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Battery Research at USC




Projects that will enable SC NEXUS to become global leader in
bolstering grid resilience through distributed energy resources

Medium-voltage mobile testing
facility to test integration of . Carolina Institute for
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CLEMS@&N into grid Battery Innovation
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Acceleration of grid-scale
battery commercialization
pathways, workforce
programs, and cross-
school programming
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The SC Nexus for Advanced Resilient Energy (SC NEXUS) received $45 million in
implementation grant funding through the US Department of Commerce




Carolina Institute for Battery Innovation

(CIBI)

- Pilot manufacturing of prismatic,
pouch, and cylindrical cells

- World-class battery safety and abuse
testing lab

i Ib_arge battery cycling/performance
a

- Wet labs for fundamental and
applied battery R&D

- Education, workshops, and hands- ¢ |
on training at all levels H

* 15 Faculty, ~50 Graduate Students +  PunesAlwady Onboard
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* 1000 sq ft office space




Fulbright Scholar-in-Residence Program

Fulbright Scholar-in-Residence Program

The Fulbright Scholar-in-Residence (S-1-R) Program is
a unique Fulbright Scholar Program initiative that is
specifically driven by the goals of U.S. institutions of
higher education to enhance internationalization
efforts on their campuses. Through the S-1-R Program,
institutions host a scholar from outside of the United
States for a semester or full academic year to teach
courses, assist in curriculum development, guest
lecture, develop study abroad/exchange partnerships
and engage with the campus and the local
community. S-1-Rs work across departments and

Lucy Joy Wachira of Kenya teaching during her 5-1-R curricula in a variety of ways to widely enhance or

exchange at Temple University in 2022-2023 expand an existing international program, develop
new world area studies programs, add an
international dimension to existing coursework or

provide an opportunity for U.S. students to learn about a particular world region or country.

https://fulbrightscholars.org/sir




Battery Degradation Forecasting




Physics-based Prognostics

Step 1: predict the degradation Step 2: simulate the capacities after Step 3: predict the remaining useful
parameters after test & test k life (RUL)
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Degradation cases for 8 cell models

cell #1 weeennns cell #3

 Tested 8 cells. _ el = coll

 Modeled:

* Positive electrode mass

loss ()
« Negative electrode mass

loss (g)
 Positive electrode
slippage (mAh)
* These parameters are
forecasted (not capacity)
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Half-cell Curve Analysis
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Mechanistic Capacity Predictions

Forecast point

—e—  data § —— §()

* Forecast the three parameters. o training set

» Use forecasted model 190
parameters and experimental
data from cells to get
forecasted capacity.
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Remaining Useful life Results

« Strength: Physics-
based forecasting
learns the state of the
cell faster than
capacity-based
forecasting.

 Weakness: Requires
the building of half-cell
experimental setups




USC Battery Pack Lab

(General Overview)




High-Voltage Battery Pack Testing
Capabilities

CIORITEMIEMITRRINTRIIE MO ON

T
AT TR AR

AT FRTFORAIAE




]
Full-scale Battery Pack Testing
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* Full-Scale pack testing

 Setting up for automotive
pack testing

_iquid-cooled Li-tron
Phosphate Battery Pack

Pack Is two 64 V 10.2 Ahr
modules




Strain-based Cell Failure Investigations
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Current Interrupt Device Testing

* Tested cells till CID failure

e Cells did not enter thermal
runaway

* Interested in the controllability
of cells during rapid disch
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Strain Monitoring

(Early Experimental Work)




Cycling and Strain Monitoring of a
Samsung 30Q Cell
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d bidirectional DC |
power supply '
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temperature chamber
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Cell strain analysis setup

hood vent {
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N (ambient temp)

Cell cycling setup within
temperature chamber




Capacity Degradation Results

Capacity vs Cycle Number

* 650 cycles on 3 individual
cells.

* Noise in data produced from
imperfect LabVIEW
programming.

« Jumps In capacity caused by
over/under charge events.
Result of power outages or
Windows updates.
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Sub-Sectioning Data for Analysis

Capacity vs Cycle Number

 Analysis will focus on .
cell C which contains ] \
no errors within the .
selected range.

 Limiting data range to
approximately 300
cycles.
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Charge/Discharge Cycle Monitoring

° Cou|0mb Counting was | Total Charge vs Cycle Number (Discharge vs Chargg)
used to calculate the total |t
charge in and out of the cell
during charge and
discharge cycles.

* While there Is a separation
between charge and
discharge, it Is not too
significant.
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Charge Analysis

Experimental monitoring of battery
strain shows unigue features:

 Dip during CV charging
 Not strictly thermally driven expansion
« Two distinct strain initial strain rates.

« The working assumption is that strain 5

IS driven by the expansion of the
anode.

