-information gene from the current gen-
eration. Selection weights also reduce the likelihood
that a low-information gene is selected

dk;generation+ 1 = dk;generation � 1� D%

100

� �
ð12Þ

where k is a low-information gene. Bounding the maxi-
mum and minimum d values ensures that all genes are
carried forward, and no genes dominate the gene pool.

The proposed GA framework is presented in
Algorithm 1. Here, Pelite is the best performing P vector
containing unique sensor locations that comprise the
HDSN layout with the best fit. Conversely, Panti 2 elite

is a vector containing the sensor locations that achieve
the worst fit. Lastly, Ppopulation is the array of vectors
that contains all sensor location vectors tested and can
be arranged into P1 2 end based on the performance of
these sensor location vectors. Figure 2 diagrams the
GA flow.

While multiple variations for the adjustment of
selection weights are possible, this work will focus on a
simple two-part updating technique. First, the elite off-
spring from a population is extracted, where all genes
in Pelite are considered high-information genes. Next,
the lowest performing offspring is extracted, where

genes in Panti 2 elite are considered low-information
genes. Thereafter, gene weights d are adjusted by D%
as shown in equations (11) and (12).

Methodology of experimental validation

Validation of the adaptive GA utilizing a learning gene
pool is conducted experimentally on a HDSN. This sec-
tion describes the experimental set-up and methodology
used for the experimental validation.

HDSN configuration

The HDSN consists of 20 SECs and 46 RSGs deployed
onto the surface of a fiberglass plate of geometry
74 3 63 3 0.32 cm3 fixed along one edge with clamps
as shown in Figure 3. Each SEC covers
6.5 3 6.5 = 42 cm2 in area, laid out in a 4 3 5 grid
array. The point node used in constructing the H

matrix is taken as the center of each SEC. RSGs used
in the experimental set-up are foil-type strain gauges of
6 mm length manufactured by Tokyo Sokki Kenkyujo,
model FLA-6-350-11-3LT. They are aligned along the
directions of the plate’s edges, in either a single or dou-
ble configuration, individually measuring ex or ey along
the x- and y-axes as indicated in Figure 3. RSGs were
arbitrarily located on the plate with the considerations
that an equal number of RSGs measure ex and ey and
that the RSGs are relatively evenly distributed.

Three different displacement-controlled load cases
were selected and applied to the plate.

� Load case I. An upward uniform displacement of
125 mm along the free edge.

� Load case II. A downward uniform displacement of
97 mm along the free edge.

� Load case III. A twist of 43� with reference to the
initial plane.

Each test consisted of three 15 s sets of unloaded,
loaded, and unloaded conditions, for a total of 45 s.

Separate data acquisition (DAQ) hardware is used
for the measurement of the SEC and RSG sensors, as
annotated in Figure 3. RSG measurements are recorded
at 100 Hz using a National Instrument cDAQ-9174
with four 24-bit 350 O quarter-bridge modules (NI-
9236). SEC measurements are recorded at 25 Hz using
a 16-bit capacitance-to-digital converter, PCAP-02,
mounted inside the metal project boxes.

Signal processing

A representative SEC signal is shown in Figure 4. Here,
the capacitance signal is acquired from an SEC sensor
under tension (top row, second from left, as shown in

Algorithm 1 Adaptive genetic algorithm with learning gene pool.

1: Pelite = initial guess
2: for generation count do
3: mutate Pelite into Ppopulation

4: for population count do
5: generate LSE strain maps
6: calculate fit
7: end for
8: P1 2 end = ordered Ppopulation f(fit)
9: Pelite = P1

10: adjust dk correlating to pelite
11: Panti 2 elite = Pend

12: adjust dk correlating to panti 2 elite

13: end for

6 Structural Health Monitoring



Figure 3) during load case II. Unfiltered data is pre-
sented in Figure 4(a). While the acquired sensor signal
is relatively noisy, the noise is Gaussian as represented
in the Q-Q plot in Figure 4(b). The oversampled signal
is then decimated providing a single displaced measure-
ment of greater resolution for use in the Enhanced LSE
algorithm.29 Given the static nature of the current work,
this technique was found to provide acceptable results.

