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Abstract
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Condition evaluation of wind turbine blades is difficult due to their large size, complex geometry
and lack of economic and scalable sensing technologies capable of detecting, localizing, and
quantifying faults over a blade’s global area. A solution is to deploy inexpensive large area
electronics over strategic areas of the monitored component, analogous to sensing skin. The
authors have previously proposed a large area electronic consisting of a soft elastomeric

capacitor (SEC). The SEC is highly scalable due to its low cost and ease of fabrication, and can,
therefore, be used for monitoring large-scale components. A single SEC is a strain sensor that
measures the additive strain over a surface. Recently, its application in a hybrid dense sensor
network (HDSN) configuration has been studied, where a network of SECs is augmented with a
few off-the-shelf strain gauges to measure boundary conditions and decompose the additive
strain to obtain unidirectional surface strain maps. These maps can be analyzed to detect,
localize, and quantify faults. In this work, we study the performance of the proposed sensing skin
at conducting condition evaluation of a wind turbine blade model in an operational environment.
Damage in the form of changing boundary conditions and cuts in the monitored substrate are
induced into the blade. An HDSN is deployed onto the interior surface of the substrate, and the
blade excited in a wind tunnel. Results demonstrate the capability of the HDSN and associated
algorithms to detect, localize, and quantify damage. These results show promise for the future
deployment of fully integrated sensing skins deployed inside wind turbine blades for condition
evaluation.

Keywords: structural health monitoring, capacitive-based sensor, soft elastomeric capacitor,
flexible membrane sensor, sensor network, damage detection, damage localization

(Some figures may appear in colour only in the online journal)

1. Introduction

The profitability of industrial-scale wind energy projects is
challenging due to their reliance on public subsidies, unpre-
dictable energy source, and reliable technology. Additionally,
varying operation and maintenance (O&M) costs add com-
plexity and uncertainty to the management of wind energy
projects [1]. To achieve an increase in wind turbine system
reliability and therefore decrease costs related to wind energy
production, an O&M approach that utilizes condition-based
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maintenance (CBM) should be implemented [2, 3]. The use of
CBM is even more important for offshore farms where O&M
costs may be up to three times higher than that of land-based
systems [4], due largely to higher transportation and site
access costs [5]. The current state of condition monitoring of
wind turbine blades consists mainly of vibrations, and visual
analyses [2, 6]. Recently, interest has grown in the use of
structural health monitoring (SHM) for the condition assess-
ment of wind turbine blades, towers and other structural
components due to their high replacement cost [4, 7], effect
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on system availability [5], and maintenance complexity [8].
Monitoring the mesostructures of wind turbines (e.g., towers
and blades) is difficult due to the need to distinguish between
faults in the structure’s global (e.g. changing load paths, loss
in global stiffness) and local (e.g. crack propagation, com-
posite delamination) conditions [9]. Recent attempts for the
SHM of wind turbine blades have used a limited number of
sensors and have applied a variety of post-processing tech-
niques (e.g. statistical and modal-based) to localize damage
[10, 11]. However, this approach lacks the capability to dis-
tinguish local failures from global events and has demon-
strated a limited effectiveness at damage localization [6, 12].

A solution to this local/global detection problem is to
deploy a dense sensor network (DSN) inside the component
that is capable of detecting local faults. These integrated
sensing skins mimic biological skin in that they are capable of
detecting and localizing damage over the blade’s global area
and with the objective to enable low-cost, direct sensing of
large-scale structures. Sensing skins can be made of large area
electronics [13] or of rigid or semi-rigid cells mounted on a
flexible sheet [14]. Early work in the field of sensing skins
consisted of capacitive- [15] and resistance- [16] based tactile
force sensors. More recently, sensing skins with piezoceramic
transducers (PZT) and receivers built into a flexible skin have
been proposed [17]. In certain cases, sensing skins with the
integrated electronics for data acquisition (DAQ) and signal
processing mounted directly onto the skin have been devel-
oped [18, 19]. Various researchers have proposed and
experimentally validated sensing skin-type solutions for wind
turbine blades. For instance, Song et al demonstrated through
experimental validation in a wind tunnel that a network of
PZT sensors can be used to detect damage in wind turbine
blades [20]. Schulz et al proposed the use of series-connected
PZT nodes for the continuous monitoring of wind turbine
blades, allowing for a finer localization of damage [17].
Simulations were used to show that an array of these sensors,
deployed on a 2D plate, could be used to detect and localize
damage. Ryu et al demonstrated a self-sensing thin film
fabricated from poly(3-hexylthiophene) (P3HT) and multi-
walled carbon nanotubes that is capable of monitoring strain
through the photocurrent generated by the photoactive
nanocomposite [21]. These sensors are capable of generating
their own power, therefore eliminating their need for external
power sources. Rumsey et al deployed a number of SHM
systems on the outside of an experimental wind turbine blade
at Sandia National Laboratories [22]. Various sensor tech-
nologies were used, including PZT and strain-based sensors,
to monitor the blade during a fatigue test. In general, suc-
cessful damage detection was found to require an optimal
sensor placement and synchronization of sampling between
different sensor types.

