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Introduction 

• Part 1: Civil Infrastructure

• Part 2: Applications and Case Studies
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Civil Infrastructure



Civil Infrastructure

• Civil infrastructure includes 
essential public systems and 
facilities:

• Roads and highways

• Bridges and tunnels

• Water and sewage systems

• Dams, levees, and flood control 
structures

• Electrical grids, transportation 
networks, and more
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Infrastructure Maintenance and Upgrade

• Importance of Maintenance 
and Upgrades:

• Critical for public safety and 
economic stability

• Ensures infrastructure longevity 
and reliability

• Necessary to handle increasing 
demand and urbanization

• Key to reducing the risk of 
catastrophic failures, like bridge 
collapses or dam breaches
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Infrastructure Challenges

Traditional Challenges:
• Aging infrastructure and limited 

budgets for repairs
• Manual inspection processes are 

labor-intensive and time-
consuming

• Delayed detection of structural 
issues leads to reactive 
maintenance

• Difficulty in predicting failures due 
to the complexity of infrastructure 
systems
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Predictive Maintenance

AI Use Cases in Infrastructure:
• Continuous Sensing: Real-time 

strain, vibration, flow, and 
environmental data

• On-Edge Analytics: Automatic 
anomaly detection and remaining-
useful-life (RUL) estimation

• Optimized Scheduling: 
Maintenance only when and where 
it’s needed

• Improved Resilience: Fewer 
unplanned outages, lower lifecycle 
costs, higher availability
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Goal: Self-Monitoring & Adaptive 
Infrastructure

Civil Engineering and AI include:
• Continuous Sensing: Embedded 

sensors track stress, strain, water level, 
vibration, etc., in real time

• Automated Actuation: Valves, gates, 
dampers or cables adjust themselves to 
changing loads or water pressures

• Predictive Maintenance: On-board 
analytics flag emerging issues—
corrosion, fatigue, blockages

• Enhanced Resilience: Infrastructure 
that detects and reacts autonomously to 
floods, heavy traffic, or seismic events
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Applications and Case Studies



Application 1: Structural Health 
Monitoring

Structural Health Monitoring (SHM)

• Distributed Sensing: Strain, vibration, tilt 
and ultrasonic sensors embedded across 
the structure

• Continuous Inspection: Real-time data 
collection without bucket trucks

• Damage Detection: Automated 
identification of cracks, corrosion, loosened 
connections

• Actionable Alerts: Threshold-based 
alarms and dashboard reports for timely 
maintenance
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Case Study 1.1: Bridge Monitoring

Key Benefits of AI in Bridge Monitoring

• Fatigue Crack Detection: Sensing skin 
technology (SEC) detects and monitors 
fatigue cracks in steel bridges.

• Large-Area Monitoring: Soft elastomeric 
capacitors (SECs) provide coverage over 
large bridge surfaces for crack detection.

• Field Validation: The system was 
successfully deployed on a highway 
bridge in Kansas, providing real-world 
validation for the SEC.
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Case Study 1.2: UAV Deployed Sensors
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UAV Deployable Sensor Packages

• Autonomous Deployment: Fast, precise 

sensor placement.

• Real-Time Monitoring: Continuous data for 

proactive assessment.

• Cost & Time Efficient: Reduces manual 

inspections.

• Scalable Solution: Works for bridges, levees, 

and more.

• Enhanced Safety: Minimizes human exposure.



Case Study 1.2: UAV Deployed Sensors
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Application 2: Water Quality Monitoring

Water Quality Monitoring

• Real-Time Monitoring: Continuous, real-time 
tracking of water quality parameters (e.g., pH, 
turbidity, contaminants).

• Early Detection of Contaminants: Machine 
learning models identify harmful substances in 
water early, improving response times.

• Predictive Analysis: AI predicts potential 
water quality issues based on environmental 
and historical data trends.

• Cost Efficiency: Reduces the need for manual 
sampling and testing, optimizing resource use 
and operational costs.
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Case Study 2.1: NMR-based Water 
Quality Monitoring

NMR-Based Water Quality Monitoring

• How NMR Works: Magnetic pulses 
align tiny “magnets” in water 
molecules, then we listen for their 
echo signals

• Echo Signals: The pattern and 
strength of those echoes tell us about 
what’s in the water

• Portable Design: A small permanent 
magnet and custom electronics let us 
bring the lab to the field
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Case Study 2.1: NMR-based Water 
Quality Monitoring
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Case Study 2.2: UAV-deployable in situ 
Water Quality Sensors

Key Benefits of in situ Sensors

• Real-Time Monitoring: UAVs deploy 
water quality sensors to provide 
continuous, real-time data.

• Rapid Deployment: UAVs allow fast, 
efficient sensor deployment in remote or 
hazardous locations.

• Spatial and Temporal Analysis: 
Interpolation techniques map water 
quality over space time.

• Cost-Effective Solution: Affordable, 
open-source sensors provide reliable 
water quality data.
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Case Study 2.2: UAV-deployable in situ 
Water Quality Sensors
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Application 3: Traffic and Transportation

Key Benefits of AI in Transportation

• Traffic Flow Optimization: Manage and 
optimize traffic flow in real-time, reducing 
congestion.

