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A B S T R A C T

Damage detection in wind turbine blades requires the ability to distinguish local faults over a global area. The
implementation of dense sensor networks provides a solution to this local-global monitoring challenge. Here the
authors propose a hybrid dense sensor network consisting of capacitive-based thin-film sensors for monitoring the
additive strain over large areas and fiber Bragg grating sensors for enforcing boundary conditions. This hybrid
dense sensor network is leveraged to derive a data-driven damage detection and localization method for wind
turbine blades. In the proposed method, the blade's complex geometry is divided into less geometrically complex
sections. Orthogonal strain maps are reconstructed from the sectioned hybrid dense sensor network by assuming
different bidirectional shape functions and are solved using the least squares estimator. The error between the
estimated strain maps and measured strains is extracted to define damage detection features that are dependent
on the selected shape functions. This technique fuses sensor data into a single damage detection feature, providing
a simple and robust method for inspecting large numbers of sensors without the need for complex model driven
approaches. Numerical simulations demonstrate the proposed method's capability to distinguish healthy sections
from possibly damaged sections on simplified 2D geometries.
1. Introduction

Wind energy growth is driven at the nexus of public policy and eco-
nomics (Borenstein, 2012). As with most renewable energy projects, a
wind farm's economic viability typically relies on public subsidies, a
predictable energy source, and mature and reliable technology (Afana-
syeva et al., 2016). The economic evaluation of wind projects is partic-
ularly challenging due to the unpredictable operation and maintenance
(O&M) costs. O&M traditionally includes the cost of all necessary repairs
and replacements. The estimation of O&M costs for wind generating fa-
cilities is difficult as operational lifetime data is insufficient or inappli-
cable to the quickly evolving energy infrastructure. Therefore, O&Mcosts
are estimated on a cost per MW hours basis, allowing owners to share
O&M costs across multiple turbines. However, this practice is less
convenient for operators of small wind farms where the ability to hedge
cost is difficult (Celik, 2003), for operators of wind farms in micro grids
where downtime is often compensated for with expensive fossil fuels
(VanderMeer and Mueller-Stoffels, 2014), and for operators of wind
farms in the offshore environment where the cost structure is often
May 2017; Accepted 20 June 2017
largely unknown (Cockerill et al., 2001).
Reduction of uncertainty related to the O&M of a wind turbine

structural system (Ghoshal et al., 2000) and the enabling of prognostics
and health management (PHM) (Richards et al., 2015; Ekelund, 2000) is
therefore of interest to wind farm owners and operators. Monitoring the
mesostructures (e.g. towers and blades) of wind turbines is difficult due
to the need to distinguish between faults in the structure's global (e.g.
changing load paths, loss in global stiffness) and local (e.g. crack prop-
agation, composite delamination) conditions (Ghoshal et al., 2000).
Traditional approaches for structural health monitoring (SHM) of wind
turbine blades have focused on monitoring the structure using a limited
number of sensors and applying a variety of post-processing techniques
(Gross et al., 1999). However, these techniques often lack the ability to
distinguish local failures from global events and demonstrated a limited
damage localization ability (Zou et al., 2000).

A logical solution to the local/global detection problem is to simply
increase the number of sensors in the monitored structure by creating
dense sensor networks (DSNs). These networks, often termed electronic
artificial skins, e-skins or sensing skins, are thin electronic sheets that
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Fig. 1. HDSN technology: HDSN section with FBG sensors enforcing strain boundary
conditions and SECs providing large area sensing coverage; insert: annotated SEC sensor
with reference axes.
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mimic the ability of biological skin to detect and localize damage.
Sensing skins often consist of rigid or semi-rigid cells mounted on a
flexible sheet, as demonstrated by Xu et al. (2003) and Lee et al. (2006).
Recent developments in sensing skins have progressed towards the
development of microelectromechanical systems (MEMS) mounted in
flexible sheets without the need for rigid packaging (Mahmood et al.,
2015). Sensing skins with the transducing sensor built into the skin have
been proposed (Chang et al., 2008). Additionally, Sensing skins with
integrated electronics for signal processing have also been introduced
(Yao and Glisic, 2015). These integrated sensing skins offer the potential
to enable low-cost direct sensing and can be scaled for the monitoring of
mesoscale systems, including wind turbine blades. Schulz et al. have
proposed the use of a dense sensor network of series-connected piezo-
ceramic (PZT) nodes for the continuous monitoring of wind turbine
blades Schulz and Sundaresan (2006). The densest deployment of sensors
for the SHM of wind turbine blades known to the authors was done by
Rumsey et al. at Sandia National Laboratories Rumsey and Paquette
(2008). Various sensor technologies were investigated for the potential of
monitoring a composite blade's structural condition during a fatigue test.
Generally, successful damage detection was found to require optimal
sensor placement, synchronization of sampling between different sensor
types, and having sensor technology capable of detecting damage that
occurs on a small scale while being able to be distributed as an array over
the entire structure.

