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1.  Introduction

Structural health monitoring (SHM) is the automation of 
damage detection, localization, and prognosis of structural sys-
tems or components. The monitoring of large-scale systems, 
here termed mesosystems, is especially challenging due to the 
inherent geometric size and complexity [1]. Mesosystems, 
including aerospace structures, energy systems and civil 
infrastructures are traditionally inspected and maintained via 
time-based or breakdown-based maintenance strategies. The 

use of SHM to enable condition-based maintenance (CBM) 
may lead to strong economic benefits for owners, operators, 
and society. Of particular interest is the field of wind energy 
system, where CBM is known to have substantial economic 
benefits [2–4].

Monitoring solutions for mesoscale structures need to be 
capable of global (e.g. loss of stiffness, changing boundary 
conditions) and local (e.g. localizing material failure, crack 
propagation, and fastener loosening) condition assessment 
over strategic locations. However, distinguishing a localized 
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change in a structure from a global change is difficult using 
existing technologies and methods [5, 6]. The task is often 
complicated by the dependence of sensor signals on environ
mental effects such as temperature and humidity [7, 8]. The 
ability to monitor local damage over a global scale necessi-
tates a large array of sensors [3]. However, the cost incurred in 
using traditional sensors can be hard to financially justify [9].

A solution to the local-global monitoring challenge 
involves the utilization of flexible skin-like membranes. 
Such films, often termed electronic artificial skins, e-skins, 
or sensing skins are thin electronic sheets that mimic bio-
logical skin. Research on sensing skin has recently gained 
popularity with advances in the field of flexible electronics 
[1, 10]. Dense sensor network applications of skin sensors 
have also been reported. Lee et al [11] demonstrated a flex-
ible capacitive tactile sensor. Experimentally verified using a 
×16 16 array of tactile cells, this artificial skin has a spatial 

resolution of 1 mm. Xu et al [12] utilized a 36-sensor array 
of resistive heating elements on a flexible polyimide film to 
measure shear stress topography and flow separation on the 
leading edge of a delta-wing structure during wind tunnel 
tests. Recently, research has progressed towards microelectro-
mechanical systems (MEMS) based flexible skins without the 
need for rigid packages [13, 14]. Large sensing sheets of strain 
gauges with embedded processors on a 50 μm thick polyimide 
sheet have been proposed, with applications to crack detection 
and localization [15, 16].

The use of resistance-based thin-film strain sensors 
fabricated with carbon nanotubes has attracted consider-
able attention in the last decade. Examples of such sensors 
include a strain sensor fabricated from single-walled carbon 
nanotubes (SWCNT) exhibiting a gauge factor between 1 
and 5 [17] and a highly sensitive sensor also using SWCNT 
but resulting in a gauge factor of 269 [18]. Advanced 
methods for constructing flexible membranes reinforced 
with self-assembled arrays of SWCNT have been investi-
gated [19] and show great potential for the development of 
robust sensing skins. Transparent elastic conductors capable 
of transducing strain and pressure, essential in certain elec-
tronic and optoelectronic applications, have been fabricated 
with conductivities as high as 2,200 S cm−1 in the stretched 
state [20]. Integrated sensor-electronic have been developed 
from a SWCNT-polymer composite patterned onto a flex-
ible polyimide substrate using optical lithography yielding 
a gauge factor of 0.77 and a resolution of 50 µε [21]. Strain 
transducers based on SWCNT have been demonstrated for 
measuring high strain applications, up to 280%, such as that 
needed for human-motion detection [22].

Capacitive-based sensing skins have also been studied for 
measuring strain [23], pressure [24], triaxial force [25], and 
humidity [26]. Capacitive-based sensors offer the potential 
to be highly applicable to mesoscale monitoring as they are 
less affected by temperature changes and can be manufactured 
using various techniques, including a high-speed offset lithog-
raphy printing process [27]. The challenge in the fabrication 
of sensing skins for mesosensing lies in the selection of an 
inexpensive polymer mix that is robust to environmental con-
ditions [28]. In the same framework of low-cost sensing skins 