In this work, the authors present the vision of a fully
integrated DSN for the real-time SHM of wind turbine blades
and experimentally validate a prototype skin that demon-
strates the feasibility of the concept. This DSN consists of an
inexpensive and robust large area electronic consisting of a
highly elastic capacitor based on a styrene-co-ethylene-co-
butylene-co-styrene (SEBS) block co-polymer. Termed the

soft elastomeric capacitor (SEC), the sensor is customizable
in shape and size [23]. The SEC possesses the unique cap-
ability of measuring the substrate’s additive strain (g, + €y),
and its static [24] and dynamic [25] behaviors have been well
documented including numerical demonstrations for damage
detection applications in wind turbine blades [26].

A particularly useful attribute of the SEC is its capability
to measure additive in-plane strain. It follows that the signal
must be decomposed into orthogonal directions in order to
obtain unidirectional strain maps. A previously developed
algorithm is used in this work to decompose the sensors’
additive strain into estimated unidirectional strain maps [27].
The algorithm, termed the extended least squares estimator
(LSE) algorithm, leverages off-the-shelf sensors such as
resistive strain gauges (RSGs), to form a hybrid DSN
(HDSN). A deflection shape function for the monitored sub-
strate is assumed along with boundary conditions (assumed or
measured through the RSGs) and uses the LSE to solve for
the shape function’s coefficients. In this work, the recon-
structed strain maps are inspected to investigate how damage
induced into the monitored substrate changes the loading path
of the blade. Thereafter, it is shown that damage in the form
of leading edge faults (e.g. changing boundary conditions)
can be localized through changing the assumed boundary
conditions of the plate. Lastly, the quality of these unidirec-
tional strain maps is measured in the form of a reconstruction
error to develop a damage detecting feature for a predefined
section of the HDSN [28]. This network reconstruction fea-
ture (NeRF) algorithm allows the sensing skin to fuse the
high-channel-count sensing skins data into a single damage
detecting feature, therefore providing a high level of data
compression and increasing the functionality of the proposed
system.

This paper experimentally verifies the HDSN, deployed
inside a model wind turbine blade excited by aerodynamic
loading in a wind tunnel. The reported results are the first use
of a large area electronic for damage detection in a wind
turbine blade under aerodynamic loading. These tests validate
the use of SECs in a wind turbine blade and demonstrate the
potential utility of the concurrently proposed, fully integrated,
SEC-based sensing skin. The contributions of this work are
three-fold: (1) propose an integrated SEC-based sensing skin
for the real-time SHM of wind turbine blades; (2) demonstrate
the capability of the SECs to operate in the electro-
magnetically noisy environment of a wind tunnel, showing
that the SEC would be capable of operating inside the simi-
larly noisy environment of a wind turbine blade; (3) evaluate
the HDSN data through previously developed algorithms
showing that the SEC-based sensing skin is capable of
detecting damage within an HDSN that is not directly mon-
itored by an SEC.

2. Background on sensing skin
The SEC-based sensing skin is illustrated in figure 1, with the

sketch of an individual SEC shown in figure 1(a). The fully
integrated DSN system, as presented in figure 1(b), would
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Figure 1. Conceptual layout of a fully integrated SEC-based sensing skin for a wind turbine blade: (a) SEC with connectors and annotated

axis; and (b) proposed deployment inside a wind turbine blade.

consist of SECs of varying geometries and densities along
with the required electronics for power management, DAQ,
data processing, and communications, all mounted onto a
flexible substrate (e.g. Kapton). The optimal placement of
RSGs within a grid of SECs has been previously used by the
authors to improve the accuracy of strain map reconstruction
from SEC data [29]. These sensing skins would be deployed
inside a wind turbine blade, either at the factory or in the field
to monitor cases of interest, such as repair made at the root of
a blade [8].