Leveraging recent advances in the field of flexible electronics (Rogers
et al., 2010), the authors have developed a sensing skin termed the soft
elastomeric capacitor (SEC). Developed around an inexpensive nano-
composite based on a styrene-co-ethylene-co-butylene-co-styrene (SEBS)
block co-polymer, the SEC is a low-cost sensor customizable in shape and
size (Laflamme et al., 2013a). Its static (Laflamme et al., 2013b) and
dynamic (Laflamme et al., 2015) behaviors have been characterized,
including numerical and experimental damage detection applications to
wind turbine blades (Laflamme et al., 2016; Downey et al., 2017).
Additionally, the effectiveness of a DSN consisting of SECs for detecting
fatigue cracks has been demonstrated (Kharroub et al., 2015). A partic-
ularity useful attribute of the SEC is its ability to measure additive in-
plane strain, and therefore, its signal must be decomposed into orthog-
onal directions if one desires to reconstruct uni-directional strain maps.

With the advancement of low-cost, high-channel-count sensing skins,
damage detection and data-fusion techniques need to be developed to
provide SHM and PHM capabilities based on this unique class of sensors.
Data fusion consists of the integration of sensor data from a multitude of
sources in order to make a useful representation of the monitored sys-
tems. This representation should be of sufficient quality to assist in
forming a damage detection, localization, and quantification decision.
Additionally, data fusion can be used to obtain a damage detection
feature from multiple sensors that is informative and non-redundant. In
the case of SHM, features should allow for the distinction between a
damaged and an undamaged state. Examples found in the literature are
most commonly based on measured dynamic signals such as resonant
frequencies, mode shapes, or properties derived from mode shapes (Zou
et al., 2000; Sohn et al., 2003; Han et al., 2006).

This work introduces a computationally efficient data fusion tech-
nique that is capable of monitoring mesoscale structures without asso-
ciated models or historical datasets. More specifically, the proposed
NeRF (Network Reconstruction Feature) algorithm is capable of classi-
fying hybrid dense sensor networks (HDSN) sections into healthy, or
containing potential damage. This work uses HDSNs consisting of SECs
for covering the large areas of a blade and Fiber Bragg grating (FBG)
sensors for the enforcement of boundary conditions along the edges of
sections and the separation of monitored sections. The SEC is used
throughout this work as a large area electronic strain transducer. How-
ever, similarly developed large area electronics optimized for strain
measurements could also be used (Yao and Glisic, 2015; Burton
et al., 2016).

The NeRF algorithm works through comparing an individual sensor's
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measured state with the estimated response within an HDSN section. This
response is built through assuming a shape function and using the least
squares estimator (LSE) to approximate uni-directional strain maps. An
error function is introduced, which is defined as the mean square error
(MSE) between the sensor’s measured and estimated strains. Thereafter,
features are defined as the change in error associated with a given in-
crease in the shape function's complexity. This technique fuses the SEC
and FBG strain data into a single damage detection feature, providing a
simple and robust method for inspecting large numbers of sensors
without necessitating complex physical models.

The contributions of this work are three-fold: 1) an algorithm for the
development of a damage detection feature that integrates data from a
newly proposed HDSN into a single detection value is introduced; 2) a
demonstration of the damage detection feature's ability to detect, quan-
tify and localize damage; and 3) the evaluation of the damage detection
feature's capabilities without relying on models or historical datasets.
This paper is organized as follows. Section 2 introduces the SEC along
with relevant background including the strain decomposition algorithm
previously developed. Section 3 introduces the NeRF algorithms simu-
lations used for validation. Section 4 presents the numerical models used
for the simulations. Section 5 discusses the simulation results. Section 6
concludes the paper.

2. Background

This section provides background on the SEC sensor along with a brief
review of the extended LSE algorithm for decomposing the SEC additive
in-plane strain signal.