for mesoscale systems, the authors have previously developed 
a soft elastomeric capacitor (SEC). The proposed SEC was 
designed to be inexpensive with an easily scalable manufac-
turing process [29]. The SEC is fabricated from an inexpensive 
nanocomposite based on a styrene-co-ethylene-co-butylene-
co-styrene (SEBS) block co-polymer matrix filled with titania 
(dielectric) and carbon black (electrodes) particles and is cus-
tomizable in shape and size [30, 31]. Static [30] and dynamic 
behaviors [1, 32] have been characterized, including damage 
detection applications in wind turbine blades [33] subjected 
to random wind loading [34], and the effectiveness of a dense 
sensor network for detecting fatigue cracks has been demon-
strated [35].

A particular feature of the SEC is that it measures addi-
tive in-plane strain, instead of a traditional measurement of 
the linear strain along a single direction. When used in a dense 
sensor network (DSN), the SEC is able to monitor local addi-
tive strain over large areas. Therefore, the signal can be used to 
reconstruct unidirectional strain maps, provided that the addi-
tive strain is decomposed into linear strain components along 
two orthogonal directions. The authors presented an algorithm 
in [36] designed to leverage a DSN configuration to enable 
strain field decomposition. The algorithm assumed a shape 
function and classical Kirchhoff plate theory and solved for 
the coefficients of the shape function using the least squares 
estimator (LSE). Numerical simulations showed the promise 
of the algorithm. However, the proposed technique was lim-
ited by sensor placement along the edge of the plate, and the 
quality of the assumptions on the boundary conditions. It fol-
lows that boundary conditions can be difficult to assume for 
complex geometries and may be time-varying over the moni-
tored structure’ lifetime.

In this work, the authors propose a hybrid DSN (HDSN) to 
alleviate limitations of the previously proposed strain decom-
position algorithm [36]. The HDSN considered here introduces 
resistive strain gauges (RSGs), a mature sensing technology 
capable of precise point measurements. However, due to their 
size, as well as technical and economic constraints, RSGs lack 
the ability to efficiently cover mesosurfaces [37]. The HDSN 
presented here combines the SECs coverage capacity with 
the high precision measurements of RSGs. The LSE algo-
rithm discussed above is extended to include RSG readings 
and virtual sensing nodes at known boundary conditions. The 
enhanced LSE algorithm also introduces weighted matrices 
to the LSE algorithm to concatenate data, allowing for the 
enforcement of localized strain conditions and the fusion of 
unidirectional and additive strain sensors. The proposed strain 
decomposition algorithm is experimentally verified utilizing 
an HDSN consisting of 20 SECs and a variable number of 
RSGs, from 2 to 46, on a thin composite plate.

The paper is organized as follows. Section  2 provides a 
background on the SEC technology, including its electro-
mechanical model and derivation of the prior LSE-based 
strain decomposition algorithm. Section 3 extends the algo-
rithm to HDSN formulations. Section 4 illustrates the method-
ology used in the evaluation and validation of the algorithm. 
Section 5 reports and discusses algorithm results. Section 6 
concludes the paper.
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2.  Background

The SEC, shown in figure 1(a), is a soft electronic element 
that transduces a change in the geometry (i.e. strain) into a 
change in capacitance. The fabrication process of the SEC is 
documented in [1]. Briefly, its dielectric is composed of an 
SEBS block co-polymer matrix filled with titania to increase 
both its permittivity and durability. Both of its conductive 
plates are also fabricated from an SEBS, but this time filled 
with carbon black particles. All of the components used in the 
fabrication process are readily and widely available, and its 
fabrication process is relatively simple. It results that the SEC 
is a highly scalable skin sensor. In this section, the electro-
mechanical model of the SEC is derived and validated, and the 
basic strain decomposition algorithm previously developed by 
the authors is reviewed.

