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History of NMR

Riegel, Susanne D., and Garett M. Leskowitz. "Benchtop NMR spectrometers in academic teaching." TrAC Trends in Analytical Chemistry 83 (2016): 27-38.
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NMR spectroscopy

• Lab-Grade NMR

o Frequency domain analysis

o High resolution

o Expensive & bulky

NMR Relaxometry

• Low-field NMR relaxometry

o Time domain analysis

o Low resolution

o Inexpensive and portable

B. Blümich, “Introduction to compact NMR: A review of methods,” TrAC Trends in Analytical 

Chemistry, vol. 83, pp. 2–11, Oct. 2016. 

B. Blümich, “Introduction to compact NMR: A review of methods,” TrAC Trends in 

Analytical Chemistry, vol. 83, pp. 2–11, Oct. 2016. 

Nuclear Magnetic Resonance (NMR) 
Techniques
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Miniature NMR systems

Tang, Yiqiao, David McCowan, and Yi-Qiao 

Song. "A miniaturized spectrometer for NMR 

relaxometry under extreme conditions." 

Scientific reports 9.1 (2019): 11174

.

https://physicsworld.com/a/going-mobile-with-

nmr-spectroscopy/
Lee, Hakho, et al. "Chip–NMR biosensor for detection and 

molecular analysis of cells." Nature medicine 14.8 (2008): 869-874.

Sun, Nan, et al. "Palm NMR and 1-chip NMR." IEEE Journal of 

Solid-State Circuits 46.1 (2010): 342-352. Lee, Hakho, et al. "Chip–NMR biosensor for detection and molecular analysis of cells." Nature medicine 14.8 (2008): 869-874.
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Our Open-source NMR System



• Control handled by LabVIEW program and NI-PXI chassis

• All electronics (barring two amplifiers) housed on a single PCB

• GUI developed for easy data acquisition and export

ARTS-Lab Desktop NMR System
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Flow-through NMR
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Past NMR Development
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Continuous Water Quality Monitoring
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The system is being developed to:

• Track T2 relaxation over time

• Use AI/ML to infer contaminants

• Report results via web portal

• Integrate into a larger autonomous 

monitoring framework

• Enable continuous surveillance



Open-source NMR Hardware



Permanent Magnet Array

• 0.565 T strength at 23⁰C
o -800 ppm/K gradient

• Larmor (operating) frequency:
o 𝑓𝐿𝑎𝑟𝑚𝑜𝑟 = 𝛾𝐵 = 42.58

𝑀𝐻𝑧

𝑇
0.565 𝑇 ≈ 𝟐𝟒 𝑴𝑯𝒛

• 150 ppm homogeneity

• 4.4 lbs

Sample 

location

N42 magnet

N42 magnet

Fully assembled
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• A single 24 V DC power supply required 

• Impedance of all cables and PCB traces matched to 50 Ω

• Waveform generator → sine wave at Larmor frequency

• Pulse generator → follows CPMG pulse train

• Duplexer (crossed diodes) isolates probe and LNA

General flow

excitation
NMR 

response
amplification mixing filtering

RF Electronics
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• NI PXI chassis

o Arbitrary waveform generator

o Pulse train generator

o 16-bit digitizer

• Carr-Purcell-Meiboom-Gill (CPMG) pulse 

sequence

o 90∘ pulse duration is 7 μs

o 𝜏 = 1.25 ms

Signal Generation and Control
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• LabVIEW GUI serves as front end

• Each test comprises 5 scans (averages)

• Time for 𝑇2 curve acquisition < 10 seconds

• Thermocouple used for frequency 

calibration

user adjustable parameters

current scan outputs

averaged relaxation data

Data Acquisition
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• 𝑇2 relaxation modeled as 𝑀xy(𝑡) = 𝑀0exp(−𝑡/𝑇2)

• Relaxation rate is the reciprocal of relaxation time (i.e., 𝑅2 = 1/𝑇2)

• Linear relationship between 𝑅2 and MP concentration well established

TD-NMR Signals and MP Content
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Use Case: Wildfire Ash



Why Monitor Magnetic Contents of 
Wildfire Ash?