2.1. Soft elastomeric capacitor

The SEC is a thin film, large area sensor that transduces a change in its
geometry (i.e., the monitored substrate strain) into a change in capaci-
tance. The SEC measures in-plane strain (x� y plane in Fig. 1(insert)).
The fabrication process of the SEC is documented in Laflamme et al.
(2013a). Briefly, the dielectric is fabricated from an SEBS block co-
polymer filled with titania to enhance its durability and permittivity.
The conductive plates are fabricated from an SEBS filled with carbon
black particles. The SEC is a highly scalable technology, because it uses
only commercially available and inexpensive materials and its
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fabrication process is simple.
SECs are adhered to the monitored substrate under pre-stress using a

commercial epoxy, allowing it to measure strain under both tension and
compression. Its electro-mechanical model is derived in Laflamme et al.
(2015). Briefly, assuming a low sampling rate (<1 kHz), the SEC can be
modeled as a non-lossy capacitor with capacitance C, given by the par-
allel plate capacitor equation,

C ¼ e0er
A
h

(1)

where e0 ¼ 8:854 pF/m is the vacuum permittivity, er is the polymer
relative permittivity, A ¼ d⋅l is the overlapping area of the conductive
electrodes and h is the thickness of the dielectric.

Assuming small in-plane strain, an expression relating the sensor's
change in capacitance to the substrate's surface strain can be expressed as

ΔC
C

¼ λ
�
εx þ εy

�
(2)

where λ ¼ 1=ð1� νÞ represents the gauge factor of the sensor. For SEBS,
ν≈0:49, which yields a gauge factor λ≈2. Eq. (2) shows that the signal of
the SEC varies as a function of the orthogonal strain components εxþ εy .
The linearity of the electro-mechanical model has been validated for
mechanical responses under 15 Hz (Laflamme et al., 2015). For me-
chanical responses up to 40 Hz, an altered electro-mechanical model is
presented in Saleem et al. (2015) but is not shown here for brevity. The
SEC's electro-mechanical model has been validated for both static and
dynamic strain and is presented in references (Laflamme et al., 2013a,
2015; Saleem et al., 2015).
2.2. Strain decomposition algorithm

Leveraging an HDSN configuration, orthogonal strain maps can be
obtained from the additive strain measured by the SEC, as expressed in
Eq. (2), using a network of sensors in combination with boundary con-
ditions enforced using linear strain measurement techniques. In this
work, FBG sensors are used as linear strain sensors. These measurements
are used for updating the HDSN at key locations. The algorithm, termed
the extended LSE algorithm, is presented in Downey et al. (2016) and
summarized in what follows.

The extended LSE algorithm starts by assuming a parametric
displacement shape function. Here, a pth order polynomial is selected as
the displacement shape function due to its mathematical simplicity and
its capability to develop a wide range of displacement topographies. The
shape function is developed for the x-y plane with a constant plate
thickness c, such that the deflection shape w is expressed as

wðx; yÞ ¼
Xp

i¼1;j¼1

bijxiyj (3)

where bi;j are regression coefficients. Considering an HDSN with m sen-
sors that includes both SEC and FBG sensor nodes, and collecting dis-
placements at sensor locations in a vector W 2 ℝm, Eq. (3) becomes W ¼
½w1 ⋯ wk ⋯ wm �T ¼ HB. Here, H encodes information on sensor
locations and B contains the regression coefficients such that B ¼�
b1 ⋯ bf

�T where bf represents the last regression coefficient.
Appropriately defined diagonal weight matrices Γ are introduced into

the H matrix to account for the SEC additive strain measurements such
that H is defined as H ¼ ½ΓxHx

��ΓyHy�. Γx and Γy hold sensor weight
values along the x and y axes, respectively. These matrices are formed
with scalars γx;k and γy;k associated with the k-th sensor. For instance, an
FBG node k oriented to make strain measurements in the x direction will
take weight values γx;k ¼ 1 and γy;k ¼ 0. The following matrices are
developed from quantities contained in (3):
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Hx ¼ Hy ¼
�
yn1 x1yn�1

1 ⋯ xn�1
1 y1 xn1

ynm xmyn�1
m ⋯ xn�1

m ym xnm

�
(4)

Linear strain functions εx and εy along the x and y directions,
respectively, can be obtained from Eq. (3) through the enforcement of
Kirchhoff's plate theory as

εxðx; yÞ ¼ �c
2
∂2wðx; yÞ

∂x2
¼ ΓxHxBx (5)

εyðx; yÞ ¼ �c
2
∂2wðx; yÞ

∂y2
¼ ΓyHyBy (6)

where B ¼ ½Bx
��By�T .

Constructing a signal vector, S ¼ ½ s1 ⋯ sk ⋯ sm �T where S
contains the additive SEC and unidirectional FBG strain measurements,
the regression coefficient matrix B can be estimated using an LSE:

bB ¼ ðHTHÞ�1HTS (7)

where the hat denotes an estimation. Estimated strain maps can now be
reconstructed using

bEx ¼ ΓxHx
bBx

bEy ¼ ΓyHy
bBy (8)

where bEx and bEy are vectors containing the estimated strain in the x and y
directions, respectively.

