
AI for Civil Infrastructure

How AI can be applied to Civil Infrastructure with Case Studies
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Introduction to Civil Infrastructure

• Civil infrastructure includes 
essential public systems and 
facilities:
• Roads and highways

• Bridges and tunnels

• Water and sewage systems

• Dams, levees, and flood control 
structures

• Electrical grids, transportation 
networks, and more
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Infrastructure Maintenance and Upgrade

• Importance of Maintenance 
and Upgrades:
• Critical for public safety and 

economic stability
• Ensures infrastructure longevity 

and reliability
• Necessary to handle increasing 

demand and urbanization
• Key to reducing the risk of 

catastrophic failures, like bridge 
collapses or dam breaches
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Infrastructure Challenges

Traditional Challenges:
• Aging infrastructure and limited 

budgets for repairs
• Manual inspection processes are 

labor-intensive and time-
consuming

• Delayed detection of structural 
issues leads to reactive 
maintenance

• Difficulty in predicting failures due 
to the complexity of infrastructure 
systems
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Role of AI in Civil Infrastructure

AI Use Cases in Infrastructure:
• Predictive Maintenance: Machine 

learning models predict wear and 
tear, allowing for timely repairs 
before critical failures occur

• Safety Monitoring: AI-driven 
sensors detect anomalies (e.g., 
cracks, pressure changes) in 
structures like bridges and levees

• Optimization: AI optimizes traffic 
flow, energy usage, and resource 
allocation in urban systems
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The Intersection of Civil Engineering and AI

Civil Engineering and AI include:
• Data-Driven Decision Making: AI uses 

data from sensors, satellites, and 
simulations to inform civil engineering 
decisions.

• Smart Infrastructure: Integration of AI into 
civil systems creates smart infrastructure 
that can self-monitor and report potential 
failures.

• Automation in Civil Engineering: AI 
automates time-consuming tasks like 
structural inspections and material testing.

• Leveraging IoT: The Internet of Things (IoT) 
combined with AI allows for real-time data 
collection from infrastructure. 

• Current Trends in Smart Cities: AI-driven 
infrastructure is key to enabling smart cities.
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Applications and Case Studies



Application 1: Structural Health Monitoring

AI in Structural Health Monitoring
• Real-Time Monitoring: AI enables 

continuous monitoring of structures like 
bridges, dams, and buildings.

• Early Anomaly Detection: AI models 
identify small defects before they become 
serious issues.

• Predictive Maintenance: Machine learning 
predicts when repairs are needed, reducing 
downtime.

• Data-Driven Decisions: AI uses sensor 
data to evaluate the structural health of 
infrastructure.

• Improved Safety: AI increases safety and 
extends the life of structures with proactive 
interventions.
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Case Study 1.1: Bridge Monitoring

Key Benefits of AI in Bridge Monitoring
• Fatigue Crack Detection: Sensing skin 

technology (SEC) detects and monitors 
fatigue cracks in steel bridges.

• Large-Area Monitoring: Soft elastomeric 
capacitors (SECs) provide coverage over 
large bridge surfaces for crack detection.

• Improved Signal Processing: AI 
algorithms process noisy field data for 
more accurate fatigue monitoring under 
traffic loads.

• Field Validation: The system was 
successfully deployed on a highway 
bridge in Kansas, providing real-world 
validation for the SEC.
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Case Study 1.2: Edge Computing
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packages with edge computing. In Zhongqing Su, Maria Pina Limongelli, and Branko Glisic, editors, Sensors and Smart Structures Technologies for Civil, Mechanical, and 

Aerospace Systems 2023. SPIE, apr 2023. doi:10.1117/12.2658563

Key Benefits of Edge Computing in Structural 
Health Monitoring

• Real-Time Data Processing: Edge computing 
enables immediate analysis of UAV vibration data, 
reducing latency.

• AI Error Compensation: AI models correct 
vibration signal errors, improving quality without 
cloud processing.

• Autonomous Deployment: Edge devices deploy 
and process sensor data directly on-site.

• Efficient Resource Use: Reduces power and 
bandwidth for real-time monitoring in remote 
areas.

• Predictive Maintenance: AI-driven edge devices 
predict failures, enabling proactive maintenance.



Application 2: Water Quality Monitoring

AI in Water Quality Monitoring
• Real-Time Monitoring: AI enables continuous, 

real-time tracking of water quality parameters 
(e.g., pH, turbidity, contaminants).

• Early Detection of Contaminants: Machine 
learning models identify harmful substances in 
water early, improving response times.

• Predictive Analysis: AI predicts potential 
water quality issues based on environmental 
and historical data trends.

• Automated Alerts: AI systems provide 
automatic alerts when water quality thresholds 
are breached.

• Cost Efficiency: AI reduces the need for 
manual sampling and testing, optimizing 
resource use and lowering operational costs.
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Case Study 2.1: NMR-based Water Quality 
Monitoring with online learning

NMR-Based Water Quality Monitoring

• Real-Time Monitoring: Compact TD-NMR 
systems continuously monitor water quality 
parameters in real-time.