• Predictive Traffic Management: Forecast 
traffic patterns, allowing cities to adjust 
signals and infrastructure accordingly.

• Autonomous Vehicle Integration: AI 
plays a crucial role in the development and 
management of autonomous vehicles, 
enhancing safety and efficiency.

• Smart Public Transportation: AI enables 
efficient routing, scheduling, and capacity 
management for public transport systems.
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Case Study 3.1: Electric Aircraft 
Optimization

Electric Aircraft Traffic Routing

• Route-Based Maintenance 
Scheduling: Use flight paths and traffic 
density data to predict optimal 
maintenance windows, minimizing 
unscheduled downtime.

• Battery Life Forecasting: Forecast 
remaining useful life (RUL) by accounting 
for route profiles.

• Traffic Corridor Optimization: Design 
and update airspace corridors to reduce 
delays and idle loitering—lowering 
overall energy.
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Application 4: Flood Modeling and 
Forecasting 

Flood Modeling and Forecasting

• Real-Time Data Analysis: Process real-time 
sensor and weather data to predict flood risks.

• Improved Forecast Accuracy: Machine 
learning models enhance the accuracy of flood 
forecasts.

• Early Warning Systems: AI-driven models 
provide early flood warnings, improving 
disaster preparedness.

• Risk Mapping: Flood risk maps to identify 
vulnerable areas and inform urban planning.

• Emergency Response: Optimize resource 
allocation during flood events for efficient 
response.
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Case Study 4.1: Low-cost Height Sensors

Flood Modeling and Forecasting

• Real-Time Monitoring: Sensors deployed 
by UAVs collect real-time water height data, 
providing real-time information during 
floods.

• Optimization: Optimize flood model 
parameters in real-time.

• IoT Integration: IoT-enabled sensors for 
seamless data transmission and faster 
model updates, improving flood response 
times.

• Predictive Forecasting: Enhance flood 
prediction by processing large data sets and 
optimizing forecasts for urban watersheds.
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Case Study 4.1: Low-cost Height Sensors
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Application 5: Geotechnical Monitoring

Geotechnical Monitoring

• Real-Time Monitoring: AI processes 
sensor data to monitor soil movement and 
stability in real time.

• Early Detection of Failures: Detects 
early signs of slope instability, landslides, 
and foundation settlement.

• Predictive Maintenance: Forecast 
potential geotechnical issues, allowing for 
timely interventions.

• Cost Reduction: Monitoring reduces the 
need for frequent manual inspections and 
prevents costly failures.
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Case Study 5.1: UAV-Deployable Soil 
Saturation Sensors

Soil Saturation Monitoring

• Real-Time Monitoring: UAV-deployed 
smart sensing spikes provide continuous 
soil moisture monitoring across levees.

• Data Expansion: Gaussian process 
regression (kriging) to generate continuous 
moisture maps from discrete sensor data.

• Automated Classification: Categorize soil 
conditions into dry, partially saturated, and 
saturated zones using k-means clustering.

• Early Detection: The system predicts 
areas at risk of levee failure by monitoring 
soil saturation and detecting seepage.
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Case Study 5.1: UAV-Deployable Soil 
Saturation Sensors
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Case Study 5.2: LIDAR-based Monitoring

LIDAR-Based Monitoring for Slope Stability

• High-Resolution Data: LiDAR 
captures 3D topography for precise 
monitoring of slopes.

• Seasonal Monitoring: Track 
moisture variations and their impact 
on soils.

• Risk Assessment: LiDAR scans 
identify potential failures, offering 
early warnings for slope instability.

• Efficient Processing: Advanced 
algorithms speed up data analysis for 
real-time monitoring.
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Challenges for Active & Smart 
Infrastructure

Challenges:

• Aging Assets: Many bridges, tunnels, and 
water‐control structures exceed their design life, 
increasing collapse risk

• Private Autonomous Systems: Self-driving 
cars, delivery drones, and other on-demand 
vehicles introduce new, unpredictable loads and 
traffic patterns

• Delayed Maintenance: Scheduled service can 
lead to under- or over-maintenance, wasting 
resources
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Conclusion
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Final Thoughts:

• Active Infrastructure: Sensors and actuators 
enable real-time self-monitoring.

• Predictive Maintenance Pays Off: Early 
fault detection cuts downtime.

• Interdisciplinary Teams Win: Collaboration 
drives resilient designs.

• Field-Proven Technologies: Case studies 
show practical impact.

• Your Turn to Build the Future: Pursue 
careers that protect and sustain.

No researchers were harmed 

during this endeavor!   



Questions and Discussion

This material is based upon work supported by the Air Force Office of Scientific Research (AFOSR) through award no. FA9550-21-1-0083. This work is 
also partly supported by the National Science Foundation Grant numbers 1850012, 1956071, 2152896, 2344357, and 2237696. as well at the 
Departments of Transportation of Iowa, Kansas, South Carolina, and North Carolina, through the Transportation Pooled Fund Study TPF-5(449). The 
support of these agencies is gratefully acknowledged. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the 
authors, and they do not necessarily reflect the views of the National Science Foundation, the United States Air Force, or the state DOTs.
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