In the case of an HDSN without a sufficient number of unidirectional
inputs, H will be multi-collinear as Hx and Hy will share multiple rows,
resulting in HTH being non-invertible. Additionally, HTH may lack suf-
ficient information to be invertible for a shape function of high
complexity. It follows that HTH is invertible given a sufficient level of
input information for a given shape function. Experimental validation of
the extended LSE algorithm for static Downey et al. (2016) and dynamic
conditions Downey et al. (2017) have been used to validate the strain
decomposition method in field conditions.

3. NeRF algorithm

The proposed NeRF algorithm is presented in what follows.
3.1. Network reconstruction feature (NeRF)

The algorithm provides damage detection and localization capabil-
ities by subdividing a complex geometry into a set of geometrically
smaller, and typically simpler, sections. The algorithm works by
comparing the signal measured by an individual sensor with the esti-
mated response within a predefined HDSN section. The estimated
response is obtained by assuming a shape function and using a least
squares estimator (LSE) to approximate uni-directional strain maps. An
error function, defined as the mean square error (MSE) between a sen-
sor's measured and estimated strains, is used to associate a feature value
with a given increase in the shape function complexity. An advantage is
that the HDSN can be strategically customized (e.g., to monitor crack
growth, or inspect a key structural location). Fig. 2 illustrates this idea
where a high-resolution HDSN is deployed inside a wind turbine blade
along the leading edge where the geometry is more complex, and a low-
resolution HDSN is deployed inside the blade along the trailing edge of
the blade where the geometry is simpler.

Consider an HDSN section similar to that shown in Fig. 2, consisting
of optical fibers with integrated FBG sensors forming the perimeter and
SECs placed within. Establishing the NeRF's theoretical foundation re-
quires that we first consider an ideal situation where strain maps are
easily approximated through the use of low order shape functions. The
error in the approximation, calculated form sensors, can be quantified as:



Fig. 2. Subdividing a wind turbine blades' complex geometry into independent sections of
different resolutions, here the HDSN is deployed only along the bottom of the wind turbine
blade for clarity.

Table 1
Polynomial complexities used for condition assessment features.

No. term added No. term added

1 x3 ; y3 8 x3y2; x2y3

2 x2y; xy2 9 x6; y6

3 x4 ; y4 10 x5y; xy5

4 x3y; xy3 11 x7; y7

5 x2y2 12 x6y; xy6

6 x5 ; y5 13 x5y2; x2y5

7 x4y; xy4 14 x4y3; x3y4
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V ¼ 1
m

Xm
k¼1

�
Sk � S0k

�2 (9)

where V is the MSE value. For a given sensor location k, Sk is the sensor
signal, and S0k is the estimated sensor signal using the reconstructed strain
maps. The estimated sensor signals for FBG sensors measuring εx and εy

are taken from bEx and bEy, respectively, while the estimated SEC signals

are taken as the summation of bEx and bEy at any given location (Eq. (2)).
The algorithm is outlined in Fig. 3 where orthogonal strain maps are
created using the extended LSE algorithm shown inside the red
dashed rectangle.

Generally, undamaged structural components will result in strain
fields with relatively simple topologies that can be estimated with low-
order shape functions. Adding damages into the monitored substrate
will produce highly curved strain fields that require higher-order shape
functions to reconstruct to the same level of reconstruction error. This
principle is leveraged in the proposed method for damage detection and
localization. The proposed NeRF algorithm monitors a section's recon-
struction error (V) in response to adding higher order shape functions. As
the higher-order terms are added to the shape function, the reconstruc-
tion error (V) between the estimated and measured state will substan-
tially reduce in the case of damaged sections. Therefore, the condition of
a section can be assessed from the changing level of reconstruction error.
This technique provides damage detection potential within the moni-
tored area, even at locations that are not directly covered by an SEC. This
technique adds versatility to the proposed HDSN for monitoring meso-
scale structures such as wind turbine blades, by reducing the number and
density of required sensors.
3.2. Feature extraction