2.1.  Electro-mechanical model

The SEC is designed to measure in-plane strain (x  −  y plane 
in figure 2(b)) and is adhered to the monitored substrate using 
an off-the-shelf epoxy along the x  −  y plane. The sensor is 
typically installed after some pre-stretching to prevent any 
warping of the sensor under compressive loading of the 
monitored substrate. Assuming a relatively low sampling rate 
(<1 kHz), the SEC can be modeled as a non-lossy capacitor 
with capacitance C, given by the parallel plate capacitor 
equation,

=C e e
A

h
r0� (1)

where e0  =  8.854 pF m−1 is the vacuum permittivity, er is the 
polymer relative permittivity, = ⋅A d l is the sensor area of width 
d and length l, and h is the thickness of the dielectric. Assuming 
small strain, the differential of equation (1) is expressed as

⎜ ⎟
⎛
⎝

⎞
⎠ ε ε ε

∆
=
∆
+
∆
−
∆

= + −
C

C

l

l

d

d

h

h
x y z� (2)

where εx, εy and εz are linear strains in the x, y and z directions 
as shown in figure 2(b). An expression relating εz to εx and εy 
can be obtained using Hooke’s law for plane stress
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representing the gauge factor of the sensor. For SEBS, ν≈ 0.49 
[38], which gives a gauge factor λ≈ 2. Equation  (4) shows 
that the signal of the SEC varies as a function of the additive 
strain ε ε+x y. The linearity of the derived electro-mechanical 
model holds for mechanical responses up to 15 Hz [1]. An 
altered electro-mechanical model has been derived in [32] for 
modeling mechanical responses up to 40 Hz, but is not shown 
here for brevity.

2.2.  Model validation

The SEC’s electro-mechanical model has been validated at 
numerous occasions. A typical result is presented here. The 
test setup consists of a simply supported aluminum plate 
of dimensions × ×200 75 3 mm3 subjected to a four-point 
load setup to provide a constant strain field across the SEC, 
mounted onto the bottom surface of the plate at half-length. 
The performance of the SEC is validated using an off-the-shelf 
resistive strain gauge (RSG) (Vishay Micro-Measurements, 
CEA-06-500UW-120) having a resolution of 1 µε. A quasi-
static triangular load is applied using a servo-hydraulic fatigue 
testing machine (MTS). Data from the SECs are acquired 
using an inexpensive off-the-shelf data acquisition system 
(ACAM PCap01) sampled at 95.4 Hz. Data from the RSGs 

Figure 1.  (a) Picture of an SEC sensor compared with an RSG; and (b) sketch of an SEC’s geometry with reference axes.
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are measured using Hewlett-Packard 3852 data acquisition 
system at a sampling frequency of 55 Hz. A time series of 
the measured responses of the SEC and RSG is plotted in 
figure 2(a), where the signal of the SEC was converted into 
strain using the electro-mechanical model (equation (4)) 
specialized for uni-directional strain. Figure 2(b) is a plot of 
the measured strain from the SEC versus the applied strain. 
Results show a good agreement of the SEC data with the RSG 
data, and that the electro-mechanical model holds. The resolu-
tion of the sensor using this particular data acquisition setup 
is 25 μm.

2.3.  Strain decomposition algorithm

A strain decomposition algorithm was proposed in [36] to 
decompose the SEC signal (equation (4)) into linear strain 
components in two orthogonal directions. It is summarized in 
this section and later enhanced for HDSN applications.

The algorithm consists of assuming a parametric dis-
placement shape function, from which the equations 
mapping strain in two orthogonal directions, x and y, are 
derived. An LSE is then used to estimate the coefficients 
of strain maps that would best fit the signals of the SECs, 
which is done after enforcing boundary conditions. A poly-
nomial displacement shape function has shown promise for 
conducting strain decomposition on a thin plate. Consider 
a cantilever plate of the type illustrated in figure 3 and an 
nth order polynomial to approximate its deflection shape 
w(x, y) as

( ) ∑=
= =

w x y b x y,
i j

n

ij
i j

1, 0
� (6)

where bij are regression coefficients and i  >  0 to satisfy 
the displacement boundary condition on the clamped edge  
(w(0, y)  =  0). Considering a network with m sensors and 

collecting displacements at sensors’ locations in a vector 
W R∈ ×m 1, the following equation  can be written from 
equation (6)

= =� �[ ]w w wW HBk m
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1
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where H ( )R∈ × +m n n 1  is called the location matrix and B 
( )R∈ + ×n n 1 1 is the regression coefficients matrix. After 

straightforward computations, the following expressions are 
obtained for quantities contained in equation (7)
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Linear strain functions ( )ε x y,x  and ( )ε x y,y , along x and y 
directions, respectively, can be obtained from equation (7) by 
enforcing Kirchoff plate Theory as:
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ε = −
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2

2
� (10)

Figure 3.  Cantilever plate with 20 SECs.