Data (capacitance) for a set of SECs in close proximity
would be collected by a centrally located capacitance-to-
digital converter, multiplexed to measure multiple SECs.
These converters are located close to the SECs to allow for
low noise measurements, while multiplexing allows the sen-
sing skin to function with a reduced number of converters.
Data would be transferred over a serial bus (e.g. CAN, 12C) to
a control/wireless transmission node. This configuration
allows multiple capacitance-to-digital converters per trans-
mission node, therefore reducing the number of wireless
channels needed. These control nodes collect, process, and
parse the data for wireless transmission back to a wireless hub
mounted inside the rotor hub. The use of wireless transmis-
sion nodes allows for the easy installation of a sensing skin,
particularly in cases where a sensing skin is added to an in-
service blade such as that needed to monitor a repair. Addi-
tionally, wireless transmission adds redundancy to the system
when compared to a single serial bus being used to carry data
over the entire length of the blade, a useful feature given the
long service life of wind turbine blades. Power can be pro-
vided through a variety of methods, including energy har-
vesting (for sensing skins mounted inside a wind turbine
blade), flexible solar cells embedded into the sensing skin
(when mounted on the outside of a wind turbine blade) or
batteries when only short-term monitoring is required.

In the rest of this section, the background on the SEC
sensor is provided, which includes its electro-mechanical
model, followed by a review of the extended LSE algorithm

and the NeRF algorithm for damage detection, localization,
and quantification.

2.1. Soft elastomeric capacitor (SEC)

The SEC used in the sensing skin is a robust large area
electronic that is inexpensive, easy to fabricate, and custo-
mizable in shape and size. The sensor’s fabrication procedure
is described in [23]. Briefly, the sensor’s dielectric is com-
posed of a SEBS block co-polymer matrix filled with titania
to increase both its durability and permittivity. Conductive
plates are painted onto each side of the SEBS matrix using a
conductive paint fabricated from the same SEBS, but filled
with carbon black particles. Material, equipment and techni-
ques used in the fabrication are readily available and the
sensor’s fabrication process is relatively simple, making the
technology highly scalable.

The SEC transduces a change in a monitored substrate’s
geometry (i.e., strain) into a measurable change in capaci-
tance. It is stretched during its application to enable tensile
and compressive strain measurement and is adhered using
commercial epoxy. Assuming a low sampling rate (<1 kHz),
the SEC can be modeled as a non-lossy capacitor with
capacitance C defined by the parallel plate capacitor equation,

A
C= eoerz, (1)

where ey = 8.854 pFm ™' is the vacuum permittivity, e, is the
polymer relative permittivity, A = d - [ is the sensor area of
width d and length /, and £ is the thickness of the dielectric as
annotated in figure 1(a). Assuming small strain, an expression
relating the sensor’s change in capacitance to its signal can be
expressed as [25]

AC
? = >\(5x + 5y)’ (@)

where A = 1/(1 — v) represents the gauge factor of the
sensor, with v being the sensor material’s Poisson ratio. For
SEBS, v =~ 0.49, which yields a gauge factor \ ~ 2.
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Figure 2. Network reconstruction feature (NeRF) algorithm, the previously developed extended LSE algorithm for strain map decomposition

is enclosed inside the dashed red box.

Equation (2) shows that the signal of the SEC varies as a
function of the additive strain ¢, + ¢,.

2.2. Strain decomposition algorithm

The extended LSE algorithm was designed to decompose the
SEC signal’s additive strain measurement, as expressed in
equation (2), by leveraging an HDSN configuration consisting
of SECs and unidirectional strain sensors (e.g. RSGs). RSGs
measure boundary conditions within the HDSN that can be
used to increase the capability of the extended LSE algorithm
to decompose strain maps. Boundary conditions on the edges
of the structure are also introduced into the algorithm as
virtual unidirectional sensors at locations where the uni-
directional strain can be assumed within a high level of
confidence. The extended LSE algorithm is presented in [27],
diagrammed in the red dashed rectangle in figure 2, and
summarized in what follows.

The extended LSE algorithm assumes a pth order poly-
nomial displacement shape function (w), selected due to its
mathematical simplicity and its capability to develop a wide
range of displacement topographies. The deflection w in the
x—y plane can be written

P
W(-x’ y) = Z bij-xiyj7 (3)
i=1,j=1
where b;; are regression coefficients. Considering an HDSN
with m sensors (SEC and RSGs in this case), displacement
values at sensors locations can be collected in a vector
W € R™. Equation (3) becomes

W =[w - wg wp]T = HB

)
where the subscript k is associated with the kth sensor. Matrix
H contains sensor location information, and B contains the f
regression coefficients B = [b1 bf]T.