Starting with wðx; yÞ ¼ P2
i¼1;j¼1bijx

iyj, the binomial terms listed in
Table 1 are shape function components that are added in symmetric
pairs from the outside of the Pascal triangle propagating inwards for
a given row. Therefore, value for feature No. 1 becomes the difference
in reconstruction error, V, between the baseline shape function wðx; yÞ ¼P2

i¼1;j¼1bijx
iyj and the baseline shape function with term No. 1 added

wðx; yÞ ¼ P2
i¼1;j¼1bijx

iyjþ x3þ y3. Similarly, feature No. 2 becomes the

difference between wðx; yÞ ¼ P2
i¼1;j¼1bijx

iyjþ x3þ y3 and wðx; yÞ ¼P2
i¼1;j¼1bijx

iyjþ x3þ y3þ x2yþ xy2, and so forth. Note that no
Fig. 3. Network reconstruction feature (NeRF) algorithm.
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displacement-defined boundary conditions are enforced into the shape
functions. Instead, all boundary conditions are enforced into strain
topography through the use of the uni-directional FBG sensors. The
development of features from each HDSN section provides a high level of
data compression from the fusion of all sensor signals S into a single
feature-based scalar.

4. Numerical models

The proposed NeRF algorithm is validated on two different numerical
models intended as a preliminary validation to demonstrate the concept
of the proposed algorithm. In this regards, it is worth commenting that
real wind turbine blades are complex composite layups, representing
highly optimized structures with complicated aerodynamic shapes Wang
et al. (2016); Malcolm and Hansen (2002), under highly varying loading
conditions and exhibiting various failure conditions Kong et al. (2005);
Rumsey and Paquette (2008). Therefore, the selected models are to
demonstrate the theory associated with the proposed algorithm and
should not be considered as accurate representations of a full-scale wind
turbine blade. The conclusive validation of the proposed algorithm
would therefore require experimental or field tests that go beyond the
purposes of this work.

For each presented model, the HDSN sections are constructed simi-
larly to the configuration illustrated in Fig. 1, where networks of SEC
sections are divided by FBG sensors measuring either εx or εy . SECs are
placed on an offset grid to allow for more complete coverage, and to
introduce some complexity into HTH following preliminary results sug-
gesting that this configuration may increase the HDSN's capability to
detect damage that is not directly monitored by an SEC. Sensors are
positioned with a slight randomness of ±2 cm to account for simulated
error in placement and to add a small amount of non-uniformity to the
HDSN sections to better approximate an installed condition. FBGs are
placed along the x and y axes with a small gap around the edge to
reproduce a realistic installation. Gaussian noise is introduced into the
sensors signals with noise levels of 25±με for the SECs (taken from pre-
vious work (Laflamme et al., 2013b)) and ±5 με for the FBG nodes,
representing a typical FBG systems with low-resolution (Majumder
et al., 2008).

The first simulated model is a cantilever beam under uniform
tensional loading of 45 kN/m, as shown in Fig. 4(a). It is used to validate
the NeRF algorithm under simple geometry and loading. The HDSN
sections are constructed with networks of 14 SECs, as denoted by the
number in the bottom right corner of each section, divided by unbroken
strands of continuous optical fibers with integrated FBG sensors
measuring either εx or εy . Three damage cases are used (illustrated in
Fig. 4(a) as I, II, and III), each to investigate particular opportunities and
limitations of the NeRF: case I) capacity to detect and quantify large
damage in an area where the strain field has relatively small curvatures;
case II) capacity to detect large damage spanning two HDSN sections; and
case III) capacity to detect small damage in an area of relatively complex
strain maps. Damage is introduced in the form of composite ply delam-
ination and is represented into the model by a 50% reduction in stiffness
for the affected area Rodriguez (2016). A stiffness reduction of 25% was
also introduced for damage case I to determine the ability of the NeRF



Fig. 4. HDSNs used in simulation of the NeRF: a) rectangular cantilever plate under
tensile loading; and b) wind turbine shaped cantilever plate under pressure loading; insert:
routing of FBG over diagonal edge to provide alternating measurements of εx and εy .
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algorithm to quantify the extent of the damage.
The second simulated model is a wind turbine blade simplified as an

isotropic cantilever plate (Rumsey and Paquette, 2008) illustrated in
Fig. 4(b). A uniform pressure load of 1 kN/m2 is applied onto the top
surface of the model. Similarly to the first simulated model, the HDSN
sections are constructed with network grids of SECs divided by unbroken
strands of continuous FBG sensors. In the case of FBG sensor along the
diagonal edge of the blade, the FBG sensors are arranged as shown in the
insert of Fig. 4(b) to provide alternating εx or εy signals along the
Table 2
HDSN and FEA configurations.

model 1 model 2

rectangle blade

HDSN sections 9 13
SECs 126 194
SEC size 120 cm2 120 cm2

FBG points 104 249
FBG points (x) 52 141
FBG points (y) 52 108
FEA elements shell shell
No. of elements 25,372 52,590
No. of integration points 9 9
Young's Moduli 20 GPa 20 GPa
Density 2 kg/mL 2 kg/mL
Loading 45 kN/m 1 kN/m2