Figure 2.  (a) Comparison of strain time histories for the SEC and the RSG; and (b) measured strain by the SEC versus applied strain.
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where c is the thickness of the plate. Collecting linear strains 
at sensors locations along x and y directions in vectors Ex and 
Ey, respectively, and making use of equation (6), the following 
expressions are derived

=E H Bx x x� (12)

=E H By y y� (13)

where Hx and Hy are the location matrices for sensors trans-
ducing ( )ε x y,x  and ( )ε x y,y , respectively. Furthermore, Bx and 
By are the corresponding regression coefficients matrices. 
Written in terms of sensors’ signals S R∈ ×m 1, the same 
equation reads:

= = + =� �[ ]s s sS E E H Bk m
T

x y s s1
� (14)

where, for convenience, the signal sk for the kth SEC sensor 
is taken as:
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where ( )x y,k k  denote the location of the kth SEC sensor and 
Hs and Bs read as

[ ]= |H H Hs x y� (16)
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Using sensors’ readings, the regression coefficient matrix 
Bs can be estimated as B̂s via an LSE:

ˆ ( )= −B H H H Ss s
T

s s
T1� (18)

where the hat denotes an estimation. It follows that the strain 
maps can be reconstructed using

ˆ ˆˆ ˆ= =E H B E H Bx x x y y y� (19)

However, in its unaltered form, Hs is multi-collinear 
because Hx and Hy share multiple rows, resulting in H Hs

T
s 

being non-invertible. The solution utilized in [36] was to 
assume boundary conditions and replace selected rows of Hs 
with null coefficients or scaling factors, as determined by the 
particular boundary conditions. Such a strategy was numer
ically validated for the specialized case of a cantilever thin 
plate. While results demonstrated the overall promise of the 
algorithm, the quality of the assumptions on the boundary 
conditions limited the performance of the algorithm. In the 
section  that follows, the algorithm is extended to include 
uni-directional data from RSGs, with the objective to mini-
mize knowledge required on the components’ boundary 
conditions.

3.  Extended LSE-based algorithm using HDSN

The integration of a limited number of off-the-shelf sensors 
within an SEC network can have the advantage to add known 

strain values at given locations, therefore reducing or elimi-
nating the reliance on boundary conditions assumptions. With 
the proposed HDSN configurations, RSGs are introduced at 
strategic locations to provide accurate boundary conditions 
within the LSE algorithm. Data from SECs and RSGs are 
fused in the algorithm using the same mathematical notation, 
with a prime to denote quantities that are generalized in the 
extended algorithm. In particular, the generalized sensors’ 
location matrix is defined as:

[ ]Γ Γ= |′H H Hs x x y y� (20)

where Γx and Γy are appropriately defined diagonal weight 
matrices, as detailed in the following. The signal vector ′S , 
including both SEC and RSG signals, is defined as:

⎡
⎣⎢

⎤
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=′S
S
S

SEC

RSG
� (21)

where SSEC and SRSG are matrices containing SEC and RSG 
signals, respectively. Equation (18) thus becomes:

ˆ ( )=′ ′−
′ ′ ′B H H H S

s
T

s s
T1� (22)

Weight matrices introduced in equation (20) are diagonal 
matrices composed of scalars, γx k,  and γy k, , associated with 
the kth sensor. In particular, RSG signals are incorporated in 
′Hs  using

γ γ= =1, 0x k y k, ,� (23)

when the kth RSG measures strain along the x-axis only, or, 
alternatively,

γ γ= =0, 1x k y k, ,� (24)

when the kth RSG measures strain along the y-axis only. 
Different weight values other than unity can be selected in 
the design to add more importance to particular sensors. For 
instance, γ> 1 can be selected for RSGs due to their high level 
of accuracy compared with the SEC technology, or for SECs 
installed along a known boundary condition.