Matrix H is defined as H = [I\H,|I H,] where H, and
H, account for the SEC’s additive strain measurements, with
I\ and T} being diagonal weight matrices holding the scalar
sensor weight values ~, , and 5, ,. For instance, an RSG
sensor k orientated so that it measures strain in the x direction
will take the weight values ~, , = 1 and ~,;, = 0. Addition-
ally, virtual sensors are used to enforce boundary conditions
and are treated as RSG sensors with known signals, typically
€ = 0. These virtual sensors are added into H at locations
where the boundary condition can be assumed to a high
degree of certainty. The components of matrix H can be

developed from equation (3):

n n—1 n—1 n

yoay X1 Y1 X

— _ n n—1 n—1 n
H,=H, = Ve o Xk X Ve Xk | o)

n n—1 n—1 n

Y Xmb, X Ym Xm

Using Kirchhoff’s plate theory, unidirectional strain functions
for &, and ¢, are obtained:

2
e (x, y) = _5% = IH,B,, (6)
0%w(x,
gy(x, y) = —gw = LH,B,, @)

where c is the thickness of the plate and B = [B,|B,]”. Here,
B, and B, hold the regression coefficients for strain compo-
nents in the x and y directions, respectively.

A vector S = [$1 - 8 sm]” containing the signal
for each sensor in the HDSN is constructed from measure-
ments with s = &, + ¢, for an SEC and s, = &, or 5, = ¢,
for an RSG. The regression coefficient matrix B is estimated
using the LSE:

B = (HTH) 'HTS, ®)

where the hat denotes an estimation. It follows that the esti-
mated strain maps can be reconstructed using

E,=TLHB, E =LHB, )

where E, and Ey are vectors containing the estimated strain in
the x and y directions for sensors transducing ¢, (x, y) and
gy (x, y), respectively.

Without a sufficient number of unidirectional sensors in
an HDSN, H will be multi-collinear because H, and H, will
share multiple columns. This results in H'H being non-
invertible. This is avoided by integrating a sufficient number
of RSGs and virtual sensors into the HDSN.

2.3. Network reconstruction feature (NeRF)

The NeRF algorithm [28] provides a method for damage
detection and localization formulated for strain map mea-
surements. It works through comparing the signal measured
by an individual sensor with the estimated strain map
(equation (9)) for a predefined HDSN. An error function
defined as the mean square error between a sensor’s measured
and estimated strains can be used to associate a feature value
with a given increase in the shape function’s complexity (p in
equation (3)). Consider an HDSN section similar to that
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Table 1. Polynomial complexities used for condition assessment
features.

No. Term added No. Term added
1 PERNE 8 32, x2y3
2 x2y, xy? 9 x5, y6

3 x4,y 10 Xy, xy°

4 x3y, xy? 11 x’,y’

5 x2y? 12 x%y, xy©

6 X,y 13 x3y2, x%y?
7 x4y’ xy4 14 x4y3, x3y4

shown in figure 1(b), consisting of a network of SECs in an
array and a few optimally placed RSGs used at key locations.
To establish the NeRF’s theoretical foundation, we first
consider an ideal situation where strain maps are easily
approximated through the use of low order shape functions.
The error in the approximation, calculated for the m sensors
within the HDSN, can be quantified as:
m
v= L3-S (10)
m =1

where V is a scalar. For a given sensor location k, S is the
sensor signal, and ] is the estimated sensor signal using the
reconstructed strain maps. The estimated sensor signals for
RSG sensors measuring ¢, and ¢, are taken from I:Zx and I:]y,
respectively, while the estimated SEC signals are taken as the
summation of ]:ZX and l:ly at given locations (equation (2)). The
NeRF algorithm is diagrammed in figure 2, where the
extended LSE algorithm used to develop the orthogonal strain
maps is encapsulated inside the red dashed rectangle.

For an undamaged area of a structure, the strain field will
have a simple strain topology, while damage will generally
represent itself as a discontinuity in the surface’s strain field,
which will develop a more complex strain topology. It fol-
lows that in general areas without damage, the strain field can
be accurately estimated with low-order shape functions, while
damaged areas will require higher-order shape functions to
minimize reconstruction error. To quantify the level of strain
map complexity in a section of the structure, and therefore
whether it contains damage, NeRF uses the section’s recon-
struction error (V') and how this reconstruction error responds
to adding higher order shape functions. As higher-order terms
are added to the shape function, the reconstruction error (V)
between the estimated and measured state will substantially
reduce in the case of damaged sections, allowing the section’s
condition to be evaluated from the changing level of recon-
struction error. This technique is capable of providing damage
detection within an area monitored by an SEC-based sensing
skin even at locations that are not directly covered by an SEC.
Additionally, NeRF adds versatility to the sensing skin for
monitoring wind turbine blades as it reduces the number and
density of required sensors and is computationally light.