• Detection of Heavy Elements: The system 
detects magnetic particles (MPs) in water, 
helping to monitor contaminants.

• AI-Based Relaxation Analysis: Machine 
learning models analyze T2 relaxation data to 
assess water quality and detect harmful algae 
or pollutants.

• Adaptive Learning: Online learning adapt to 
changing environmental conditions, improving 
detection accuracy over time.
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Case Study 2.2: UAV-deployable in situ Water 
Quality Sensors

Key Benefits of in situ Sensors
• Real-Time Monitoring: UAVs deploy 

water quality sensors to provide 
continuous, real-time data on key 
parameters like pH, turbidity, and 
temperature.

• Rapid Deployment: UAVs allow fast, 
efficient sensor deployment in remote or 
hazardous locations, making monitoring 
more accessible.

• Spatial and Temporal Analysis: AI-
driven spatial interpolation techniques, 
such as Kriging, map water quality over 
time and across different locations.

• Cost-Effective Solution: Affordable, 
open-source sensors provide reliable 
water quality data, reducing the need for 
costly manual sampling.
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Application 3: Traffic and Transportation

Key Benefits of AI in Transportation
• Traffic Flow Optimization: AI helps 

manage and optimize traffic flow in real-
time, reducing congestion.

• Predictive Traffic Management: Machine 
learning algorithms forecast traffic patterns, 
allowing cities to adjust signals and 
infrastructure accordingly.

• Autonomous Vehicle Integration: AI 
plays a crucial role in the development and 
management of autonomous vehicles, 
enhancing safety and efficiency.

• Smart Public Transportation: AI enables 
efficient routing, scheduling, and capacity 
management for public transport systems.

• Environmental Benefits: AI optimizes 
traffic systems to reduce fuel consumption 
and minimize emissions, contributing to 
greener cities.17
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Case Study 3.1: Electric Aircraft Optimization

AI in Electric Aircraft Optimization
• Load Sharing for Battery Life: Load-

sharing systems adjust power distribution 
across multiple batteries to extend 
lifespan.

• Predictive Maintenance: Predict battery 
degradation and optimize flight plans, 
ensuring efficient maintenance.

• Battery Degradation Prediction: 
Models forecast the remaining useful life 
(RUL) of batteries, adjusting power loads 
for optimal performance.

• Flight Route Optimization: AI analyzes 
flight routes to minimize battery 
degradation, improving the sustainability 
of electric aircraft.
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Application 4: Flood Modeling and Forecasting 

AI in Flood Modeling and Forecasting
• Real-Time Data Analysis: AI processes 

sensor and weather data in real-time to 
predict flood risks.

• Improved Forecast Accuracy: Machine 
learning models enhance the accuracy of 
flood forecasts.

• Early Warning Systems: AI-driven models 
provide early flood warnings, improving 
disaster preparedness.

• Risk Mapping: AI generates flood risk maps 
to identify vulnerable areas and inform urban 
planning.

• Emergency Response: AI helps optimize 
resource allocation during flood events for 
efficient response.
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Case Study 4.1: Low-cost Height Sensors

Flood Modeling and Forecasting
• Real-Time Monitoring: Sensors deployed 

by UAVs collect real-time water height data, 
providing real-time information during floods.

• Bayesian Optimization: AI-based tools 
optimize flood model parameters in real-time, 
improving prediction accuracy.

• Uncertainty Reduction: AI reduces 
uncertainty in flood forecasts by continuously 
updating models with real-time data.

• IoT Integration: AI integrates with IoT-
enabled sensors for seamless data 
transmission and faster model updates, 
improving flood response times.

• Predictive Forecasting: AI enhances flood 
prediction by processing large data sets and 
optimizing forecasts for urban watersheds.
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Application 5: Geotechnical Monitoring

AI in Geotechnical Monitoring
• Real-Time Monitoring: AI processes 

sensor data to monitor soil movement and 
stability in real time.

• Early Detection of Failures: Machine 
learning detects early signs of slope 
instability, landslides, and foundation 
settlement.

• Predictive Maintenance: AI forecasts 
potential geotechnical issues, allowing for 
timely interventions.

• Risk Assessment: AI evaluates 
geotechnical risks and informs decision-
makers for better infrastructure planning.

• Cost Reduction: AI-driven monitoring 
reduces the need for frequent manual 
inspections and prevents costly failures.
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Case Study 5.1: UAV-Deployable Soil 
Saturation Sensors

Soil Saturation Monitoring
• Real-Time Monitoring: UAV-deployed 

smart sensing spikes provide continuous 
soil moisture monitoring across levees.

• Kriging for Data Expansion: Gaussian 
process regression (kriging) to generate 
continuous moisture maps from discrete 
sensor data.

• Automated Classification: Categorize soil 
conditions into dry, partially saturated, and 
saturated zones using k-means clustering.