The extended algorithm also includes virtual sensors based 
on knowledge about the system’s behavior. Virtual sensors are 
analogous to assumed boundary conditions, except that they 
are located at points on the edge of the strain reconstruction 
map. In the algorithm, virtual sensors are treated identically 
to RSGs and can also be used directly in the reconstruction 
of the strain maps. For instance, a sensor reading ε = 0y  can 
be added under a clamped fixity that extends along the y axis.

The extended LSE-based algorithm is conceptually illus-
trated in figure 4. Dotted boxes in the figure represent the two 
new features added through the utilization of an HDSN. Both 
the virtual sensors and RSG signals can be utilized either fully 
or partly into the LSE or directly in the reconstruction of the 
strain maps as known points. Strain maps are decomposed at 
the sensors’ locations included in matrix ′Hs  and reconstructed 
elsewhere using C2 continuous biharmonic splines. The algo-
rithm can be specified by constructing splines that interpolate 
decomposed strains from equation (19), strains measured by 
RSGs and/or strains known at virtual sensors locations.

The described extended algorithm still includes boundary 
conditions on the SEC strain readings, as it was the case 
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for the original algorithm, to provide the user with greater 
flexibility. For instance, in the case of a cantilever plate, 
the boundary condition along the fixity can be assumed as 

( ⩽ ⩽ )ε − =a y L a0, 0y y y y , where ay is a positive constant 
such that ⩽ ⩽ /a L0 2y y  to account for different boundary 
conditions at corners. This assumed boundary condition is 
enforced for SECs installed along the fixity using γ = 1x m, , 
γ = 0y m, .

4.  Methodology

Validation of the strain decomposition algorithm presented 
in section 3 is conducted experimentally on an HDSN. This 
section describes the methodology used for the experimental 
validation.

4.1.  HDSN configuration

The HDSN consists of 20 SECs and 46 RSGs deployed onto the 
surface of a fiberglass plate of geometry × ×74 63 0.32 cm3  
fixed along one edge with clamps as shown in figure  5(a). 
Figure 5(b) is a schematic of the SEC and RSG sensor place-
ment. Each SEC covers × =6.5 6.5 42 cm2 in area, laid out in 
a ×4 5 grid array. The point node used in constructing the ′Hs  
matrix is taken as the center of each SEC. RSGs used in the 
experimental setup are foil-type strain gauges of 6 mm length 
manufactured by Tokyo Sokki Kenkyujo, model FLA-6-350-
11-3LT. They are aligned along the directions of the plate’s 
edges, in either a single or double configuration, individually 
measuring εx and εy as indicated in figure 5(b) by using circles 
and squares, respectively. The number of considered RSGs 
was purposely very large in order to provide enough measure-
ment points to assess the performance of the algorithm as a 
function of the number of arbitrarily located RSGs.

The plate is subjected to four different displacement-con-
trolled load cases, listed in table  1. Load case I consists of 
an upward uniform displacement along the free edge BC as 
shown in figure  5(b). Load case II is a downward uniform 

displacement along free edge BC. Load case III is an upward 
point displacement under point A (directly under SEC 14), 
with points B and C restrained in the vertical direction. Load 
case IV consists of an upward displacement at point C, with 
point B restrained in the vertical direction. The displace-
ment controlled loads were applied using a frame built from 
extruded aluminum framing. Each test consisted of three 15 s 
sets of unloaded, loaded, and unloaded conditions, for a total 
of 45 s.

Different data acquisition (DAQ) hardware is used for the 
measurement of the SEC and RSG sensors, as annotated in 
figure 5(a). SEC measurements are recorded using a capac-
itance-to-digital converter, PCAP-02, mounted inside pro-
tective boxes and manufactured by ACAM-Messelectronic 
GmbH. Capacitance measurement is performed by meas-
uring the SEC sensors discharge time, in comparison with 
the discharge time of a known reference capacitor. This DAQ 
is capable of reading up to 7 channels, multiplexed through 
a single capacitance-to-digital converter. The acquisition of 
data was performed using a PCAP-02 evaluation board with 
ACAM’s evaluation software at a sampling rate of 25 Hz. 
RSG measurements are recorded using a National Instruments 
cDAQ-9174 with four 24-bit 350 Ω quarter-bridge modules 
(NI-9236) through LabVIEW, sampled at 100 Hz.

