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Civil Infrastructure

* Civil infrastructure includes
essential public systems and
facilities:

 Roads and highways
» Bridges and tunnels
« Water and sewage systems

« Dams, levees, and flood control
structures

* Electrical grids, transportation
networks, and more




Infrastructure Mamtenance and Upgrade

* Importance of Maintenance
and Upgrades:

« Critical for public safety and
economic stability

» Ensures infrastructure longevity
and reliability

* Necessary to handle increasing
demand and urbanization

» Key to reducing the risk of
catastrophic failures, like bridge
collapses or dam breaches




Infrastructure Challenges

Traditional Challenges:

« Aging infrastructure and limited
budgets for repairs

* Manual inspection processes are
labor-intensive and time-
consuming

* Delayed detection of structural
issues leads to reactive
maintenance

« Difficulty in predicting failures due
to the complexity of infrastructure
systems




Predictive Maintenance

Al Use Cases in Infrastructure:

using data to

Continuous Sensing: Real-time predict the health
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Improved Resilience: Fewer esilicnce, cost savings, and
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Goal: Self-Monitoring & Adaptive
Infrastructure

Civil Engineering and Al include:

« Continuous Sensing: Embedded
sensors track stress, strain, water level,
vibration, etc., in real time

« Automated Actuation: Valves, gates, |
dampers or cables adjust themselves to |
changing loads or water pressures

Predictive Maintenance: On-board
analytics flag emerging issues—
corrosion, fatigue, blockages
Enhanced Resilience: Infrastructure

that detects and reacts autonomously to
floods, heavy traffic, or seismic events




Applications and Case Studies




Application 1: Structural Health
Monitoring

Structural Health Monitoring (SHM)

» Distributed Sensing: Strain, vibration, tilt
and ultrasonic sensors embedded across
the structure

Continuous Inspection: Real-time data
collection without bucket trucks

Damage Detection: Automated
identification of cracks, corrosion, loosened
connections

 Actionable Alerts: Threshold-based
alarms and dashboard reports for timely
maintenance




Case Study 1.1: Bridge Monitoring

Key Benefits of Al in Bridge Monitoring

» Fatigue Crack Detection: Sensing skin
technology (SEC) detects and monitors
fatigue cracks in steel bridges.

Large-Area Monitoring: Soft elastomeric
capacitors (SECs) provide coverage over
large bridge surfaces for crack detection.

Field Validation: The system was
successfully deployed on a highway
bridge in Kansas, providing real-world
validation for the SEC.
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Case Study 1.2: UAV Deployed Sensors

UAV Deployable Sensor Packages

Autonomous Deployment: Fast, precise
sensor placement.

Real-Time Monitoring: Continuous data for
proactive assessment.

Cost & Time Efficient: Reduces manual
inspections.

Scalable Solution: Works for bridges, levees,
and more.

Enhanced Safety: Minimizes human exposure.




Case Study 1.2: UAV Deployed Sensors
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Application 2: Water Quality Monitoring

Water Quality Monitoring

» Real-Time Monitoring: Continuous, real-time
tracking of water quality parameters (e.g., pH,
turbidity, contaminants).

Early Detection of Contaminants: Machine
learning models identify harmful substances in
water early, improving response times.

Predictive Analysis: Al predicts potential
water quality issues based on environmental
and historical data trends.

Cost Efficiency: Reduces the need for manual
sampling and testing, optimizing resource use
and operational costs.




Case Study 2.1: NMR-based Water
Quality Monitoring

NMR-Based Water Quality Monitoring

« How NMR Works: Magnetic pulses
align tiny “magnets” in water
molecules, then we listen for their
echo signals

Echo Signals: The pattern and
strength of those echoes tell us about
what's in the water

Portable Design: A small permanent
magnet and custom electronics let us
bring the lab to the field
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Case Study 2.1: NMR-based Water
Quality Monitoring
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Case Study 2.2: UAV-deponable in situ
Water Quality Sensors ;™

temprature probe
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Rapid Deployment: UAVs allow fast, 3 d ot DS probe
efficient sensor deployment in remote or
hazardous locations.

Spatial and Temporal Analysis:
Interpolation techniques map water
quality over space time.

