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About the ARTS-Lab

* An Interdisciplinary Controls
Lab at the University of South
Carolina.

» Slogan: "Hardware Keeps the
Engineer Honest"™—we focus on
real-world validation of our
research.

* Aspirations: Develop cutting-
edge innovations and enable
unparalleled student success.




Mentorship & Student Growth

« 8 current Ph.D. students: 2 graduated, 1 in academia.
e 7/ current M.S. students: 7 graduated.

« 23 current undergraduates: 71 graduated, 2 NSF GFRP, 1
DoD SMART.

* A growing alumni network: past students have gone on to
Government Labs and top graduate programs.

* Undergraduates take part in real research: leading
conference and journal publications, and hardware development.

« Commitment to Open Source: We believe in democratizing
knowledge through open-source software and hardware.
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How We See Ourselves

We use

foundational to develop to solve real-world
science essential tools problems

e S

We are Engineers
(mostly)
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Part 2: High-rate ML at the Edge




Description of High-rate Dynamics

The deceleration event in drop tower tests typically
lasts for 0.5ms

I High-rate (<100ms) I

janmy, -

~—=test 1 accel 1|

‘ M ——test 1 accel 4

accel 4 —~~test 2 accel 1|
—test 2 accel 4 |
~~test 3 accel 1|
test 3 accel 4 |

deceleration (kJ‘ )

accel |

Large uncertainties in the external loads.
High levels of nonstationarity and heavy disturbance.

Generations of unmodeled dynamics from changes in
mechanical configuration.

Hong, J. et al,. Introduction to state estimation of high-rate system dynamics. Sensors, 18(2):217, Jan 2018



http://facweb.cs.depaul.edu/sgrais/ballistic_photography.htm
https://linex.com/security-and-defense/blast-mitigation

High-Rate Systems

Hypersonic vehicles Ballistic packages Debris approaching space shuttle
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Active High-Rate Systems (Airbags)
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https://blog.allstate.ca/youve-been-involved-in-a-car-accident-now-what/2015/
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Active High-Rate Systems (Electronics)

PCB failures under shock are caused by:

Bending of the base PCB board, causing
stresses to build up at the solder balls.

Adhesion challenges of masses (components)
accelerating away from the PCB.

IC component

Solder joints
i : 1500G

Spacer —» Time
0.5 ms

Base block

<+ Guide Rod

Shock generation pad

17 Wong, E. H., Yiu-Wing Mai, and Matthew Woo. "Analytical solution for the damped-
dynamics of printed circuit board and applied to study the effects of distorted half-sine
support excitation." IEEE Transactions on advanced packaging 32.2 (2009): 536-545.

Solder joint under
stress

S o, ——— package

Seah, S. K. W., Wong, E. H., Ranjan, R., Lim, C. T., and Mai, Y. W., 2005, "Understanding
and testing for drop impact failure," ASME Pacific Rim Technical Conference and Exhibition
on Integration and Packaging of MEMS, NEMS, and Electronic Systems, pp. 1089-1094.




Data Driven or Physics Based State

Estimation

?




Data Driven or Physics Based State
Estimation

e Data-driven:
* Potential to be faster
« Easier to implement
« Students excited to work on it
« Al/ML is moving quickly

* Physics-based.:
« Potential for prognostics

« Potential for real-time control It was hard to decide,

 Better su!ted for decision-making | so we did both
 Better suited for un-foreseen dynamics




Timeline of Efforts on State Estimation

Physics-based - YIP

Closed form solution SO|:‘/qeordf;()lrr;i(él|l;fed Deployed Expand to 2D, 2,500 X
for search space online speedup

2018 v 2019 ¥ 2020 4 2021 4 2022 v 2023 ¥ 2024 E:> 2025

/

model updating Modal order 125 X speed up over . .
framework formulated reduction eigenvalue solution QPUITE) SElTUe

for 1D system methods

Data-driven

LSTM hypothesized for ML-based LSTM model built Online LSTM-state estimation of
state estimation of a 1D system for FPGA a more realistic system (offline)

2019 ¥ 2020 .

2021 & 2022 N 2023 1 2024, E:> 2025

CRII/ \ \

CAREER LSTM running on real- Custom LSTM accelerated  Online LSTM-state estimation
20 time OS hardware synthesized for FPGA of a more realistic system
synthesized for FPGA
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Data Driven Model Updating
(Theory and Proof of Concept)

Data Driven Model Updating
(Theory and Proof of Concept)




LSTM-based Real-time State Estimation

In this work:

* Long short-term memory (LSTM) models

are used for real-time state estimation. 2T |
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« Experimentally validated on NI-Linux Real-
Time.




Real-time Validation on Embedded

Systems

Real-time validation performed on an embedded system running:

« Hardware reproducing Signals reproduces the DROPBEAR.

* Real-time Target digitizes the analog voltage and feeds the input LSTM.