• Effects on topsoil

o Ash deposits enhance magnetic content in soil

o Magnetic properties are closely related to climate & 
rainfall

• Deposition through runoff water

o Nearby bodies of water accumulate magnetic 
content

o Nanoscale magnetite is linked to brain disease

• Understand fire severity and the reaches of 
magnetic deposition

USGS, “How wildfires threaten U.S. water supplies,” Water Data Labs, 06-

Nov-2020. [Online]. Available: 

https://labs.waterdata.usgs.gov/visualizations/fire-hydro/index.html#/. 

[Accessed: 28-Oct-2022]. 

Topsoil

 deposition

Runoff

 deposition
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NMR Relaxometry with MPs

• 10 total ash samples 

• 20 mg in 20 mL of water

• Distilled water used as 
reference

• R2 extracted via least squares 
regression

o 𝑀𝑥𝑦 = 𝑀0exp(−𝑅2𝑡)
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Real-time In Situ Tracking

• Monitoring Wildland-Urban Interface Fire Ashes and Run off Total iron 
content collected

• 10 surface water samples collected from two inlets to Lake Madrone that 
were subjected to runoff following the North Complex Fire in California

22



ML-based Species Parameter 
Classification

Patent Pending



• The Derived Cetane Number (DCN) is a 

widely used metric that indicates a fuel’s 

ignition quality and combustion 

behavior.

• Higher DCN typically means better 

ignition propensity and more efficient 

combustion, which directly impacts 

engine performance and emissions.

• Traditional DCN measurement methods 

(e.g., ASTM standards) require large-

scale, time-consuming lab tests.

Patent Pending
24

Background: Predicting DCN of Jet Fuel

Jelson25, Public domain, via 

Wikimedia Commons



• Natural logarithm of T2 signal allows for the separation of signal and nose

Separating Signal from Noise

Patent Pending
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• Visual summary of the interpretable machine learning approach.

Feature-based Classification using 
Interpretable Machine Learning

Patent Pending
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TseKiChun, CC BY-SA 4.0 

<https://creativecommons.org/licenses

/by-sa/4.0>, via Wikimedia Commons



• A random forest model is trained with hyperparameter tuning, generating feature importance scores 

that highlight which input variables most influence the prediction of DCN.

Interpretable Machine Learning

Patent Pending
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• Partial dependence plots (PDPs) are a powerful tool used in machine learning and statistical analysis to 

interpret the relationship between a set of features (variables) and the predicted outcome of a model. 

Partial Dependence Plots

Patent Pending
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• Model predictions for pure 

hydrocarbons show strong accuracy.

• Validation dataset results closely 

match true DCN values.

• Standard deviation (error bars) 

indicate minimal variation.

• Demonstrates the reliability of the 

approach for well-characterized 

fuels.

ML-based DCN Prediction
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• The interpretable ML approach accurately 

infers DCN from T₂ relaxation curves.

• CN40 and CN50 were used as test 

samples and were not included in training.

• The relaxation curves of CN40 and CN50 

appear visually similar.

• Computed features from their T₂ curves 

differ by less than one part per hundred.

Distinguishing Similar T₂ Curves

Patent Pending
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Ongoing In Situ Monitoring Work
(Preliminary Testing)



Preliminary NMR Deployment
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Five Points

300 Main St.

Measurement 

Point

Rocky Branch

• Initial field deployments in Columbia South Carolina



Preliminary T2 Results
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• T₂ data was tracked over 17 
hours and remained mostly 
stable, as expected.

• No averaging was applied, 
resulting in a slightly noisy 
signal.

• Future work will involve:
• Deploying during a rainstorm to 

continuously track runoff changes.

• Collecting detailed water samples 
for further analysis.

• Training the interpretable ML 
model on extracted water features.



• The flow-through NMR will be deployed with an automatic water sampler and will trigger a sample based 

on uncertainties in predicted contaminate. 

• Collected samples will be returned to the lab for further assessment.

• Lab results will be used to fine-tune the model 

• Over time, fewer lab samples will be required as the AI/ML model will more closely track the system. 

• Unknown contaminates events will trigger sample be taken, limiting False Negatives.

Future Work: Fine-tuning ML Model
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Thank You for Your Time

Name: Austin Downey

Title: Associate Professor

Email: austindowney@sc.edu

Lab GitHub: github.com/arts-laboratory

https://github.com/ARTS-
Laboratory/Compact-NMR
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