• Early Detection: The system predicts 
areas at risk of levee failure by monitoring 
soil saturation and detecting seepage.

• Cost-Effective Deployment: UAV 
deployed of sensors reduces the need for 
wired systems and manual inspections.
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Case Study 5.2: LIDAR-based Monitoring

Key Benefits of AI in LIDAR-Based 
Monitoring for Slope Stability

• High-Resolution Data Collection: 
LiDAR captures 3D topography for 
precise monitoring of slopes and 
embankments.

• Seasonal Monitoring: AI analyzes 
LiDAR data to track moisture variations 
and their impact on soils.

• Risk Assessment: LiDAR scans 
identify potential failures, offering early 
warnings for slope instability.

• Efficient Processing: Advanced 
algorithms speed up point cloud data 
analysis for real-time monitoring.

• Open-Source Datasets: The SLidE 
dataset promotes collaboration on slope 
stability and geotechnical risk 
management.
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Current Challenges in AI for Infrastructure

Current AI/Infrastructure Challenges:
• Data Quality and Availability: Limited 

access to high-quality, labeled training data.

• Model Interpretability: Difficulty in 
understanding and trusting AI decisions in 
critical infrastructure applications.

• Integration with Legacy Systems: 
Challenges in integrating AI with existing, 
often outdated, infrastructure systems.

• Scalability: Ensuring models can scale 
across large, diverse infrastructure networks.

• Regulatory and Ethical Concerns: 
Navigating regulations, privacy concerns, 
and ethical issues surrounding AI 
deployment in public systems.24
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Opportunities for Computer Scientists

Opportunities for Computer Scientists
• AI in Smart Cities: Contribute to the 

development of smart cities, optimizing 
transportation, energy, and urban 
planning.

• Big Data Analytics: Process and analyze 
vast amounts of sensor and environmental 
data for infrastructure management.

• Automation and Optimization: Develop 
automated systems for real-time 
monitoring, traffic control, and resource 
management.

• IoT Integration: Design systems that 
connect infrastructure to the Internet of 
Things (IoT) for seamless data collection 
and communication.
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Conclusion
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Final Thoughts:
• Collaborate for Success: Working with 

civil engineers is essential to solving 
infrastructure challenges using AI.

• Co-Generated Knowledge: Engage with 
communities to create solutions that are 
inclusive and culturally sensitive.

• Design for All: Consider diverse societal 
needs—age, physical abilities, and 
culture—when developing AI systems.

• Shaping the Future: AI's potential in 
infrastructure depends on interdisciplinary 
teamwork and ethical design.



Questions and Discussion
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authors, and they do not necessarily reflect the views of the National Science Foundation, the United States Air Force, or the state DOTs.

27

A picture containing transport, wheel

Description automatically generated

Espen Franck-Nielsen, CC BY 4.0 <https://creativecommons.org/licenses/by/4.0>, via Wikimedia Commons

https://www.labmanager.com/news/nyu-receives-14-4m-nsf-grant-to-expand-its-materials-research-center-12263
http://globalbiodefense.com/2013/08/05/air-force-young-investigator-research-program-call-for-proposals/

	Slide 1: AI for Civil Infrastructure
	Slide 2: The ARTS-Lab at USC
	Slide 3
	Slide 4: Civil Infrastructure
	Slide 5: Introduction to Civil Infrastructure
	Slide 6: Infrastructure Maintenance and Upgrade
	Slide 7: Infrastructure Challenges
	Slide 8: Role of AI in Civil Infrastructure
	Slide 9: The Intersection of Civil Engineering and AI
	Slide 10: Applications and Case Studies
	Slide 11: Application 1: Structural Health Monitoring
	Slide 12: Case Study 1.1: Bridge Monitoring
	Slide 13: Case Study 1.2: Edge Computing
	Slide 14: Application 2: Water Quality Monitoring
	Slide 15: Case Study 2.1: NMR-based Water Quality Monitoring with online learning
	Slide 16: Case Study 2.2: UAV-deployable in situ Water Quality Sensors
	Slide 17: Application 3: Traffic and Transportation
	Slide 18: Case Study 3.1: Electric Aircraft Optimization
	Slide 19: Application 4: Flood Modeling and Forecasting 
	Slide 20: Case Study 4.1: Low-cost Height Sensors
	Slide 21: Application 5: Geotechnical Monitoring
	Slide 22: Case Study 5.1: UAV-Deployable Soil Saturation Sensors
	Slide 23: Case Study 5.2: LIDAR-based Monitoring
	Slide 24: Current Challenges in AI for Infrastructure
	Slide 25: Opportunities for Computer Scientists
	Slide 26: Conclusion
	Slide 27: Questions and Discussion
	Slide 28: Backup Slides 
	Slide 29: Sensing 
	Slide 30: Data Assimilation 
	Slide 31: AI/ML 
	Slide 32: Embedded Systems 
	Slide 33: Supporting Agencies, Companies, and Partners
	Slide 34: Out Academic Partners 