Thickness 7 mm 40 mm
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diagonal. The number of SECs per section is denoted in the lower right
corner of each section. This configuration is used to assess two additional
opportunities and limitations: case IV) capacity to detect damage present
in locations of highly curved strain fields; and case V) capacity to detect
damage present in areas of low curvature strain fields relatively close to
instances of more complex strain fields. Table 2 lists model-specific data
relating to both finite element models and their corresponding HDSN. For
both models, a mesh convergence study was performed. The sizes of
mesh were selected to ensure that each model had a dense enough
meshing to allow each simulated SEC to cover at least six elements.

5. Results

This section presents and discusses simulation results for the valida-
tion of the NeRF algorithm. Feature extraction and quantification for an
example damage case is first demonstrated. It is followed by a presen-
tation of data for each damage case, and a discussion of the algorithm's
performance at damage localization.
5.1. NeRF features

Consider the HDSN that contains damage case I. The level of sensor
error V obtained as a function of the increasing shape function
complexity is shown in Fig. 5, where its mean sensor error (V) and the
individual reconstruction errors are plotted for the healthy case
(Fig. 5(a)) and for the damage case I (Fig. 5(b)). Here, polynomial
complexity 0 reports V when using the shape function , wðx; yÞ ¼P2

i¼1;j¼1bijx
iyj with each corresponding term being added sequentially.

The corresponding features, quantified as the reduction in error (ε2)
between two polynomial complexity terms are presented along the bot-
tom of the plots. Feature numbering is related to the higher order term
used in constructing the feature. The scatter for the polynomial com-
plexities is a result of noise introduced into the sensors.

The healthy state, as shown in Fig. 5(a), converges after a few added
shape function terms, demonstrating that the strain topography can be
easily reproduced with a relatively simple shape function. This is
demonstrated by the fact that adding more complex terms to the shape
Fig. 5. Reconstruction error V (scatter plot) and extracted corresponding features (stem
plot along the bottom) for the HDSN containing damage case I: a) healthy state; b) damage
state (damage case I).



Fig. 7. Damage detection and localization for the square plate using feature distances: a)
healthy case; b) damage case I; c) damage case II; and d) damage case III.
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function results in only incremental improvements. In comparison,
damage case I starts with a considerably higher level of strain error and
continuously benefits from adding more complexity to the shape func-
tions. In both cases, the shape function beyond that produced by term No.
13 became overly complex, whereas HTH becomes non-invertible.
Therefore, solving for higher shape function with greater complexity
would require additional sensors be added into the HDSN section. As
expected, the feature values are greater for the damaged case when
compared to the healthy state, providing a means to detect and quan-
tify damage.

5.2. Damage quantification

The magnitude of features can be used to quantify different levels of
damage as presented in Fig. 6. Here, features obtained from adding
polynomial complexities terms No. 3 and 13 are used to distinguish
varying levels of damage for damage case I. Damage levels in the form of
a reduction in stiffness of 25% and 50% for the damaged area are shown.
Each feature scatter increases as the damage level increases. This is as
expected given that the LSE encounters more variation with the increase
in topology complexity. The feature distance can be calculated as any n-
dimensional combination of NeRF features. A two-dimensional feature
taken from the mean of the distances is shown here for simplicity. A two-
dimensional Gaussian distribution confidence interval with amplitude
2σ, where σ is the standard deviation, is plotted over the scatter plot to
show the distribution of features.

5.3. Damage localization

Damage localization can be conducted through the spatial compari-
son of feature values or feature distances taken as the Euclidean distance
between the origin and the center of a Gaussian cluster such as that
illustrated in Fig. 6. Results shown in Fig. 7 are taken as the feature
distance from the center points of features No. 6, 9, and 11, and the
origin. First, the simple cantilever plate under a tension load is consid-
ered. Fig. 7(a) presents the healthy state of the plate while Fig. 7(b–d)
present damage cases I to III, respectively. As expected, Fig. 7(a) shows
that a more complex strain topology is located at the fixity of the plate.
These results are to be expected as the fixity will result in more complex
local strain fields. The non-symmetric relationship is most likely a result
of the slight randomness applied to individual SEC layouts, resulting in
non-identical HDSN sections, and of the noise induced into the sensor
signals. Damage case I is presented in Fig. 7(b). Here, the location of a
high strain map reconstruction error V is easily detectable as the error
caused by the damage case is significantly higher than that present along
the fixed edge. This sharp increase in error demonstrates the capability of
the NeRF algorithm to distinguish between HDSNs that may be damaged
Fig. 6. Feature distance for complexities terms No. 3 and 13 showing results for varying
levels of damage.
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from those that are healthy. This damage case is detectable without the
use of historical data or external models.