Figure 6 shows an example of SEC signal, ∆C, acquired 
from a row of sensors (16–20) during load case III. Data are 
presented filtered using a moving average. The sensors operate 
as designed under both compression and tension. Given the 
static nature of the study, the capacitance signal for the recon-
struction of strain maps is taken as the average of data points 
between 23 and 28 s.

4.2.  Algorithm configurations

Validation is performed on different algorithm configurations, 
as listed in table 2, to investigate the effects of the different 
inputs illustrated in the block diagram of figure 4. Algorithm 
1 consists of enforcing boundary conditions through the intro-
duction of RSGs into the SEC DSN, forming an HDSN. This 
is obtained by adding RSGs into ′Hs . Algorithms 2–4 add 
additional inputs, namely virtual sensors at known boundary 
conditions, assumptions on the SEC strain boundary condi-
tions and RSG data directly in the reconstruction of the strain 
maps. Algorithm 5 uses all the inputs.

For the thin plate under study, virtual sensors are added 
to enforce the assumptions on the boundary conditions. On 
the fixed edge, ε = 0y  is assumed for ⩽ ⩽ −a y L ay y y where 
ay  =  5 mm to account for the corner effects. For all loading 
cases, 5 virtual sensors are placed along the fixity (x  =  0) at 
y  =  5.00, 15.8, 26.6, 37.4, 48.2 and 59.0 mm with virtual sig-
nals ε = 0y . For the purpose of enforcing the plates boundary 
conditions, and due to low levels of εx along the free edge 
opposite to the fixity, the assumption that ε ≈ 0x  was made 
along the free edge. Five virtual sensors are placed along the 
free edge (x  =  0.74 mm) at y  =  5.00, 15.8, 26.6, 37.4, 48.2 
and 59.0 mm with signals (ε = 0x ). While this assumption is 
valid only for load cases 1 and 2, it has shown to be convenient 

Figure 4.  Modified strain decomposition algorithm.
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to equate the strain levels to 0 given the low levels of strain at 
these positions.

For the algorithm cases based on strain assumptions at 
the SECs locations, different assumptions were made along 
the plate’s edges for different load cases in order to be con-
sistent with the prior form of the algorithm. For the boundary 
conditions along the fixity, εy was assumed to be zero for 

⩽ ⩽ −a y L ay y y, where ay is taken as 20 cm. This is enforced 
in the LSE algorithm by setting γ = 0y,11  and γ = 0y,16 . A sim-
ilar approach was taken for εx at the plate’s free edge (SEC 10 
and 15) due to the low level of strain present, εx was enforced 
as zero by setting γ = 0x,10  and γ = 0x,15 . Under the asym-
metric loads (loading cases III and IV), different assumptions 
are conducted on εx and εy. Table 3 summarizes weights used 
to enforce the assumptions on boundary conditions for all 
SECs under different loading cases.

For the algorithm cases utilizing RSG data directly in the 
strain maps, RSG sensor data are introduced directly into the 
decomposed strain maps alongside with the decomposed SEC 
strains from the enhanced LSE algorithm. Lastly, for all of 
the algorithms, a polynomial function (equation (6)) for the 
deflection shape was assumed. A fourth order polynomial was 
selected to improve the ability of the strain decomposition 
algorithm in capturing more complex strain features in the y 
direction. Note that ⩾i 2 and ⩾j 2 to satisfy the boundary con-
ditions of a cantilever plate.

( ) ∑=
= =

w x y a x y,
i j

ij
i j

2, 2

4

� (25)

4.3.  Selection of RSGs into the HDSN

Selection of the RSGs is conducted randomly to study the 
influence of sensor placement on the performance of the algo-
rithm. A total of 100 sets of randomly selected sensors con-
structed from the RSG placement shown in figure 5(b) were 
generated. Simulations consist of adding RSGs in the HDSN 
in the order listed in each random set. Each algorithm case is 
ran 100 times, and results show the average value of the LSE 
performance. The variance in performance under changing 
RSGs sensors layout is also discussed. The special case of 1 
single RSG, for which only 46 permutations are possible, is 
not considered. Optimal sensor placement for RSGs within 
the HDSN is out-of-the-scope of this paper.