Building the binomial terms used in the NeRF algorithm,
as listed in table 1, requires starting  with
wx, y) =Y 1j—1byx'y/ as the most basic shape function.
To build the following terms of increasing complexity, shape

function components are added in symmetric pairs from the
outside of the Pascal’s triangle, progressing inwards for a
given row. For example, the value for feature No. 1 becomes
the difference in reconstruction error, V, between the baseline
shape function wyue (x, y) = 21‘2:1,1':1 b;x'y/ and the baseline
shape function with term No. 1 added
wi(x, y) = Z,z:1,j:1ngiyj + x3 4 y3. Expanding to feature
No. 2, this value becomes the difference between
wi(x, y) = Y7 oy byxly! + x4y and
wy(x, y) = Siy oy byxly! 4+ %3 + ¥ + x%y + xy%, and so
forth. Note that no displacement-defined boundary conditions
are enforced into the shape functions. Instead, all boundary
conditions are enforced into strain topography through the use
of unidirectional sensors (e.g. RSG) or assumed boundary
conditions. A high level of data compression is provided
through the fusion of all the sensing channels in the sensing
skin into a single parameter, therefore reducing the compu-
tational effort required in analyzing and storing the extracted
data. This level of compression could offer a great benefit to
owners and operators of wind turbine blades given their
complexity and relatively long design life of 10-30 years [8].

3. Methodology

This section discusses the experimental setup used in vali-
dating the concept of the SEC-based sensing skin and in
verifying the capability of the skin to detect damage.

3.1. Experimental setup

The SEC-based sensing skin is experimentally validated using
an HDSN consisting of 12, 3 x 3 cmz, SECs and 8 uni-
directional RSGs, TML model #FCA-2 deployed onto the
inside of a model wind turbine blade tested in a wind tunnel.
The experimental setup, shown in figure 3(a), consisted of a
139 cm wind turbine blade model. It is modeled after the
center third of a 30 m wind turbine blade, designed using
NREL S-series airfoils that are aerodynamically efficient with
high lift to drag ratios that generate low noise during opera-
tion. The model was 139cm in length with airfoil cord
lengths at the root and tip of 40 and 15cm, respectively.
Further details on the model’s design and its experimental
setup are presented in Sauder et al [30]. The model is
mounted vertically with its root section attached to a 6 degree-
of-freedom frame that allowed for the measurement of root
forces. The model (figure 3(b)) consisted of an aluminum spar
fixed at the root (blade root mounted up) and 10 wood /plastic
airfoil sections mounted onto it [30]. Sections 2 and 3, if
counted from the blade’s root, are used to support a fiberglass
substrate that is used in testing of the deployed HDSN. This
substrate, shown in figure 3(b), could be removed through a
series of 24 bolts mounted around its perimeter. DAQ systems
were mounted above the blade model in the mounting frame.
The SEC DAQs are shown in figures 3(b)—(c). Each SEC
DAQ used a 24 bit capacitance-to-digital converter multi-
plexed over 4 channels that sampled at 22 samples/second
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Figure 3. Experimental setup: (a) wind turbine blade model mounted in the wind tunnel and buffeting vanes used for generating the turbulent
airflow; (b) wind turbine blade showing the model’s monitored fiberglass substrate; and (c) DAQ used for the SEC sensors.
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Figure 4. Experimental HDSN configuration: (a) monitored fiberglass substrate with labeled bolts along the leading edge (right-hand side) of
the substrate; (b) schematic with labeled SECs and RSGs, where virtual sensors in the x and y directions are denoted by blue circles and green
diamonds, respectively; and (c) interior surface view of the HDSN (RSGs A and D are not shown, as they were added after the substrate was

installed on the model).

S s_l). An actively shielded coaxial cable, used to remove
the parasitic capacitance found in the cables, was used to
connect the SEC sensors to the DAQs. RSG measurements
were obtained using a National Instruments 24 bit 350 (2
quarter-bridge module (NI-9236) and sampled at 2000 Ss™'.
Data for the SECs and RSGs were collected simultaneously
through a LabVIEW code.