Damage case II is introduced to test the NeRF algorithm's robustness
to multiple damaged sections, here placed across two HDSN sections
(illustrated in Fig. 4(a)). The feature distance results, presented in
Fig. 7(c) demonstrate that the algorithm is capable of detecting damage
in both HDSN sections. These results provide evidence that the NeRF
algorithm is robust in terms damage detection across multiple HDSN
sections, allowing greater flexibility in terms of HDSN layout.

Damage case III is used to study the algorithm's capability to detect a
small damage not directly measured by any SEC sensor, as shown in
Fig. 8(a). Damage case III consists of a 50% reduction in stiffness for a
0.2% area of the HDSN section, positioned between SEC sensors. Feature
distances are presented in Fig. 7(d). While the magnitude of the feature
distance increased by approximately 50%, form 1:95� 10�9 ðε2Þ for the
healthy state to 2:97� 10�9 ðε2Þ for the damaged state, the assessment of
damage is difficult because a complex strain topology is already present



Fig. 8. Damage localization within an HDSN: a) damage case III and associated HDSN; b)
absolute difference (error) between the estimated and measured strain for SECs within
the HDSN.

Fig. 9. Damage detection for wind turbine blade using feature distances: a) healthy case;
b) damage case IV; and c) damage case V.
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in the HDSN section of interest. An alternative is to compare the
measured strain with the estimated strain for individual sensors
throughout the HDSN.

To do so, the estimated strain for the damaged and undamaged case is
obtained using the extended LSE algorithm and a high order shape
function encompassing complexity terms 0–11 for the HDSN section of
interest. The high complexity shape function, using complexity terms
0–11 was selected to match the highest polynomial complexity term used
in building the damage feature distance and is capable of developing
accurately reconstructed strain maps for the HDSN section. Fig. 8(b)
shows the absolute error between the additive SEC sensor signal and the
reconstructed strain maps for both the healthy and damaged states. Note
that for the healthy case, the error is relatively small for all SEC sensors.
When damage is introduced into the HDSN section the mean error of the
section increases. The damage can easily be localized as close to SEC No.
6 due to the high strain difference between the estimated and measured
strain of 98 με. Sensors No. 5 and 7 also show a large error value for the
damage case III where sensor No. 7 is higher due to the more complex
strain topography in that section of the HDSN. All other SEC error values
fall within strain difference of 20 με and therefore fall close to the sys-
tem's noise band. A reduction in system noise or filtering of sensor signals
is required for localizing damage with respect to other sensors (e.g. SEC
No. 9 and 2). These findings demonstrate that the NeRF algorithm is
capable of detecting and localizing relativity small damage within an
HDSN, using only sensor data without any external models or
assumptions.

To further investigate the performance of the NeRF algorithm, two
additional damage cases are studied on the more complex wind turbine
blade model presented in Fig. 4(b). Results are presented in Fig. 9 in the
same format as for Fig. 7, using the Euclidean distance computed be-
tween the center of feature clusters No. 6, 9 and 11, and the origin.
Fig. 9(a) presents the healthy state of the wind turbine blade, with highly
complex strain topology located at the base (root) of the cantilever plate,
as expected. The HDSN section at the root experiences high levels of
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strain and torsion due to the loading and asymmetric shape of the blade.
Damage case IV is introduced into this section and results are illustrated
in Fig. 9(b). The introduction of damage greatly increases the strain to-
pology of the HDSN, even considering its previous complexity. Results
demonstrate that the feature distance increased from 0:62� 10�5 ðε2Þ to
2:95� 10�5 ðε2Þ. The increase in feature distance is significant and
similar to damage case III in that an external model or historical data
would need to be applied to detect damage because of the complex strain
topology already present in the HDSN section. However, similar to
damage case III the damage can be localized withing the HDSN section of
interest as presented in Fig. 10. Again, Fig. 10(a) shows the location of
the damage case and Fig. 10(b) presents the absolute error in the strain
data between the measured state and the reconstructed strain fields for
the SEC sensors in the HDSN of interest. For compatibility with results
presented before, a shape function using complexity terms 0–11 was used
to reconstruct the global strain maps. Here, damage can be localized
though comparing error in the damage case for SEC sensors 1,2,7 and 8 to
their respective healthy state. These results further strengthen the
localization results found for damage case III. In contrast to damage case
IV, damage case V presented in Fig. 9(c) exhibits a situation where
damage is detectable through comparison with neighboring sections.

