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Outline for Today’s Talk

NMR Basics

Our Open-source NMR System

Use Case: Wildfire Ash

Lab Data Collection for Model Training
Field Deployment of In Situ NMR system
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NMR Basics




History of NMR
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Nuclear Magnetic Resonance (NMR)
Techniques

NMR spectroscopy T ‘”' NMR Relaxometry
. Lab-Grade NMR iy | + Low-field NMR relaxometry

o Time domain analysis

o High resolution o Low resolution

o Expensive & bulky N/ o Inexpensive and portable
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Miniature NMR systems

Control

Data and inversions
software

Magnet

Tang, Yigiao, David McCowan, and Yi-Qiao
Song. "A miniaturized spectrometer for NMR
relaxometry under extreme conditions."
Scientific reports 9.1 (2019): 11174

RF transceiver IC
[0.18um CMOS]
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Sun, Nan, et al. "Palm NMR and 1-chip NMR." IEEE Journal of

Solid-State Circuits 46.1 (2010): 342-352.

0.51 T Halbach magnet

Arbitrary
Pulse
Sequencer

https://physicsworld.com/a/going-mobile-with-
nmr-spectroscopy/

MW MW resonator &
fixture microfluidic chip

Microcoil array

Magnet

Magnetic
nancparticles

Power
splitter

Multiplexer and
switch network |
Microcoils

Sample

Lee, Hakho, et al. "Chip—NMR biosensor for detection and
molecular analysis of cells." Nature medicine 14.8 (2008): 869-874.

mount module
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permanent magnet ' resonator insert

Lee, Hakho, et al. "Chip—NMR biosensor for detection and molecular analysis of cells." Nature medicine 14.8 (2008): 869-874.




Our Open-source NMR System




ARTS-Lab Desktop NMR System

Hardware and Software shared through a public repository

A paper published in HardwareX to assist in building sensor

Opun-sourcc com
Field Deployment

Cost is approximantly $2,000 + DAQ system worer i L

B — data acquisition & control

control board \ high power amplifier

Winford Janvrin, Jacob Martin, Daniel Hancock, Angelo Varillas, Austin R.]J. Downey, Perry J. Pellechia, Joud Satme, and Sang Hee Won. Open-source
compact time-domain hydrogen (1H) NMR system for field deployment. HardwareX, 22:e00651, June 2025. doi:10.1016/j.0hx.2025.e00651




Flow-through NMR

custom NMR
electronics

-

"‘(NATIONAL
¥ INSTRUMENTS

il

(inside tub)




Past NMR Development

2020

Funding y/San Hee

Collogue
asks if it
can be
done?

Tracking down
specialized
hardware, magnets

cost 10-20k
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quarter wave cable
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Continuous Water Quality Momtormg

, : MR North inlet
The system is being developed to: o A @ A

Track T2 relaxation over time
Use AI/ML to infer contaminants
Report results via web portal

Integrate into a larger autonomous a7 South inleti 4

monitoring framework

—@&— North lake inlet
South lake inlet
=== distilled water

Enable continuous surveillance
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Proposed NMR Use Cases

immediate short-term medium-term long-term
objective objective objective objective

continuous wildfire and coal algae
Monitoring ash detection blooms
(heavy metals)

Fluorine

Oxygen




Permanent Magnet Array

* 0.565 T strength at 23°C

o -800 ppm/K gradient
« Larmor (operating) frequency:

0 frarmor = VB = (42.58 Mfz) (0.565T) ~ 24 MHz

* 150 ppm homogeneity
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RF Electronics

A single 24 V DC power supply required

Impedance of all cables and PCB traces matched to 50 Q
Waveform generator - sine wave at Larmor frequency
Pulse generator - follows CPMG pulse train

Duplexer (crossed diodes) isolates probe and LNA

General flow

PCBs

NI PXI chassis

filter (5-15kHz)

0-scope

\

power splitter

waveform generator

pulse generator

excitation NMR amplification mixing filtering
response
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TD-NMR Signals

* T relaxation modeled as Mxy (t) = Moexp(—t/T>)

« Relaxation rate is the reciprocal of relaxation time (i.e., R, = 1/T,)

« Linear relationship between R, and MP concentration well established
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Use Case: Wildfire Ash




Why Monitor Magnetic Contents of
. o L

Wildfire Ash?

« Effects on topsail
o Ash deposits enhance magnetic content in soil

o Magnetic properties are closely related to climate &
rainfall

» Deposition through runoff water

o Nearby bodies of water accumulate magnetic
content

o Nanoscale magnetite is linked to brain disease

« Understand fire severity and the reaches of
magnetic deposition

USGS, “How wildfires threaten U.S. water supplies,” Water Data Labs, 06-
Nov-2020. [Online]. Available:
https://labs.waterdata.usgs.gov/visualizations/fire-hydro/index.html#/.
[Accessed: 28-Oct-2022].