5.  Results

Results from the experimental validation are presented and 
discussed in this section. The performance of each algorithm 
configuration (table 2) is quantified using the mean absolute 
error (MAE) between the LSE estimated strain maps and 
the known strains at the locations of the RSGs (23 along the  
x-axis and 23 along the y-axis). The LSE estimated strain maps 
are developed for the entire area of the cantilever plate shown 
in figure  5. In the section  that follows, the performance in 
strain reconstruction is investigated, for different LSE-based 
algorithms, as a function of the number of RSGs used in the 
algorithm, taken at random locations as discussed in section 4. 
Afterward, the robustness of the algorithm is studied as a 
function of RSG sensor placement.

5.1.  Algorithm configurations

Figure 7 shows the average performance of the algorithms 
under each loading case. The ‘RSG-only’ case is the per-
formance benchmark, and converges to 0 as the number of 
RSG augments due to the formulation of the MAE index. As 
expected, the performance of each algorithm improves with the 
number of RSGs introduced into the HDSN. Using algorithm 
1 as the baseline (simplest form), algorithms 2–5 improve on 

Figure 5.  (a) Picture of the experimental configuration; and (b) sensor nomenclature.

Table 1.  Loading cases.

Loading  
case

Point of applied  
displacement

Displacement 
(mm)

Vertical  
displacement 
restraints

I BC 125 None

II BC −97 None

III A 47 B,C
IV C 47 B
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the MAE to various levels, where adding more inputs to the 
algorithms helps the reconstruction of strain maps, except for 
a few cases (loading case I, for instance) where algorithm 3 
underperforms algorithm 1, most likely due to errors on the 
boundary conditions assumptions. Algorithm 2 provides a 
substantial improvement in the MAE compared with algo-
rithm 1 through the integration of virtual sensors. Algorithm 4 
generally exhibits a slower convergence rate, offering only a 
marginal improvement to the base LSE algorithm (algorithm 
1). However, algorithm 4 could see substantial improvement 
with an optimized sensor placement scheme. Lastly, algo-
rithm 5, which combines all of the inputs, performs similarly 
to algorithm 2. Under most loading conditions and algorithms 
configurations, the extended LSE algorithm provides a better 
representation of the unidirectional strain maps than the equiv-
alent number of RSGs, when less than 20 RSGs are added 
into the HDSN, demonstrating a net advantage of utilizing 
an HDSN. Also, it can be concluded from these results that 
algorithm 2 offers the best performance given its simplicity. 
Another notable advantage of algorithm 2 over algorithm 5 
is that it does not include SEC assumptions, which need to be 
adjusted depending upon the peculiar loading condition. It is 
a more generally applicable algorithm.

The decomposed strain maps are presented in figure 8. An 
HDSN consisting of 20 RSGs was arbitrarily selected to inves-
tigate the extended LSE algorithm (configuration 2) when 
using an equal number of RSGs and SECs. The decomposed 
strain maps are compared against the strain maps obtained 
using 46 RSGs only. The layout of RSG sensors within the 
HDSN was selected to provide the best fit from the list of 100 
randomly generated sensor placement arrangements discussed 

in section 4.3. Results show similar maps, with slight disa-
greements for the strain along the y-axis. Obtaining a more 
accurate fit for εy would require a higher order shape function. 
Such strategy was not investigated due to the low number of 
SECs along that axis, which would result in over-fitting for 
lower numbers of RSGs used into the HDSN.

5.2.  Algorithm robustness to sensor placement

The robustness of the LSE-based algorithm with respect to 
the layout of RSG sensors is evaluated by comparing the 95% 
confidence bound on the MAE over all 100 sensor placement 
cases. For the study, algorithm 2 is selected due to its higher 
overall performance compared with other algorithm varia-
tions. Figure 9 compares the results with the RSG only case. 
Except for loading case III, the 95% confidence bound on the 
HDSN using algorithm 2 is small compared to the 95% con-
fidence bound using RSGs only. This is as expected, given 
that the HDSN always utilizes 20 SECs spread over the entire 
plate. The 95% confidence bound is larger for loading case III, 
most likely due to the higher complexity of the strain maps. 
Overall, the confidence bounds obtained by the HDSN are 
tighter than those obtained using RSG readings only, which 
allows the authors to conclude that the HDSN has a high 
robustness with respect to sensor placement.