Algorithm configuration

Validation of the proposed adaptive GA with learning
gene pool is performed for the case of m = 10 (RGS
sensor locations) and n = 46 (RSG candidate loca-
tions). A HDSN of 20 SECs and 10 RSGs was selected
due to its capability to generate a viable estimation of
the real system,6 while still providing a sufficient search
space. The estimated strain map is validated against the
real strain map, as reconstructed using all 46 RSGs.

A single set of optimized sensor placement locations
(P) is obtained for the experimental HDSN. The final
sensor configuration is the set of locations that best
reproduce all six strain maps, three for ex and three for
ey, under the three loading cases. Estimated strain maps
are produced using the enhanced LSE algorithm pre-
sented in the background section. Additionally, five vir-
tual sensor nodes are added along the fixity such that
ey = 0. The sensors nodes are evenly spaced, placed at
x = 0, y = 0.10, 0.21, 0.31, 0.42 and 0.52 m. Virtual
sensors are not placed at the corners to account for
edge effects present in the plate.

A set of initial sensor locations are needed to
develop the normalization factors, MAE# and b#, used
in equation (9). To provide P, a guess set of 50 ran-
domly selected sensor placement locations were pro-
duced. Using a single objective optimization function
minimizing the MAE a best-of-50 sensor placements
was obtained. The optimization function minimizing
only the MAE was chosen over that minimizing b,
since the former maximizes the fit over all six strain
maps and the latter only minimizes the single point of
greatest disagreement. This best-of-50 sensor place-
ments set was then used to calculate the MAE# and b#
for use with the single objective optimization problem
in equation (10).

Figure 2. Adaptive genetic algorithm with learning gene pool.

Figure 3. Experimental HDSN on a fiberglass substrate.

Figure 4. Representative SEC signal: (a) time series for test
under load case II, (b) Q-Q plot for the SEC signal under load.
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Certain constraints were implemented in the code to
ensure the GA progressed efficiently. The number of
gene mutations per offspring was based on a shifted
half-normal distribution, such that the probability of a
one-gene mutated offspring is 0.5 and a 10-gene
mutated offspring is 0.03 (3s). Mutated genes are
selected from all available genes, excluding the genes
present in the parent (i.e. the parent cannot mutate
back into itself). The probability of selecting a certain
gene from the learning gene pool is based on that
gene’s relative selection weight. Selection weights were
bounded to ensure that no sensor location would
become overly dominant or drop out. The lower bound
was set to 0.1, while the upper bound was set to 4.
These bounds were selected to keep low-information
genes available for selection and reward high-
information genes, without allowing them to diverge to
infinity. No constraints were enforced between individ-
ual offspring.

All GA iterations for parameter testing were run 10
times (the number of repeated GA runs ns = 10) and
terminated after 100 generations. The Student’s t-
distribution with n = ns 2 1 degrees of freedom was
used to obtain an estimate of the true (population)
mean from the sample mean. Specifically, the 95% con-
fidence interval for the true mean was developed based
on the t-distribution to show with a degree of certainty
where the true mean lies.

The proposed adaptive GA with a learning gene
pool easily lends itself to running in parallel code con-
figurations as each offspring can be calculated indepen-
dently. Code was developed using a series of Python
codes, in combination with MATLAB’s parallel com-
puting toolbox. Computations were performed using
individual nodes on a high-performance computing
cluster (HPC). Each node consisted of two 2.2 GHz
4-Core AMD Opteron 2354 with 8 GB of RAM. The
algorithm speed was found to depend almost exclu-
sively on the offspring population size. On average, a
population size of 50 took 18.1 s per generation. The
final sensor placement results were calculated in 26 h
running on 36 nodes.

Results of experimental validation

This section presents the results from the parameter stud-
ies used for the development of a final mutation-based
GA configuration. Thereafter, the selected parameters
are used to obtain an optimized sensor placement for the
experimental HDSN.