Simulation results demonstrate that an HDSN using NeRF is capable
of damage detection, quantification, and localization. The input load
used here is static and similar across cases with only sensor noise being
considered. In situations where dynamic loading is relatively constant,
such as a wind turbine blade in operation, a set of sample measurement
could be taken at a reoccurring interval such as when a blade is in the
vertical position providing a semi-constant loading reference. Further-
more, an average of samples taken continuously over several revolutions
could be used to build the NeRF features, assuming that the average load



Fig. 10. Damage localization within an HDSN: a) damage case IV and associated HDSN; b)
absolute difference (error) between the estimated and measured strain for SECs within
the HDSN.
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is relatively constant over a period of time.
Damage detection and localization performance may be improved

through the deployment of denser, more complex HDSNs in areas where
greater strain topologies are present. NeRF is also capable of providing a
high level of data compression in the form of features fused from sections
of an HDSN. Take for example the cantilever plate model. The feature
distance calculated for each HDSN section is the result of the fusion of 34
individual data channels, when extended to the entire plate algorithm
provides a data compression of 246 data points to 9, equivalent to a
96.4% data reduction. The blade model represents similar results,
providing data compression from 443 data points to 13, equivalent to a
97.0% reduction. Compression of data allows for faster post-processing,
retention of longer historical datasets, and a reduction in the cost asso-
ciated with building prognostic datasets.

6. Conclusion

A computationally efficient, data-driven damage detection, quantifi-
cation and localization technique was presented for use with hybrid
dense sensor networks (HDSN). This method was designed to enable
monitoring of mesoscale structures, including wind turbine blades,
without associated models or historical datasets. Termed the network
reconstruction feature (NeRF), the algorithm allows for the separation of
healthy and potentially damaged sections within an HDSN. NeRF fuses
high channel count data found in an HDSN to scalar damage detection
features. This provides a high level of data compression when imple-
mented over a larger HDSN section. The NeRF algorithm works through
first assuming a shape function within an HDSN section and using the
least squares estimator (LSE) to approximate uni-directional strain maps
within an HDSN section. An error function, defined as the mean square
error (MSE) between the sensors' measured and estimated strain is then
obtained. Features are defined as the change in error associated with a
given increase in the shape function complexity used in the reconstruc-
tion of strain maps.
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Numerical investigations were conducted to evaluate the perfor-
mance of NeRF. First, a rectangular cantilever plate was considered,
equipped with an HDSN consisting of 126 soft elastomeric capacitors
(SEC) and 104 fiber Bragg grating (FBG) nodes, sectioned into nine
discrete sections. The NeRF algorithm successfully distinguished be-
tween damaged and healthy HDSN sections for all three different damage
cases. In the first two damage cases, it was possible to distinguish be-
tween healthy and damaged conditions using the Euclidean distance
between damage features. The third damage case was difficult to detect
by using this strategy because it was highly localized within a region of
high strain complexity. Instead, its localization was made possible by
comparing the measured strain to the strain estimated using a complex
shape function to produce a strain error for each sensor. The damage was
then located as being close to the sensors that reported the highest error
value. Two additional damage cases were investigated on a more com-
plex shape consisting of a wind turbine blade modeled as a cantilever
plate. This second set of simulations confirmed results obtained on the
rectangular plate. Lastly, the damage case within the HDSN at the root
was localized by comparing the error between the measured strain and
the estimated strain. Further collaborating the damage localization re-
sults found in the simple plate on a more complex strain topography.

Future investigations are needed to validate the algorithm for use
with an extended library of loadings and damage cases, more realistically
representing a large wind turbine blade in an operational environment
including dynamic loading cases. Sensor network design and partitions,
including the number and of SECs within HDSN sections, also needs
exploration. The ability of denser networks in regions of highly complex
strain maps needs to be studied. This includes the use of asymmetric
sensor networks and the inclusion of SECs of different geometries.

Results presented in this paper show that data compression provided
by the NeRF algorithm reduces the computational effort and storage
space needed to develop and monitor prognostic datasets for large-scale
structures. They also demonstrated the promise of the technology at
monitoring large-scale surfaces such as wind turbine blades by leveraging
a hybrid sensor network configuration. For example, the HDSN combined
with the NeRF algorithm could be used to formulate prognostic datasets
to detect changes in structural health over time, reducing wind turbines
operational cost through the use of damage mitigation technology and
real-time structural health management.
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