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Sensing 
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Flexible Electronics Nuclear Magnetic Resonance Vibration Sensors

In Situ Monitoring of AM Water Quality Sensors Geo Technical Sensors



Data Assimilation 
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Outline for Today’s Talk:

1. Driving Challenges in UAV-

deployed Sensors

2. UAV and Sensor Hardware

3. Edge Processing of Sensor 

Signal

4. Networks of UAV-deployed 

Sensors

5. Future Directions and 

Preliminary Results

6. Conclusion
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Driving Challenges in UAV-deployed 
Sensors



Challenges and Innovations in Structural Health Monitoring
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• Current Limitations: Traditional SHM 

relies on specialized equipment and 

skilled personnel, limiting speed and 

flexibility.

• Deployment Challenges: Remote, 

hazardous locations, or decaying 

structures add time, cost, and safety 

risks to manual sensor deployment.

• Need for Rapid SHM Solutions: Real-

time, data-driven insights, autonomous 

sensor deployment, and effective 

wireless communication are critical for 

safe, efficient monitoring.



                   

              

   

   

   

   

   

   

  
  

  

                 

                   

Our Solution – UAV-Deployable Sensor Package
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• Rapid Aerial Sensor Deployment: 
Designed for quick, efficient sensor 
placement in SHM scenarios

• Enhanced Spatial Awareness: Multiple 
camera views for precise navigation, 
docking, and sensor deployment 

• Electropermanent Magnetic Docking: 
Secure attachment with a recovery cone 
for guided docking

• Built-in Redundancy: Safety and reliability 
features to ensure successful deployments
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Understanding the Ceiling Effect in UAVs

                          propeller in open air                      propeller under ceiling effect 
   

• Definition: The ceiling effect occurs 

when a propeller operates near a 

barrier, like a ceiling, altering the 

airflow and making lift more efficient.

• Cause: Impeded airflow above the 

propeller leads to a pressure drop, 

creating an increase in lift.

• Impact on Control: The UAV 

operator may notice sudden, 

unexpected lift or reduced control 

near the ceiling.



13

Challenges in Human-Operated Flight for Sensor 

Deployment in SHM

• Ceiling Effect Variability: Sudden lift 

changes near ceilings

• Pilot-Induced Instability: Oscillations from 

manual control

• Signal Interference: Issues near metal 

structures

• Line of Sight Limitations: Restricted 

visibility impacts precision

No researchers were harmed 

during this endeavor!   



UAV and Sensor Hardware
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Sensor Package

• Deployment System: Uses a 3D-printed 

recovery cone for guided docking

• Integrated Streaming: Provides multiple 

camera views for precise navigation

• Electropermanent Magnets: Secure 

sensor placement and retrieval

• Error Compensation: Redundancy 

measures for safe, reliable operation in 

complex environments
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Deployment and Retrieval System

EMP #1 EPM #2

Deployment On Off

Retrieval Off On

2

1
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• Electromagnetic Activation: Pulse-

activated magnetic polarity control

• Energy-Efficient: Holds magnetic 

state without continuous power

• Versatile Applications: Ideal for 

clamping, lifting, and sensor 

deployment

• Stable Magnetic Configuration: 

Maintains position securely using 
South-South or South-North fields

Deployment and retrieval system
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Sensor hardware and onboard systems

• Robust Design: Aerially deployable with 

noninvasive EPM docking

• Reliable Operation: Power management, 

nonvolatile memory, and wireless 

communication

• Sensing: Accelerometer up to 28 kS/s; 
frame minimizes transmissibility loss
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Sensor Package System Architecture

• Core Processing: Teensy 4.0 

microcontroller (ARM Cortex 

M7) with SD card for data 

storage

• Communication: High-

sensitivity accelerometer and 

RF module for real-time data 

and commands



Edge Processing of Sensor Signal
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• Model training procedure

• Supervised learning method

• Assumptions:

• Sampling rates were set equal (400 S/s)

• Zero phase between the two sensors 

• Bandwidth of interest to be < 10 Hz

• Model chosen is a single-layer 50-unit LSTM

• Backpropagation is done online every 400 

datapoints (1 second)