Table 2.  Evaluated algorithm configurations.

Algorithm  
configuration

Virtual 
sensing

SEC  
assumptions

RSG data in 
strain maps

RSGs  
added into 
′Hs

1 ×
2 × ×
3 × ×
4 × ×
5 × × × ×

Table 3.  Weight parameters γ used to enforce the assumptions on 
boundary conditions.

Loading case

I II III IV

SEC γx γy γx γy γx γy γx γy

1 1 1 1 1 1 0 1 1
2–5 1 1 1 1 1 1 1 1
6 1 0 1 0 1 0 1 0
7–9 1 1 1 1 1 1 1 1
10 0 1 0 1 1 1 0 1
11 1 0 1 0 1 0 1 0
12–14 1 1 1 1 1 1 1 1
15 0 1 0 1 1 1 0 1
16 1 1 1 1 1 0 1 1
17–20 1 1 1 1 1 1 1 1

Figure 6.  Example of sensor signals: sensors SEC 16–20 under load case III.
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Figure 7.  Algorithm results for varying RSGs added to the DSN: (a) load case I for εx; (b) load case I for εy; (c) load case II for εx; (d) load 
case II for εy; (e) load case III for εx; (f) load case III for εy; (g) load case IV for εx; and (h) load case IV for εy.
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Figure 8.  Decomposed strain maps: (a) load case I for εx; (b) load case I for εy; (c) load case II for εx; (d) load case II for εy; (e) load case IV 
for εx; (f) load case III for εy; (g) load case IV for εx; and (h) load case IV for εy.
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Figure 9.  Algorithm robustness towards sensor placement: (a) load case I for εx; (b) load case I for εy; (c) load case II for εx; (d) load case II 
for εy; (e) load case III for εx; (f) load case III for εy; (g) load case IV for εx; and (h) load case IV for εy.
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6.  Conclusion

This paper presented a method for the directional decomposi-
tion of additive strain measured by a novel large soft elas-
tomeric capacitor (SEC). The SEC is an inexpensive strain 
gauge, designed to cover large surfaces for the purpose of 
damage detection and localization. A previously proposed 
least squares estimator (LSE)-based algorithm was extended 
to provide boundary condition updating though the use of 
a hybrid dense network (HDSN) leveraging mature off- 
the-shelf technology, in particular a set of electrical resistive 
strain gauges (RSGs). In this HDSN configuration, the SECs’ 
ability to inexpensively monitor large areas is combined 
with the RSGs ability to provide precise, unidirectional local 
strain measurements. The original LSE algorithm consists 
of assuming a shape function in the framework of classical 
Kirchhoff plate theory and using an LSE to find the coeffi-
cients of the shape function. The extended LSE algorithm 
introduces weighted matrices to concatenate and achieve 
an effective fusion between signals from both the SECs and 
the RSGs. Additionally, virtual sensing nodes are introduced 
along the plates known boundary conditions to enforce known 
boundary conditions outside the HDSN sensing points.

Experimental investigations were conducted on a cantilever 
plate equipped with 20 SECs and 46 RSGs. For a plate under 
simple loading cases, the LSE algorithm successfully produced 
unidirectional strain maps. However, it showed limitations in 
fitting more complex strain fields, possibly due to the limited 
number of sensors (SECs and RSGs) used in the investigation 
that limited the order of the polynomial used in representing 
the shape function. Further investigation is needed to validate 
the proposed algorithm for use with different HDSN layouts 
and with an expanded library of loading cases. While the 
proposed strategy showed to be robust with respect to sensor 
placement, the formal network design, including the optimal 
placement, type, and number of sensors within an HDSN needs 
to be explored. The algorithmic improvements presented here 
build a basis for future work in real-time boundary condition 
updating and regression fitting of parameter weights.
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