Experimental validation was carried out in the Aero-
dynamic and Atmospheric Boundary Layer wind and gust
tunnel located in the Wind Simulation and Testing Laboratory
(WiST Lab) at Iowa State University. The wind tunnel has an
aerodynamic test section of 2.44 x 1.83 m” dimensions and a
design maximum wind speed of 53 ms~'. The model blade
was set at a 3-degree angle of attack and air turbulence was

induced into the tunnel by forcing a set of buffeting vanes
(figure 3(a)) to oscillate at the blade’s characteristic frequency
of 3.1 Hz. This turbulence created an almost sinusoidal buf-
feting load (lift and moment) along the span of the blade.
The HDSN was mounted onto the inside surface of the
fiberglass substrate of dimensions 270 x 220 x 0.8 mm’,
shown in figure 4(a). The deployed HDSN is sketched in
figure 4(b) and shown in figure 4(c). Due to the sectioned
geometry of the blade, the majority of the bending and torsion
induced strain developed in the gap between sections 2 and 3.
The 24 bolts used to fasten the substrate onto the model were
used as boundary conditions for the extended LSE algorithm,
as annotated in figure 4(b). The thin fiberglass substrate was
significantly less stiff than the aluminum frame that formed
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Table 2. Damage steps for boundary conditions (bolts) removed.

Damage step Healthy 1 2 3 4 5 6 7 8

Bolts removed None 5 4,5 3,45 3,456 3,456,7 2,3, 4,5, 1,2,3,4,5, 1,2,3,4,5,6,
6,7 6,7 7,8

Damage length (cm) 4.2 7.7 11.0 14.0 17.0 21.0 23.8 25.5 27.3

the backbone of the model. For this reason, the strain along
the axis of the bolts is assumed to be zero. Thus, ¢, = 0 is
taken at each bolt location along the top and bottom of the
monitored substrate, and €, = 0 is taken at each bolt location
along the vertical edges of the monitored substrate. A picture
of the HDSN before its installation onto the wind turbine
blade model is shown in figure 4(c). In the picture, only 4 of
the 8 RSGs are shown because the remaining 4 RSGs were
installed after the substrate was attached to the model.

Two forms of damage were induced during the mea-
surement campaign. Damage case I consisted of introducing a
simulated delamination in the form of changing boundary
conditions through removing the bolts on the leading edge
(facing into the wind flow) of the blade. The removed bolts
are annotated in figure 4(a) and their order of removal for 8
different damage steps are listed in table 2. The section’s
condition is expressed in terms of the length of the longest
unsupported section (damage length) of the monitored sub-
strate. Experimental data sets were acquired for the healthy
case (where the leading edge had an unsupported length of
4.2 cm) and following each damage step, resulting in a total
of nine data sets acquired. Damage case II consisted of cutting
the skin in 1 cm increments after an initial 2 cm cut through
the center of the skin along a predefined path as shown in
figures 4(a)—(b). The induced cut damage was approximately
2 mm wide and went completely through the fiberglass sub-
strate. Data was acquired for the healthy condition (no cut
damage) and for the 12 damage steps (2—13 cm).

Signal interference between the SEC cables caused by
the active shielding of SEC DAQs required that only one SEC
DAQ was in operation at any given time. Therefore, exper-
imental data for each test was obtained over 3 repeated test
runs, each test recording 4 SECs and all eight RSGs. This
superposition of data was possible because of the constant
load provided by the buffeting machine, which was confirmed
through the similarity of RSG data throughout the repeated
tests. Using the RSG data as a reference, the final SEC
experimental data was aligned to provide a complete data set
of 12 SECs and 8 RSGs. To reduce sensor noise in the SEC
and provide a common time stamp to simplify data analysis,
the sensor signals were filtered as follows. A low pass Wei-
bull filter with a cutoff frequency of 10 Hz was applied to
remove any high-frequency noise. Next, a principal comp-
onent analysis decomposition was applied on the SEC signals
retaining the first four eigenvalues. Lastly, the SEC and RSG
signals were resampled to 100 Ss™' with a common time
stamp using a spline interpolation.

3.2. Verification of damage detection capability

The verification of the damage detection capability started
with the investigation of the performance of the SEC to
monitor the dynamic buffeting-induced strain in the wind
turbine blade, that is investigated through an analysis in the
frequency domain. Thereafter, unidirectional strain maps
decomposed using the extended LSE algorithm presented in
section 2.2 are used to track the changing load paths between
a healthy state and the fully damaged leading edge case.
Strain maps are computed from data taken when ¢, at RSG B
was at the maximum compressive strain (i.e. when the tip of
the model was at its maximum displacement). An empirical
damage detection method is achieved through updating the
assumed boundary conditions and monitoring of the error
between the estimated unidirectional strain maps and the
measured strain. Here, we leverage the concept of updating
the assumed boundary conditions to detect and localize a
damage caused by the change in boundary conditions for
damage step 2. In total, five possible damage locations were
investigated in an attempt to localize damage step 2. These
attempts were the removal of boundary conditions (bolts) 2
and 3,3 and 4, 4 and 5, 5 and 6 and 6 and 7. Assumptions
containing bolts 1 and 8 were found to be unfeasible due to
the complex interaction of the monitored substrate’s edge
effects and the assumed shape function. The leading edge
damage consisting of damage step 2 (bolts 4 and 5 removed)
was selected because it provided large enough damage to be
trackable with the deployed HDSN, while still providing a
relatively large search space of five possible damage
locations.