Cost-Effective Solution: Affordable,
open-source sensors provide reliable
water quality data.
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Case Study 2.2: UAV-deployable
Water Quality Sensors
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Application 3: Traffic and Transportation

Key Benefits of Al in Transportation

 Traffic Flow Optimization: Manage and
optimize traffic flow in real-time, reducing
congestion. ¢

Predictive Traffic Management: Forecast "‘ g
traffic patterns, allowing cities to adjust § —
signals and infrastructure accordingly.

Autonomous Vehicle Integration: Al
plays a crucial role in the development and
management of autonomous vehicles,
enhancing safety and efficiency.

Smart Public Transportation: Al enables & *1.-.1 i
efficient routing, scheduling, and capacity |+ ==
management for public transport systems. |
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Case Study 3.1: Electric Aircraft
Optimization
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Application 4: Flood Modeling and
Forecasting

Flood Modeling and Forecasting

« Real-Time Data Analysis: Process real-time
sensor and weather data to predict flood risks.

Improved Forecast Accuracy: Machine
learning models enhance the accuracy of flood
forecasts.

Early Warning Systems: Al-driven models
provide early flood warnings, improving
disaster preparedness.

Risk Mapping: Flood risk maps to identify
vulnerable areas and inform urban planning.

Emergency Response: Optimize resource
allocation during flood events for efficient
response.




Case Study 4.1: Low-cost Height Sensors

OF - el (h) e (€}

Flood Modeling and Forecasting =G A e e

i magnet e
Arduing i
e R F240L00+

* Real-Time Monitoring: Sensors deployed ' L
by UAVs collect real-time water height data, =SS
providing real-time information during sk o YR |
floods. ' \E

fermmagnetic
hase plate

ultrasonic sensor

Optimization: Optimize flood model .-.'-:"" ": (nside seosor bousing)

parameters in real-time.

loT Integration: loT-enabled sensors for
seamless data transmission and faster
model updates, improving flood response
times.

Predictive Forecasting: Enhance flood
prediction by processing large data sets and
optimizing forecasts for urban watersheds.




Case Study 4.1: Low-cost Height Sensors
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Application 5: Geotechnical Monitoring

through-seepage

residences levee instability

Geotechnical Monitoring

* Real-Time Monitoring: Al processes
sensor data to monitor soil movement and
stability in real time.

Early Detection of Failures: Detects
early signs of slope instability, landslides,
and foundation settlement.

Predictive Maintenance: Forecast
potential geotechnical issues, allowing for
timely interventions.

Cost Reduction: Monitoring reduces the
need for frequent manual inspections and
prevents costly failures.




Case Study 5.1: UAV-Deployable Soil
Saturation Sensors

Soil Saturation Monitoring
* Real-Time Monitoring: UAV-deployed
smart sensing spikes provide continuous
soil moisture monitoring across levees.
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« Automated Classification: Categorize soil

conditions into dry, partially saturated, and
saturated zones using k-means clustering.
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Case Study 5.1: UAV-Deployable Soil
Saturation Sensors
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Case Study 5.2: LIDAR-based Monitoring

LIDAR-Based Monitoring for Slope Stability - B

* High-Resolution Data: LIDAR
captures 3D topography for precise
monitoring of slopes.

Seasonal Monitoring: Track
moisture variations and their impact
on soils.

Risk Assessment: LIDAR scans
identify potential failures, offering
early warnings for slope instability.

Efficient Processing: Advanced //J

algorithms speed up data analysis for
real-time monitoring.
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Challenges for Active & Smart
Infrastructure

Challenges:

« Aging Assets: Many bridges, tunnels, and
water-control structures exceed their design life,
increasing collapse risk

Private Autonomous Systems: Self-driving
cars, delivery drones, and other on-demand
vehicles introduce new, unpredictable loads and
traffic patterns

Delayed Maintenance: Scheduled service can
lead to under- or over-maintenance, wasting
resources




Conclu sion No researchers were harmed
during this endeavor!
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Final Thoughts: = ;u J [! |
Active Infrastructure: Sensors and actuators Sl & "I_ “:nm,_ _’ I;;' f
enable real-time self-monitoring. Tl Rl |

Predictive Maintenance Pays Off: Early
fault detection cuts downtime.

Interdisciplinary Teams Win: Collaboration
drives resilient designs.

Field-Proven Technologies: Case studies
show practical impact.

Your Turn to Build the Future: Pursue
careers that protect and sustain.




Questions and Discussion
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