Parametric study

First, the selection weights parameter is studied in rela-
tion to the GA’s generational results. Tests were

performed using a sample population of 50 with the
code repeated over 10 runs to obtain a representative
response. A reference case was obtained by solving a
GA without a learning gene pool (selection weight =
0). The mean value of the 10 individual runs is shown
in Figure 5(a). Through comparisons with the adaptive
GAs of selection weights of 1% and 10%, it can be
observed that the adaptive GAs with a learning gene
pool converge to a local minimum faster than the GA
without a learning gene pool.

The effects of changing selection weights on the
GA’s fit after 100 generations are presented in Figure
5(b). The sample mean (i.e. a point estimate of the true
mean) and the 95% confidence interval for the true
mean are presented as a solid red and a dashed blue
line, respectively. Small increases in selection weights
for weights under (\1%) have a large effect on the
GA’s 100 generation results. However, the benefit of an
increasing learning gene pool weights greatly diminishes
for selection weights greater than 1%. For the remain-
der of the tests, a gene pool learning weight of 10% was
used due to it being a typical response when compared
to other weights\1%.

Next, the effect of the population size on the adap-
tive GA with a learning gene pool is studied. Again,
each population size was tested over 100 generations
and 10 runs with the mean of the 100th generation for
population sizes ranging from 1-100 presented in
Figure 6. The analysis shows that an increase in trial
population size has a positive result on the GA’s fitting
capability, as expected. A greater improvement is seen
for unit population increases up to 20, than for unit
population increases after 20. Results presented here
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Figure 5. Effects of D% on GA fit: (a) fit vs generation and (b)
fit after 100 generations vs D%.
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agree with the use of a population size of 50 as selected
earlier. Thus, the population size of 50 is kept constant
for all of the additional tests.

The concept of using multiple elites (parents) from
each generation through the selection of the top k par-
ents (k = 1.4) was explored. After selecting the top k
parents, the next generation was mutated from these
with an equal number of mutations per parent. Any
remaining offspring were applied to the leading parent
to maintain a total population size of 50. Results
showed no benefit to the introduction of multiple elites
into the GA, therefore these results are emitted from
the GA’s formulation.

Lastly, a study of the optimization objective func-
tion presented in equation (10) is performed. Results
presented in Figure 7 show that the proposed objective
function is capable of developing a P that accounts for
potential type I and type II errors. For the experimen-
tal HDSN presented here, and considering type I and
type II errors to be of equal importance, results demon-
strate that a = 0.5 provides an acceptable sensor

placement set P. Furthermore, when compared with a
single objective function based purely on the MAE (i.e.
a = 0), the selected value of a = 0.5 provides a
12.53% improvement in b, while only resulting in a
1.47% cost in the MAE. b has a local minimum at
a = 0.7, this is a consequence of a . 0.7 putting
greater emphasis on fitting one point per generation
over 100 generations. Optimum fitting of sensor loca-
tions for a . 0.7 requires excessive generations as the
problem is solved through reducing the point of great-
est disagreement one-at-a-time. In comparison, a \ 0.7
adds more weight to fitting all the points, therefore
ensuring that any single point of disagreement is less of
an outlier. Selection of an appropriate a depends on
engineering judgment but is taken here as a = 0.5 for
the subsequent simulations.

Optimal sensor locations

Sensor placement for RSGs within the experimental
HDSN is performed using a selection weight (D%) of
10%, a scalarization factor (a) of 0.5, and a population
size of 50. The GA was run 360 times for 500 genera-
tions with the generational improvements reported in
Figure 8(a). The 95% confidence interval for the true
mean was estimated using Student’s t-distribution as
before, presented here as a solid black (true mean) and
a dashed blue line (95% confidence interval). The P

with the best fit at the 500th generation is presented as
the red line with filled circle markers. As expected, the

Figure 6. Effect of offspring population size on GA
performance.

Figure 7. Bi-optimization objective function results presented
as a function of the scalarization factor a for a single objective
function where: a = 0 seeks to minimize a type I error (MAE);
a = 1 seeks to minimize a type II error (b).