« Data is sampled at 400 S/s, therefore, a prediction is made every 2.5 ms.

hardware repro- t
control ducing signals
\computer =x- 1

real-time target running LSTM

control computer

r =
}feed acceleration!

| data into FIFO

r T
! record location

hardware repro-
ducing signals

analog output

real-time target
running LSTM

| prediction data

[euSis Sojeue

analog input [

feed data
into
LSTM

generate
new
states

feed state
into dense
layer
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pre-
diction
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Real-time LSTM Modeling Results

LSTM model performance results: Algorithm Timing
« SNRdB of 43.2 dB.
« RMSE of 12.8 mm.
 LSTM traces reference pin location closely.

o =

Y

Timing accuracy results:

percent of total instances

. - >0

\
 Execution-time jitter in observed (expected). =] |||I“|I |
* Timing follows a normal distribution. o= .
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Electronic Components Under Shock

(Application)

Electronic Components
Under Shock (Application)




Experimental System used for Validation

y

| I shock test system

| | data aquisition

PCB sample
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https://github.com/High-Rate-SHM-
Working-Group/Dataset-5-Extended-
Impact-Testing

cable to impedance meter




Experimental System used for Validation
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Experimental System used for Validation
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LSTM-based Real-time State Estimation

In this work: @i

Long short-term memory (LSTM) models are used for real-
time state estimation.

Models are initially trained offline on pre-recorded data.

LSTM architecture is (50, 50 units) with a dense layer at the L
output with SoftMax activation ]
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Model Results

Prediction of survivability of PCB exposed to shock loads
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FPGA Implementation

(Timing Consideration)

FPGA Implementation
(Timing Consideration)




LSTM deployment on an FPGA

The developed hardware accelerator is split up into the LSTM'’s gates for deployment.
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Custom LSTM Hardware Accelerator

Building a hardware accelerator for deploying
LSTMs with a focus on low latency using High-
Level Synthesis (HLS).

* Designed in C++ with Vitis HLS, then
synthesized into Hardware Description
Language (HDL).

Two main units: Matrix-Vector Operations

(MVO) and Element-Wise Operations (EVO).

Partial or full array partitioning optimizes
BRAM usage based on LSTM size.

Loop pipelining improves parallelization, but
BRAM port limits restrict full parallelism.
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Parallelism study

Effect of Parallelism on HDL Design

 LSTM hardware accelerator replacement created in both Hardware Description
Language (HDL) and High-Level Synthesis (HLS). HDL exposed more parallelism.
Software baseline system developed on National Instruments testbed. State
prediction output every 500 pus.

Bit Highest | Fmax | Latency

Platform | Precision Level Of (MHz)| (uS)
Parallelism

FP-32 , 4 Units 142 .78
FP-16 5 Units 166 2.06
FP-32 8 Units 150 2.38

USSC . pp.i6 15 Units 250

Virtex 7




Takeaway

It is possible to use online data-driven models for micro-second tracking of structures during impact.




Part 3: Signal Processing for

UAV-deployed Sensors




Challenges and Innovations in Structural
Health Monitoring

« Current Limitations: SHM
depends on specialized
equipment and personnel,
reducing speed and flexibility.

Deployment Challenges:
Hazardous or aging structures
Increase cost and safety risks.

Need for Rapid SHM: Real-time
Insights, autonomous deployment,
and wireless communication are
essential for efficient monitoring.

37




Challenges and Innovations in Structural
Health Monitoring

Autonomous Deployment: Fast, precise
sensor placement.

Real-Time Monitoring: Continuous data
for proactive assessment.

Cost & Time Efficient: Reduces manual
Inspections.

Scalable Solution: Works for bridges,
levees, and more.

Enhanced Safety: Minimizes human
exposure.

38




Sensor Package

Deployment System: Uses a 3D-
printed recovery cone for guided docking

Integrated Streaming: Provides
multiple camera views for precise
navigation

Electropermanent Magnets: Secure
sensor placement and retrieval

Error Compensation: Redundancy
measures for safe, reliable operation in
complex environments

39




Deployment and Retrieval System

sensor frame

retrieval guard

3X speed - EMP #1 | EPM #2

Deployment On Off

Retrieval Off On




Driving Challenges in UAV-deployed
Sensors

Driving Challenges in UAV-
deployed Sensors




Our Solution - UAV-Deployable Sensor
Package

Rapid Aerial Sensor Deployment:
Designed for quick, efficient sensor
placement in SHM scenarios

Enhanced Spatial Awareness: Multiple
camera views for precise navigation,

docking, and sensor deployment
Electropermanent Magnetic Docking:
Secure attachment with a recovery cone
for guided docking

Built-in Redundancy: Safety and reliability
features to ensure successful deployments

| | |
10 15 20 25 30 35
frequency (Hz)




Understanding the Ceiling Effect in UAVs

« Definition: The ceiling effect occurs
when a propeller operates near a
barrier, like a celling, altering the
airflow and making lift more efficient.