NMR Relaxometry with MPs

Distilled Water
—— White Ash

+ 10 total ash samples i o

« 20 mg in 20 mL of water

e Distilled water used as
reference

* R, extracted via least squares
regression

o My, = Myexp(—R;t)




Real-time In Situ Tracking

« Monitoring Wildland-Urban Interface Fire Ashes and Run off Total iron
content collected

» 10 surface water samples collected from two inlets to Lake Madrone that
were subjected to runoff following the North Complex Fire in California
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Separating Signal from Noise

Natural logarithm of T2 signal allows for the separation of signal and nose

log of sample T2 curve
moving average
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Lab Data Collection for Model Training




NMR in Environmental Chamber

% REVSCI

L omar scwacr

* NMR is placed in an environmental
chamber for temperature control.

* Long-term, an environmental
chamber would not be easy if the
magnet is calibrated over a

IncuFridge P

signal processing \ e

temperature range. | hordvare B

* Over-sized chamber used for
simplicity.

NMR magnet and
\ Faraday cage

-




Data Collection for Model Training

« Data collection
method: slowly drip i
Cu(ll) solution into P i M
distilled water to i

environmental chamber Cu(II) solution § water disposal |
| - gD

NMR magnet, coil,

p rOVi d e n e a r- E 2__> and Faraday cage

continuous training ——
d ata E external compnncnts -E solution

NMR testing solution

pump 1 —7p _ﬁ pump 4 ‘

« Remove water at same
rate to avoid overflow | L O '
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Model Training Data

* Consists of Cu(ll) contaminated water from Omg/L to 1000mg/L

 Stair-step concentration increases to provide model with
comprehensive ranges

* Slow and steady
increase in Cu(ll)
contamination at
low concentrations e .
to provide near- ) S o lu..”t
continuous data My W w




Field Deployment of In Situ NMR system




REVECH
control board TEEK AL

filter (3=15 kHz) low nodse amplifier

Field Deployed e - |

<

oscilloscope

sys t e m waveform BEnerator
[ signal processing

Environmental chamber: = Dpen | I

enables temperature control for WKZ T
magnet and RF electronics —Z§

[ 4 7cm ) 1 NMR||1;:4;M1J
Flow-through pumps: enable — o o o 1]

automatic sample collection (gt )] | i ow e

power splitier

_ | mixer

NI PXI-8821: enables remote extenal power
data acquisition with LabVIEW 1
software

Water quality sensor: measures
pH, temperature, turbidity, and
conductivity

26




Machine Learning
Model

 Partial dependence plot:
indicates low T2 and high
conductivity cause high
Cu(ll) concentration and
high T2 and low

conductivity cause low
Cu(ll) concentration

* Importance plot: shows that
T2 and conductivity are by
far the most important

* Together, they indicate the
model is thinking correctly

Parameter
T2 — pH
conductivity = water temperature

Total Dissolved Solids




Rocky Branch -
Creek Data

=z 2.0
0

+ T2 and conductivity ~2'-
data collected in- 16 -
situ over 17 hours

T2 and conductivity
(within 30) stay the
same

* Model predictions
agreeing with the
consistency of data
collection
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Future Work: Fine-tuning ML Model

« The flow-through NMR will be deployed with an automatic water sampler
and will trigger a sample based on uncertainties in predicted contaminate.

Collected samples will be returned to the lab for further assessment.
Lab results will be used to fine-tune the model
Over time, fewer lab samples will be required as the Al/ML model will
more closely track the system.
Unknown contaminates events will trigger sample be taken, limiting
False Negatives.

collect ML classification model with high classify
data uncertainty quantification uncertainty? contaminant

T 1 YES

fine tune lab test collect
ML Model sample sample




Future Work: Quantum Sensing

We are building a Quantum Sensor (NV center-based) to extend NMR to Optically Detected Magnetic
Resonance (ODMR) to enable PPT sensing of PFAS in situ.

Operational ODMR on bench: Confocal microscope + 543 nm pump, CPW microwave drive, and PL
readout show clear Zeeman-split dips (Earth-field detection) on a 300 ppb NV diamond chip.

Optics/electronics in place: Green HeNe + AOM, GHz MW source/amplifier, filters/pinholes; PL
collected >640 nm with stable counts suitable for control/fit routines.

Gaps to close for NMR/ESR: Need gated timing electronics for laser/MW pulsing and a gated single-
photon-level detector
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