Figure 8. Results for obtaining the final set of sensor locations:
(a) generational results for adaptive GA with learning gene pool
used for sensor placement and (b) histogram showing the
sensor results evenly distributed about the mean and compared
to a Student’s t-distribution.
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sensor placement fit improves through the generations
with a final minimum fit of 0.655, a 34.5% improve-
ment from the best-of-50 starting conditions. Figure
8(b) presents a histogram showing the distribution for
the final P, as found by each of the 360 runs with the
optimal P being located in the left-most bin. Figure
8(b) demonstrates that the proposed algorithm is capa-
ble of repeatedly converging to an optimum solution,
without developing any substantial outliers.

The starting guess best-of-50 results for sensor loca-
tions is presented in Figure 9(a). The purely random
selection procedure selected five gauges in the x -direc-
tion, and five gauges in the y-direction. A MAE of
36 me was obtained across all six strain maps with a
maximum difference, b, of 201 me. Optimal sensor loca-
tions selected through the adaptive GA with a learning
gene pool are presented in Figure 9(b). After optimizing
the RSG sensor layout, the MAE was reduced to 23 me
while b was reduced to 131 me. The adaptive GA with a
learning gene pool prioritized the placement of strain
gauges in the x-direction. This can be attributed to ex
being the dominant strain in the test configuration
under study (the dominant bending direction). Strain
map reconstruction with the optimized RSG locations
provided a 34.5% improvement in the HDSN’s MAE
and b (due to a = 0.5) over the best-of-50 starting con-
ditions. The improved strain maps are considered rich
enough to enable a good decomposition of the additive
strain measured by the SECs. Note that weighted fac-
tors could be introduced in the objective function if, for
instance, a higher degree of fit on ey would be required.
The current sensor placement results are limited to the
three loading cases presented here. Sensor placement
for an extended loading case library and the effect of
dynamic loading cases are left to future work.

Conclusion

This work presented a multi-objective optimization
problem to reduce the occurrence of type I and type
II errors in an SHM system, presented a case study of
an adaptive mutation-based GA with a learning gene
pool for the placement of sensors within a HDSN,
and deployed a HDSN utilizing flexible electronics
with optimally placed RSGs for the enforcement of
boundary conditions. The effort presented here
expands on the development of a low-cost sensing
skin for monitoring large-scale structural compo-
nents, including wind turbine blades. A novel sensor
(SEC) is combined with a mature technology (RSGs)
to form a HDSN capable of large-surface monitoring
where the SEC provides a low-cost additive in-place
strain measurements over the entire system and the
RSGs are used for the enforcement of boundary con-
ditions at key locations. When combined with a previ-
ously developed strain decomposition technique, uni-
directional strain maps can be obtained, therefore
allowing the HDSN to act as a sensing skin capable
of monitoring local uni-directional changes in strain
over a global area.

An OSP for finding the key boundary condition
locations for the deployment of RSGs within a grid of
SECs was investigated with the intention to limit the
number of RSGs used within the HDSN. A multi-
objective optimization problem to reduce the occur-
rence of type I and type II errors in SHM and PHM
was defined. The multi-objective optimization problem
was formulated as a single objective optimization prob-
lem by linear scalarization. The objective problem was
solved through an adaptive GA with a learning gene
pool for the placement of RSG sensors within the
HDSN. The adaptive GA gene pool was updated every
generation to reflect the quantity of information indi-
vidual genes added to offspring.

Experimental validation demonstrated the adaptive
GA’s capability to efficiently place RSG sensors within
a HDSN with consideration of predetermined loading
cases. The efficient placement of RSG sensors enables
the deployment of large arrays of SECs over a large
surface with the integration of a minimal number of
RSGs. This will allow the monitoring of strain maps
over large structural components, thereafter, strain
maps could be used to detect, localize, and quantify
damage, or to create high fidelity models to enhance
our understanding of certain structural behaviors. Such
models can be particularly helpful in the development
of PHM models and condition-based maintenance
scheduling.

Figure 9. Optimized Sensor placement: (a) sensor placement
for best of 50 random placements and (b) sensor placement
obtained through adaptive GA with a learning gene pool.
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