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Outline for Today’s Talk:

1.

2.
. Edge Processing of Sensor

Driving Challenges in UAV-
deployed Sensors
UAV and Sensor Hardware

Signal

. Networks of UAV-deployed
Sensors

. Future Directions and
Preliminary Results

. Conclusion




Driving Challenges in UAV-deployed

Sensors




Challenges and Innovations in Structural Health Monitoring

« Current Limitations: Traditional SHM
relies on specialized equipment and
skilled personnel, limiting speed and
flexibility.

Deployment Challenges: Remote,
hazardous locations, or decaying
structures add time, cost, and safety

- U! J'I

. TR
risks to manual sensor deployment. é i

Need for Rapid SHM Solutions: Real- it

- r.ll

time, data-driven insights, autonomous Em
sensor deployment, and effective
wireless communication are critical for ’
safe, efficient monitoring.




Our Solution — UAV-Deployable Sensor Package

Rapid Aerial Sensor Deployment:
Designed for quick, efficient sensor
placement in SHM scenarios

Enhanced Spatial Awareness: Multiple
camera views for precise navigation,
docking, and sensor deployment
Electropermanent Magnetic Docking:
Secure attachment with a recovery cone
for guided docking

Built-in Redundancy: Safety and reliability
features to ensure successful deployments
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Understanding the Ceiling Effect in UAVsS

Definition: The celling effect occurs
when a propeller operates near a
barrier, like a celling, altering the
airflow and making lift more efficient.

Cause: Impeded airflow above the
propeller leads to a pressure drop, (a)
Creating an increase in lift. propeller in open air propeller under ceiling effect

Impact on Control: The UAV | :
operator may notice sudden,
unexpected lift or reduced control .

near the celiling.




Challenges in Human-Operated Flight for Sensor
Deployment in SHM

* Celling Effect Variability: Sudden lift
changes near ceilings

* Pilot-Induced Instability: Oscillations from
manual control

« Signal Interference: Issues near metal
structures

* Line of Sight Limitations: Restricted
visibility impacts precision

No researchers were harmed
during this endeavor!




UAV and Sensor Hardware




Sensor Package

Deployment System: Uses a 3D-printed
recovery cone for guided docking

Integrated Streaming: Provides multiple
camera views for precise navigation

Electropermanent Magnets: Secure
sensor placement and retrieval

Error Compensation: Redundancy
measures for safe, reliable operation in
complex environments




Deployment and Retrieval System

EPM #2

sensor frame

Deployment On Off

Retrieval Off On




Deployment and retrieval system

Electromagnetic Activation: Pulse-
activated magnetic polarity control

Energy-Efficient: Holds magnetic
state without continuous power

Versatile Applications: Ideal for
clamping, lifting, and sensor
deployment

Stable Magnetic Configuration:

Maintains position securely using
South-South or South-North fields

gnetic field strength (T)




Sensor hardware and onboard systems

 Robust Design: Aerially deployable with
noninvasive EPM docking

Reliable Operation: Power management,
nonVOIatlle memory’ and W”’eIeSS microcontroller
communication LiPo battery

Sensing: Accelerometer up to 28 kS/s;
frame minimizes transmissibility loss

protective frame

RF module
long-range antenna

MEMS

accelerometer

EPM

I magnet/accelerometer
module

memory module




Sensor Package System Architecture

« Core Processing: Teensy 4.0 SO W—
microcontroller (ARM Cortex z-axis
M7) with SD card for data SCA3300-d0]

Storage
RF module

Communication: High- NRF24L01
sensitivity accelerometer and
RF module for real-time data

memory
and commands SD card

electropermanent
magnet power module

MPI1584EN
EPM V3 R5C

PWM 4 lihitiisi

polymer battery

Lumenier
Teensy 4.0
microcontroller 7.4V 1000mAh

'

ARM Cortex
M7

e e o —— S S S SN SN SN S SN NI SN S SN SN S SN S —

protective frame




Edge Processing of Sensor Signal




LSTM-Based Signal Compensation Process

* Model training procedure
« Supervised learning method

* ASSUTﬂptiOﬂSZ update update
« Sampling rates were set equal (400 S/s) ﬁ,l LSTMt lb‘;‘e,
compensator
« Zero phase between the two sensors >

« Bandwidth of interest to be < 10 Hz
* Model chosen is a single-layer 50-unit LSTM ‘
« Backpropagation is done online every 400
datapoints (1 second)

e sampled data

corrected data
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Signal Conditioning and Error Compensation

Chirp excitation is fed into the electromagnetic

shaker using an analog output module ‘ sensor package
A data acquisition is used to record reference
acceleration

A digital trigger is set to synchronize both the
reference accelerometer and sensor package
Various dynamic ranges were used to expand the
training range of the LSTM model
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LSTM Performance

LSTM compensator performance
For testing a chirp excitation in 0-5 Hz is used
SNRds enhancement of 9.34%

