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Water Quality Monitoring using Field

Deployable NMR




History of NMR
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Riegel, Susanne D., and Garett M. Leskowitz. "Benchtop NMR spectrometers in academic teaching." TrAC Trends in Analytical Chemistry 83 (2016): 27-38.




Nuclear Magnetic Resonance (NMR)
Techniques
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NMR spectroscopy T NMR Relaxometry
« Lab-Grade NMR * Low-field NMR relaxometry
o Frequency domain analysis & o Time domain analysis
o High resolution = o Low resolution

o Expensive & bulky d o Inexpensive and portable
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B. Blimich, “Introduction to compact NMR: A review of methods,” TrAC Trends in Analytical
Chemistry, vol. 83, pp. 2-11, Oct. 2016.
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Miniature NMR systems

0.51 T Halbach magnet

Arbitrary
Pulse
Sequencer
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Our Open-source NMR System




ARTS-Lab Desktop NMR System

« Control handled by LabVIEW program and NI-PXI chassis
« All electronics (barring two amplifiers) housed on a single PCB

« GUI developed for easy data acquisition and export

P data acquisition & control

control board high power amplifier




Flow-through NMR
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Past NMR Development
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Continuous Water Quality Monitoring
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Open-source NMR Hardware




Permanent Magnet Array

N42 magnet

* 0.565 T strength at 23°C

o -800 ppm/K gradient
« Larmor (operating) frequency:

0 frarmor = VB = (42.58 Mfz) (0.565T) ~ 24 MHz

* 150 ppm homogeneity
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RF Electronics

A single 24 VV DC power supply required

PCBs
filter (5-15kHz)
NI FXI chassis ﬂ

. n-geope .
Waveform generator - sine wave at Larmor frequency

Impedance of all cables and PCB traces matched to 50 Q

power splitter

wavetorm generator

Pulse generator - follows CPMG pulse train

pulse generator

Duplexer (crossed diodes) isolates probe and LNA

General flow
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Signal Generation and Control

sin wave generation

« NI PXI chassis {\AW\N\/\NW\} input
o Arbitrary waveform generator

wite output l” «w
o Pulse train generator pulse generation ' I’W . W’W . |‘ |

o 16-bit digitizer | _‘ control
1807

extracted 7 relaxation

|

» Carr-Purcell-Meiboom-Gill (CPMG) pulse 150°
sequence '

o 90° pulse duration is 7 us

o 7=125ms I r,_la.%




Data Acquisition

LabVIEW GUI serves as front end current scan outputs
Each test comprises 5 scans (averages)

Time for T, curve acquisition < 10 seconds
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TD-NMR Signals and MP Content

* T relaxation modeled as Mxy (t) = Moexp(—t/T>)

« Relaxation rate is the reciprocal of relaxation time (i.e., R, = 1/T,)

« Linear relationship between R, and MP concentration well established
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Use Case: Wildfire Ash




Why Monitor Magnetic Contents of
Wildfire Ash?

« Effects on topsail
o Ash deposits enhance magnetic content in soil

o Magnetic properties are closely related to climate &
rainfall

» Deposition through runoff water

o Nearby bodies of water accumulate magnetic
content

o Nanoscale magnetite is linked to brain disease

« Understand fire severity and the reaches of
magnetic deposition

USGS, “How wildfires threaten U.S. water supplies,” Water Data Labs, 06-
Nov-2020. [Online]. Available:
https://labs.waterdata.usgs.gov/visualizations/fire-hydro/index.html#/.
[Accessed: 28-Oct-2022].




NMR Relaxometry with MPs
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* 10 total ash samples
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Real-time In Situ Tracking

« Monitoring Wildland-Urban Interface Fire Ashes and Run off Total iron
content collected

» 10 surface water samples collected from two inlets to Lake Madrone that
were subjected to runoff following the North Complex Fire in California
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ML-based Species Parameter

Classification

Patent Pending




Background: Predicting DCN of Jet Fuel

« The Derived Cetane Number (DCN) is a
widely used metric that indicates a fuel’s
ignition quality and combustion
behavior.

Higher DCN typically means better
ignition propensity and more efficient
combustion, which directly impacts
engine performance and emissions.

« Traditional DCN measurement methods
(e.g., ASTM standards) require large-
scale, time-consuming lab tests.

Patent Pending




Separating Signal from Noise

Natural logarithm of T2 signal allows for the separation of signal and nose
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Feature-based Classification using
Interpretable Machine Learning

Visual summary of the interpretable machine learning approach.
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Interpretable Machine Learning

 Arandom forest model is trained with hyperparameter tuning, generating feature importance scores

that highlight which input variables most influence the prediction of DCN.

truncate signal training data hyperparameters

v 1

e update
fit exponential t l

out-of-bag
BITOr

k2

compute features

k2

partial
feed random forest dependence

@ random forest

Patent Pending




Partial Dependence Plots

« Partial dependence plots (PDPs) are a powerful tool used in machine learning and statistical analysis to

interpret the relationship between a set of features (variables) and the predicted outcome of a model.
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ML-based DCN Prediction

Model predictions for pure
hydrocarbons show strong accuracy.
Validation dataset results closely
match true DCN values.

Standard deviation (error bars)

I
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Distinguishing Similar T, Curves

The interpretable ML approach accurately

infers DCN from T, relaxation curves.
CN40 and CN50 were used as test
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Ongoing In Situ Monitoring Work

(Preliminary Testing)
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Preliminary T2 Results

* T, data was tracked over 17
hours and remained mostly
stable, as expected.

* No averaging was applied,
resulting in a slightly noisy 7] — sk o

S I g n a I 23 === Signal stremgth limil
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}: ik R

 Future work will involve:

* Deploying during a rainstorm to
continuously track runoff changes.

 Collecting detailed water samples
for further analysis.

 Training the interpretable ML
model on extracted water features.




Future Work: Fine-tuning ML Model

« The flow-through NMR will be deployed with an automatic water sampler and will trigger a sample based
on uncertainties in predicted contaminate.
Collected samples will be returned to the lab for further assessment.

Lab results will be used to fine-tune the model

Over time, fewer lab samples will be required as the AI/ML model will more closely track the system.

Unknown contaminates events will trigger sample be taken, limiting False Negatives.

collect ML classification model with high classify
data uncertainty quantification uncertainty? contaminant
T 1 YES

fine tune lab test collect
ML Model sample sample
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