Cause: Impeded airflow above the
propeller leads to a pressure drop,
creating an increase in lift.

propeller in open air propeller under ceiling effect

Impact on Control: The UAV
operator may notice sudden,
unexpected lift or reduced control ,

near the celiling.

43




Challenges in Human-Operated Flight for
Sensor Deployment in SHM

0
Ceiling Effect Variability: Sudden lift e - WW"’ l! w;
changes near ceilings R | i "H" ;ﬁ":/.
Pilot-Induced Instability: Oscillations from | | |
manual control

Signal Interference: Issues near metal
structures

Line of Sight Limitations: Restricted
visibility impacts precision

No researchers were harmed
during this endeavor!

44




UAV and Sensor Hardware

UAV and Sensor Hardware




Deployment and Retrieval System

Electromagnetic Activation:

Pulse-activated magnetic polarity
control

Energy-Efficient: Holds magnetic
state without continuous power

Versatile Applications: Ideal for
clamping, lifting, and sensor
deployment

Stable Magnetic Configuration:
Maintains position securely using
South-South or South-North fields

magnetic field strength (T)

46
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Camera-Assisted Deployment

* Multi-Camera Setup:
Provides real-time spatial ﬁ deployment surface
awareness for precise sensor package 5

navigation. P .
T deployment camera | €— field of view (FOV)
Target Identification: — 5o
; . . nav1gat10n camera
Assists in locating the .,
sensor package with visual Ty

feedback.




In-flight Data Collection

« Accurate Alignment:
Guides the UAV to align the
recovery cone with the
sensor package.

Foundation for Autonomy:
Key step towards a fully
autonomous UAV system.

End-to-end Machine
Learning Control: Currently
developing end-to-end
methods for the autonomous
retrieval of sensor packages.

48




Sensor Hardware and Onboard Systems

 Robust Design: Aerially deployable with
noninvasive EPM docking

Reliable Operation: Power management,
ﬂOﬂVOIa’[lle memory’ and W”’eIeSS microcontroller
communication LiPo battery

Sensing: Accelerometer up to 28 kS/s;
frame minimizes transmissibility loss

protective frame

RF module
long-range antenna

MEMS

accelerometer

EPM

L magnet/accelerometer

memory module
Y module




Sensor Package System Architecture

« Core Processing: Teensy 4.0
microcontroller (ARM Cortex
M7) with SD card for data
storage

Communication: High-
sensitivity accelerometer and
RF module for real-time data
and commands

accelerometer
Z-axis

SCA3300-d01

RF module
NRF24L01

memory
SD card

e e o —— S S S SN SN SN S SN NI SN S SN SN S SN S —

electropermanent
magnet

EPM V3 R5C

'

PWM A

Teensy 4.0
‘'microcontroller

ARM Cortex
M7

power module
MP1584EN

lithium
polymer battery

Lumenier
7.4V 1000mAh

protective frame




Edge Processing of Sensor Signal

Edge Processing of Sensor
Signal




LSTM-Based Signal Compensation
Process

Model training procedure
Supervised learning method

ASSUTﬂptiOﬂSZ update update
« Sampling rates were set equal (400 S/s) ﬂ,' LSTMt L
compensator
« Zero phase between the two sensors >

« Bandwidth of interest to be < 10 Hz
Model chosen is a single-layer 50-unit LSTM ‘
Backpropagation is done online every 400
datapoints (1 second)

e sampled data

corrected data
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Signal Conditioning and Error
Compensation

Chirp excitation is fed into the electromagnetic | sensor package
shaker using an analog output module ,

A data acquisition is used to record reference _ reference accelerometer
acceleration

A digital trigger is set to synchronize both the

reference accelerometer and sensor package

Various dynamic ranges were used to expand the

training range of the LSTM model

excitation signal acceleration signal

' 9
. fend = /s‘t.;-u't 9 . 0.2

x(t) =sin | 27 | - t° + fotartl ;
(t) ( (2(11681 time) Jstart |

data length, . D
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acceleration model model

LSTM Performance

training testing

sensor
package

LSTM
network

LSTM compensator performance
For testing a chirp excitation in 0-5 Hz is used
SNRde enhancement of 9.34%

RMSE reduction of 19.66%

Usable bandwidth (< £2%) is shown to increase
form 2.78 Hz to 1.34 Hz

An overall increase in gain below 0.9 Hz due to
training bias

— reference — peference
sensor package —COTISOT package

compensator compensator

2
Jupid gab

Mkl
Al e de
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\s
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SNRgB

RMSE

sensor package

17.26 dB

1.795x 107

LSTM compensator

18.88 dB

1.442x 107

(

/¢ improvement

9.34%

19.66%
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me (s)
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frequency (Hz)
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frequency (Hz)

w— 2% error threshold
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Conclusion

The ARTS-Lab is a multidisciplinary research lab tackling
challenges in control and edge computing.

« High-rate ML at the edge enables structural model updates In
microseconds.

* Online signal compensation enhances data usability for UAV-
deployed sensors in structural health monitoring.
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