Lastly, the NeRF algorithm is used to track the damage
propagation over the entire section as a function of the
unsupported leading edge (damage case I) and the length of
the induced cut (damage case II). For damage case I, the
features developed from adding polynomial complexities No.
5 and 7, as listed in table 1, are used to track the growth of the
unsupported leading edge damage of the monitored section as
presented in table 2. Thereafter, the extent of the cut in
damage case II is tracked using the features developed from
adding polynomial complexities No. 5 and 6.

4. Validation

The capability of the SEC to track the dynamic buffeting-
induced strain in the wind turbine blade is shown in figure 5.
Data extracted from SEC #5 and RSG B (figure 4(b)) are
compared due to their proximity. It can be observed that the
SEC captures the blade’s excitation frequency of 3.1 Hz and
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Figure 8. NeRF algorithm results for: (a) changing boundary conditions on the leading edge of the monitored substrate; (b) cut damage

induced into the center of the monitored substrate.

tracks an additional excitation harmonic at 6.2 Hz. This
compares well with the excitation frequency detected by the
RSG and its additional harmonics, as denoted in figure 5. The
excitation frequency of 3.1 Hz was set to the blade’s funda-
mental frequency, as shown by Sauder et al [30]. Time series
measurements for the SEC and the RSG are presented in
figure 5 (insert). An approximatively sinusoidal shape can be
seen in both time series, albeit the SEC exhibits a slower
sampling rate and a higher level of noise when compared to
the RSG. Individual SEC strain samples are shown as black
dots, and the filtered SEC signal is presented as the solid blue
line. Overall, the SEC demonstrates an excellent capability at
tracking the blade’s response and frequency domain compo-
nents while operating in the relatively noisy environment of a
wind tunnel. Future deployment of an SEC-based sensing
skin will require an increased precision and sampling rate of
the capacitance-to-digital converter. The difference in the
amplitude of the measured strain between the RSG and SEC
sensors is a result of their different locations on the substrate,
the torsion present in the substrate, and the the capability of
the SEC to measure additive instead of uni-directional strain
(as expressed in equation (2)).

Next, the performance of the HDSN at developing full
field strain maps is experimentally validated. Results are
shown in figure 6. The decomposed strain maps ¢, and ¢,
(developed using equation (9)), for the healthy case
(figures 6(a)—(b)) and the damaged case (figures 6(c)—(d)),
demonstrate that the HDSN is capable of tracking changes in
the monitored substrate’s strain fields. For the undamaged
test’s reconstructed strain maps, the enforced boundary con-
ditions ensure that £, = 0 along the leading and trailing edges
of the monitored substrate (figures 6(a)—(b)). As expected,
when the boundary conditions on the leading edge are
removed and the boundary conditions in the LSE are updated
to reflect the monitored substrate’s change in strain, a com-
pressive strain energy moves into the leading edge due to the
increased bending. Changes in the substrate’s strain field can

be related to changes in its load path. Additionally, results
demonstrate that the HDSN can reconstruct relatively com-
plex strain fields, such as that caused by the torsional motion
of the blade model, represented by the different parts of the
substrate being under tension and compression. The blade
torsion detected by the strain maps was corroborated through
accelerometers, force transducers, and video captured during
testing [30].