RMSE reduction of 19.66%

Usable bandwidth (< £2%) is shown to increase
form 2.78 Hz to 1.34 Hz

An overall increase in gain below 0.9 Hz due to
training bias

RMSE

testing

SNRggp

sensor package
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1.795% 10

LSTM compensator

|8.88 dB

1.442x10

% improvement

9.34%

19.66%

acceleration (g)

acceleration out / acceleration in

acceleration model
input sensor training

model
testing

LSTM

package

reference
sensor package
compensator

M
St “‘

M
Al e de -

NH’*"""‘-"‘"%*"WWW\"\?M%

— -~

0 5() 40 60
me (s)
<1

X 1.37854
Y 1.02025

i

X 2.77932
- | Y 1.02015

network

—refErENCE
—COTISOT package

compensator

Y,
/

4
/
4

5 v

50
10"
frequency (Hz)
T T
w— 2% crror threshold
- sensor package
compansutor

|
15

frequency (Hz)




Networks of UAV-deployed Sensors




Sensing network for SHM

Wireless system:
 protocol: Enhanced
ShockBust
« bandwidth: 2.4 GHz
« data rate: 2 Mbps
* RF links: 6 channels

® 9o O

initialize deplovment
system

v

—»

scan for
wireless trigger

.‘_

receive wircless
trigger

collect vibration
data into buffer

v
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Case Study — Modal Detection

Active modal detection using UAV- il e
deployable sensing network

data acquisition and real-time
synchronization

signal processing and state

estimation

gear train

response

hightweight frame I

shaking mass

A
158
. node A2

R A




USC Waking Bridge

Objective: Track and analyze bridge health
using UAV-deployed sensors

* Finite Element Analysis: Model properties,
natural frequencies, and mode shapes

Mode 1 - 15.39 Hz
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Time Response of a Pedestrian Bridge
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« Test Setup: Mass shaker .éa,__.,; o R -
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and A2
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Frequency Response of a Pedestrian Bridge

« Setup: Data collected from
three sensor nodes
deployed on bridge

Frequency Sweep: 0to 15
Hz to capture modal
responses

Peak Detection: Observed
resonance at ~11 Hz
Indicating first flexural
mode

frequency (Hz)

100 140
time (s)




Sensing system experimenta

« Latency Threshold: Set at 10
us to maintain signal alignment
across sensors

Latency Results: 85% of
Instances fell below the
threshold, improving
synchronization

Low-Frequency Detection:
Limited by buffer size;
mitigation options include
extended sampling and data
combination
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Future Directions and

Preliminary Results




Camera-Assisted Navigation and Alignment

Multi-Camera Setup: Provides

real-time spatial awareness for m— m—
precise navigation. ﬁ eployment surface
sensor package ;

Target Identification: Assists In L
locating the sensor package with deployment camera | ~<——field of view (FOV)

visual feedback. e /navigation camera

Accurate Alignment: Guides the b L™
UAV to align the recovery cone with
the sensor package.

Foundation for Autonomy: Key
step towards a fully autonomous
UAV system.




Camera-Assisted Navigation and Alignment




Experimental Insights and Preliminary Success

50

line of sight

« Camera-Aided Navigation: Enhances spatial 40 1 |~ camera-aided |-
awareness during approach, deployment, and
retreat.

« Efficiency Gains: Camera-assisted
deployment reduces time across all stages.

retreat

* Improved Precision: Minimizes failed deployment stages
approaches and unintended contact.

5867MHz \ } :




Future Work

« Automate Delivery: Enable precise,
autonomous sensor deployment and
retrieval with minimal human input.

* Improve Streaming: Boost video
guality for better navigation.

deployment surface
sensor package

deployment camera ,’ ~«—field of view (FOV)
v navigation camera

recovery conc \







Conclusion

« Key Achievements:
UAV-deployable sensor
with autonomous
alignment

Enhanced Data Quality:

LSTM

Real-time LSTM signal - compensator
compensation |
Future Goals: Full

autonomy and robust
field deployment




Questions and Discussion

Key GitHub Repositories

« Sensor Package: https://qgithub.com/ARTS-Laboratory/Drone-
Delivered-Vibration-Sensor

 Docking System: https://github.com/ARTS-Laboratory/UAV-
Package-Delivery-System

* Bridge Data: https://github.com/ARTS-Laboratory/USC-walking-
bridges

Contact Information: Austin Downey This work is partly supported by the National

il i it ) ’\\“ Science Foundation Grant numbers 1850012,
Emal I aUStmdowneV@SC'edu , N N 1956071, 2152896, 2344357, and 2237696. as well
Github: https://q|thub.com/aust|ndownev L) Ao U at the Departments of Transportation of lowa,

; . i N X y - Kansas, South Carolina, and North Carolina, through
Github-Lab: https://github.com/Arts-laboratory R o il " the Transportation Pooled Fund Study TPF-5(449)
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