LSTM-Based Signal Compensation Process
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• Chirp excitation is fed into the electromagnetic 

shaker using an analog output module

• A data acquisition is used to record reference 

acceleration

• A digital trigger is set to synchronize both the 

reference accelerometer and sensor package

• Various dynamic ranges were used to expand the 

training range of the LSTM model

Signal Conditioning and Error Compensation



LSTM compensator performance
• For testing a chirp excitation in 0-5 Hz is used

• SNRdB enhancement of 9.34%

• RMSE reduction of 19.66%

• Usable bandwidth (< ±2%) is shown to increase 

form 2.78 Hz to 1.34 Hz 

• An overall increase in gain below 0.9 Hz due to 

training bias
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Networks of UAV-deployed Sensors
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Wireless system:

• protocol: Enhanced 

ShockBust

• bandwidth: 2.4 GHz

• data rate: 2 Mbps

• RF links: 6 channels 

 

    
 

    
 

    
 

    
 

    
 

    
 

  

Sensing network for SHM
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• Active modal detection using UAV-

deployable sensing network

• data acquisition and real-time 

synchronization 

• signal processing and state 

estimation

Case Study – Modal Detection
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Mode 1 - 15.39 Hz

USC Waking Bridge

Mode 2 - 22.84 Hz

• Objective: Track and analyze bridge health 

using UAV-deployed sensors

• Finite Element Analysis: Model properties, 
natural frequencies, and mode shapes



28

Time Response of a Pedestrian Bridge

• Test Setup: Mass shaker 

and UAV-deployed sensors 

positioned at nodes A0, A1, 

and A2

• Objective: Capture 

acceleration data across 

key nodes for modal 

analysis

• Results: Real-time 

acceleration data reveals 

dynamic response patterns 
across nodes
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modal 

response? 

Frequency Response of a Pedestrian Bridge

• Setup: Data collected from 

three sensor nodes 

deployed on bridge

• Frequency Sweep: 0 to 15 

Hz to capture modal 

responses

• Peak Detection: Observed 

resonance at ~11 Hz 

indicating first flexural 
mode



Sensing system experimental challenges
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?

trigger 

threshold

• Latency Threshold: Set at 10 

µs to maintain signal alignment 

across sensors

• Latency Results: 85% of 

instances fell below the 

threshold, improving 

synchronization

• Low-Frequency Detection: 

Limited by buffer size; 

mitigation options include 

extended sampling and data 

combination



Future Directions and 
Preliminary Results
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Camera-Assisted Navigation and Alignment

• Multi-Camera Setup: Provides 

real-time spatial awareness for 

precise navigation.

• Target Identification: Assists in 

locating the sensor package with 

visual feedback.

• Accurate Alignment: Guides the 

UAV to align the recovery cone with 

the sensor package.

• Foundation for Autonomy: Key 

step towards a fully autonomous 

UAV system.
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Camera-Assisted Navigation and Alignment
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Experimental Insights and Preliminary Success

• Camera-Aided Navigation: Enhances spatial 

awareness during approach, deployment, and 

retreat.

• Efficiency Gains: Camera-assisted 

deployment reduces time across all stages.

• Improved Precision: Minimizes failed 

approaches and unintended contact.



35

• Automate Delivery: Enable precise, 

autonomous sensor deployment and 

retrieval with minimal human input.

• Improve Streaming: Boost video 

quality for better navigation.

Future Work



Conclusion
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Conclusion

• Key Achievements: 

UAV-deployable sensor 

with autonomous 

alignment

• Enhanced Data Quality: 

Real-time LSTM signal 

compensation

• Future Goals: Full 

autonomy and robust 

field deployment



Questions and Discussion
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the Transportation Pooled Fund Study TPF-5(449).
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Contact Information: Austin Downey

Email: austindowney@sc.edu

Github: https://github.com/austindowney

Github-Lab: https://github.com/Arts-laboratory 

Key GitHub Repositories

• Sensor Package: https://github.com/ARTS-Laboratory/Drone-

Delivered-Vibration-Sensor 

• Docking System: https://github.com/ARTS-Laboratory/UAV-

Package-Delivery-System 

• Bridge Data: https://github.com/ARTS-Laboratory/USC-walking-

bridges
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