Results from updating the enforced boundary conditions,
as discussed in section 3.2, to match the damage state of the
system are presented in figure 7. Here, the error between the
estimated strain maps and the experimental RSG data is
measured as a mean fitting error across all 8 RSGs for the two
orthogonal strain map reconstruction cases. The mean error is
obtained by averaging the error throughout six full vibration
cycles of the model. A comparison in the measured error
between uncorrected strain maps that maintain a constant set
of boundary conditions throughout all the damage steps and
the corrected strain maps that update the boundary conditions
to match each damage step is presented in figure 7(a). Results
show that updating the boundary conditions to match the
damage state provides a consistently better fit than that
obtained through the use of original boundary conditions. In
the case of the damage step 8 (all the leading edge bolts
removed), a 44.5% improvement in the measured error is
obtained through updating the boundary conditions to match
measurements. These results further validate the technique of
updating of boundary conditions used to develop the strain
maps presented in figure 6. Results presented in figure 7(b)
exhibit the fitting error as a function of the boundary condi-
tions that are removed, here shown for damage step 2.
Boundary conditions were removed in pairs to match the
known damage size in damage step 2 (bolts 4 and 5 removed).
The fitting error for the removal of bolts 4 and 5 results in a
lower fitting error, therefore identifying damage step 2 cor-
rectly. This demonstrates the capability of the HDSN to
localize damage.
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Lastly, we present results obtained from the NeRF
algorithm, presented in section 2.3, applied to damage cases I
and II. Figure 8 presents the extracted feature distances as a
function of the length of unsupported leading edge in case I,
and as a function of the length of the induced cut in case II.
Figure 8(a) shows that the feature distance tends to decrease
as the length of the unsupported section of the monitored
substrate along the leading edge increases. This is to be
expected as the removal of discrete boundary conditions
(bolts) will reduce the complexity in the strain map topo-
graphy, therefore reducing the error between the estimated
strain maps and the measured strain. This reduction in strain
map complexity manifests itself as a smaller feature distance,
as computed by the NeRF algorithm. Here, the damage case
with an unsupported length of 27.3 cm is the same damage
case presented in figures 6(c)—(d). Conversely, the NeRF
algorithm results for damage case II presented in figure 8(b)
demonstrate that the damage induced into the center of the
monitored substrate in the form of a cut results in the NeRF’s
feature distance increasing with the length of the cut. This can
be justified by noticing that the damage introduces a dis-
continuity into the monitored substrate’s strain map. These
results show that the HDSN can accurately quantify damage.

5. Conclusion

This paper experimentally investigated the use of a novel
sensing skin for condition evaluation of a wind turbine blade.
The novel sensing skin consists of an array of SECs, each
acting as a flexible strain gauge. The critical advantage of the
sensing skin is its high scalability to its low cost and ease of
fabrication. It can, therefore, be used to cover very large
surfaces. We presented a specialized deployment of the sen-
sing skin, which included a few off-the-shelf RSGs to enable
the precise measurement of boundary conditions, therefore
forming an HDSN. The resulting HDSN can be used to
decompose the SEC’s additive strain signal into unidirec-
tional strain maps based on the previously developed exten-
ded LSE-based algorithm. These reconstructed strain maps
were used with a damage detection algorithm termed NeRF,
which provided damage detecting features to detect, localize,
and quantify damage.

Experimental validation was conducted by deploying the
HDASN inside a scaled model wind turbine blade excited in a
wind tunnel to simulate an operational environment. The
experimental HDSN consisted of 12 SECs and 8 RSGs. Two
different damage cases were investigated: a delamination
simulated by the removal of bolts, and a crack simulated by a
cut. Results demonstrated that the HDSN could be used to
track the model wind turbine blade’s global condition through
analysis of SECs outputs in the frequency domain, which
yielded similar results to the analysis of the output data of
RSGs. Both damage cases were successfully detected and
quantified through the use of the NeRF algorithm. The
delamination (bolt removal) was tracked through an increas-
ingly simplified strain map with increasing damage due to the
release of restraints on the boundaries, while the crack (cut)
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was tracked through an increasingly complex strain map with
increasing damage due to the created discontinuity in strain.
The capability of the HDSN to locate damage was demon-
strated with the identification of which bolts were removed. In
the case of a crack, localization would be achieved through
proper subdivisions of the HDSN, which was not possible
with the current experimental configuration due to the rela-
tively low number of SECs. Additionally, the NeRF algo-
rithm was used to provide a high level of data compression
through fusing the 20 channel HDSN into a single damage
detecting feature.

Results showed the promise of the sensing skin tech-
nology for damage detection, localization, and quantification
in a wind turbine blade under aerodynamic loading in a wind
tunnel (i.e., operational environment). The high level of data
fusion provided by the NeRF algorithm enhances the poten-
tial of the sensing skin through reducing the amount of data
stored for operations. Given the demonstrated capability of
the HDSN at measuring strain maps, the technology offers
potential for updating computational models in real-time.
These high fidelity models could then be used for the design
of SHM strategies and research and development activities.
Future work will include development of the sensing skin
hardware and algorithms for updating of high fidelity models
using sensor data collected by a distributed array of sensing
skins.
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