Metal oxides Lithium ion Graphite
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Charge Strain Curves

Strain vs Charge Cycle

 Observations: — Cycles

cycle 50

 Two distinct strain rates 1[==sisam0

cycle 150

Initially present before peak cycle 200

cycle 250
» Development of peak cycle 300
region

« Strain recovery after peak

« Strain profile expands in a
predictable fashion.
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Charge Temperature Data

* Wlthln 250 CyCIGS Temperature vs. Discharge Cycle
temperature only varies within
~1 degree C

e Initial thermal increases if
very similar

B " Increasing
Cycles

— Cycle 5

* Need to inspect in terms of _ — cycieso

— cycle 100

CapaCIty —— cycle 150

temperature (Celcius)

—— cycle 200
—— cycle 250
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Discharge Analysis

Experimental monitoring of
battery strain shows unique
features:

A hump In the strain at 0.2
hours

* Does not appear to be
thermal driven

Metal oxides
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Discharge Strain Curves

Strain vs Discharge Cycle

* Development of "hump” region — cycle1

Increasing T Y970

* Increasing peak and initial strain c O Cycles — eycle 1%

-~ cycle 200

V&|U€S 1 \ . \' | — cycle 250

cycle 300

* Rapid jump to increased settling
strain level between 1 and 50
cycles
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Discharge Temperature Data

Temperature vs. Discharge Cycle

* Temperature increases at a I—cyeet
- cycle 50

given time with cycle. | — cyde 100

—— cycle 150

« Temperature at the end of the [ e 20
cycle is roughly equal cycle 300
throughout cycle life.
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* Temp Iin the first ~10 minutes is
very close for all cycles, while
the discharge hump varies in
this region.
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Thank You for Your Time

Open-Source Data Set

‘ ’ https://github.com/ARTS- A%
Laboratory/dataset-cycling-with-strain- s

GitHub monitoring-for-samsung-30Q-cell

Name: Austin Downey

Title: Assoclate Professor

| _ Molinaroli College of
Email: austindowney@sc.edu Engineering and Computing
Lab GitHub: github.com/arts-laboratory UNIVERSITY OF SOUTH CAROLINA




	Slide 1: Battery Modeling and Prognostics for Improved Safety and Longevity
	Slide 2: The ARTS-Lab at USC
	Slide 3
	Slide 4: Battery Research at USC
	Slide 5
	Slide 6: Carolina Institute for Battery Innovation (CIBI)
	Slide 7: Fulbright Scholar-in-Residence Program
	Slide 8: Electro-thermal Battery Emulation
	Slide 9: Battery Integration into Naval Systems
	Slide 10: South Carolina Energy and Power Testbed for Engineering Research (SCEPTER)
	Slide 11: Electro-Thermal Testbed
	Slide 12: Electro-Thermal Battery Emulator 
	Slide 13: Emulator Hardware
	Slide 14: Battery Degradation Forecasting
	Slide 15: Physics-based Prognostics
	Slide 16: Degradation cases for 8 cell models
	Slide 17: Half-cell Curve Analysis
	Slide 18: Mechanistic Capacity Predictions 
	Slide 19: Remaining Useful life Results
	Slide 20: USC Battery Pack Lab (General Overview)
	Slide 21: High-Voltage Battery Pack Testing Capabilities
	Slide 22: Full-scale Battery Pack Testing
	Slide 23: Strain-based Cell Failure Investigations
	Slide 24: Current Interrupt Device Testing
	Slide 25: Strain Monitoring (Early Experimental Work)
	Slide 26: Cycling and Strain Monitoring of a Samsung 30Q Cell
	Slide 27: Capacity Degradation Results
	Slide 28: Sub-Sectioning Data for Analysis
	Slide 29: Charge/Discharge Cycle Monitoring
	Slide 30: Charge Analysis
	Slide 31: Charge Strain Curves
	Slide 32: Decomposing Strain profile
	Slide 33: Charge Strain Trends
	Slide 34: Charge Temperature Data
	Slide 35: Discharge Analysis
	Slide 36: Discharge Strain Curves
	Slide 37: Discharge Strain Trends
	Slide 38: Discharge Temperature Data
	Slide 39: Thank You for Your Time
	Slide 40: Intercalation-Driven Anode Growth
	Slide 41: Long-term Objectives for Strain Monitoring on Batteries
	Slide 42: Degradation Pathways that we are Considering
	Slide 43: High-Voltage Battery Pack Testing Capabilities
	Slide 44: Sensing 
	Slide 45: Data Assimilation 
	Slide 46: AI/ML 
	Slide 47: Embedded Systems 
	Slide 48: Electro-thermal Battery Pack Emulation
	Slide 49: 2.5C Pulse Load
	Slide 50: Electro-thermal Load Profile Results 
	Slide 51: Testing setup
	Slide 52: Lithium intercalation
	Slide 53: Rest Data @650 cycles (65% soh)
	Slide 54: Charge Regression Difference
	Slide 55: Early cycle charge strain
	Slide 56: Early cycle strain linear difference comparison
	Slide 57: Early cycle offset charge trend difference
	Slide 58: Discharge regression difference
	Slide 59: Early cycle discharge strain
	Slide 60: Early cycle strain linear difference comparison
	Slide 61: Early cycle offset linear fit difference comparison
	Slide 62: Initial and Peak strain vs cycle
	Slide 63: Dataset

