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Abstract

Real-time model updating is crucial for active structures and electronic assemblies

subjected to high-rate dynamic events. High-rate dynamic events refer to events that

occur at high speeds and with rapid changes in the forces and energy involved. These

events can include explosions, impacts, and crashes. These systems are characterized

by a high dynamic response with a high rate (< 100 ms), high amplitude (> 100

gn), highly nonlinear, meaning that the response is not proportional to the applied

force, and involve complex interactions between multiple objects or materials. A sys-

tem exposed to high-rate dynamic environments is frequently prone to rapid plastic

deformation, involving violent and destructive effects, such as shockwaves, fragmenta-

tion, and deformation of structures, which can cause structural, electrical, and sensor

damage. Understanding these characteristics is crucial for predicting and mitigating

high-rate dynamic events’ effects and designing materials and structures that can

withstand these extreme conditions. Challenges associated with estimating and up-

dating the state of high-rate dynamic events in real-time include (1) adequate sensing,

(2) lack of system knowledge, (3) high variability in loads, and (4) limited resources

for algorithm implementation. The state estimator must be quick and resilient to the

significant uncertainties, non-stationarities, and strong disturbances associated with

high-rate dynamic systems.

This work proposes and implements the Local Eigenvalue Modification Procedure

(LEMP) as an efficient method for updating real-time structural models to address

these challenges. LEMP simplifies the computational process by using a single gen-

eralized eigenvalue solution from the system’s baseline state and reducing subsequent
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computations into a set of second-order secular equations. These equations isolate

only the degrees of freedom associated with structural changes, transforming the

updating problem into a localized one that avoids re-solving the full eigenvalue prob-

lem. A divide-and-conquer algorithm is introduced to solve these secular equations

efficiently, achieving state update times well below the 1 ms threshold required for

real-time performance. The methodology is validated first on 1D beam structures

using the DROPBEAR experimental testbed and later extended to 2D plate mod-

els and complex PCBs undergoing damage. Across all tested configurations, LEMP

consistently achieved sub-millisecond state update times and high accuracy, with

signal-to-noise ratios exceeding 30 dB in most modes and mean absolute errors under

1 Hz for lower modes.

Furthermore, this work advances LEMP’s applicability to reduced-order models

(ROMs) and more complex 2D systems. An optimized 25-node cantilever plate con-

figuration was developed and validated as the optimal reduced mesh for capturing

local stiffness changes. A single and four-state perturbation was introduced, and the

corresponding frequency responses were evaluated. Results show that LEMP main-

tained less than 10% error compared to full generalized eigenvalue (GE) computations

while being 20 to 22 times faster for state changes. For instance, a four-state local

stiffness change took only 1.62 ms to compute using LEMP versus 36.04 ms with

GE, confirming its real-time viability. These contributions are supported by robust

parametric studies involving mode selection, nodal reduction, and error profiling, all

of which informed the development of a practical, deployable framework for high-rate

environments.

This work advances the field of structural health monitoring by delivering a

computationally efficient, accurate, and scalable model updating strategy capable

of tracking high-rate structural dynamics in real-time. Modal reduction, algorithmic

optimization, and application-specific modeling offer a powerful tool for adaptive sys-
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tem control, especially in mission-critical domains. Through the LEMP framework,

this dissertation lays the foundation for smarter, faster, and more resilient structural

monitoring and response systems under extreme dynamic conditions.
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Chapter 1

Introduction

The integration of real-time model updating in structures exposed to high-rate dy-

namics is increasingly recognized as vital within several crucial sectors, including

aerospace, automotive, defense, and infrastructure. These sectors often rely on the

integrity of systems such as printed circuit boards (PCBs) and structural compo-

nents, which are integral to the functionality and safety of electronic assemblies and

critical infrastructures. High-rate dynamics are defined by rapid responses (under

100 milliseconds) and high-amplitude accelerations (exceeding 100 g), typically re-

sulting from extreme events like blasts, impacts, seismic activities, or accidents. The

complexities inherent in these events introduce substantial uncertainties, including

non-stationarity, severe disruptions, and the advent of unmodeled dynamics due to

instantaneous changes in system conditions [1, 2].

The essence of tracking and updating the state of structures during such high-rate

dynamic events lies in its capacity to predict and mitigate potential failures, enhancing

the resilience and reliability of critical systems. This requirement is particularly pro-

nounced in safety-critical applications where the failure of a single component, such

as an electronic part in a vehicle or aircraft, could have catastrophic consequences.

Consequently, understanding the behavior of structures under these extreme condi-

tions is crucial for designing systems that can withstand such events, making the

development of reliable real-time tracking and model updating mechanisms essential

[3, 4, 5].

Model updating serves as a cornerstone in ensuring the safety and integrity of

1



structures under dynamic loads and uncertain environmental conditions. It encom-

passes techniques ranging from data-driven methods, exemplified by the deployment

of LSTM models for high-rate state estimation, to model-based approaches requiring

updates at microsecond timescales for effective structural control [6, 7]. The unpre-

dictable nature of high-rate dynamic events, coupled with abrupt changes in loading

conditions, accentuates the need for model updating techniques that are flexible and

capable of adapting to changing external load conditions without relying on historical

data, thereby enabling real-time decision-making within stringent latency constraints

[8, 9].

Among the methodologies explored for real-time model updating, the Local Eigen-

value Modification Procedure (LEMP) stands out for its computational efficiency

and the ability to streamline the process of tracking and updating structural mod-

els. LEMP simplifies the calculation of system states by reducing the complexity of

equations needed to determine the structure’s state, leading to significantly faster

computation times. This approach, coupled with the error minimization technique,

facilitates the real-time tracking and updating of structures, offering a scalable so-

lution for structural dynamic modification by focusing on the contributing vibra-

tional modes and circumventing the need to solve the generalized eigenvalue problem

[10, 11].

Real-time model updating capabilities are further enhanced by introducing a

Bayesian probabilistic approach to refine the process by reducing the search space

for potential structural states. This innovative approach utilizes current state infor-

mation, given initial uncertainty about the estimate itself, to minimize the compu-

tational effort involved in tracking and updating the state of structures undergoing

high-rate dynamic events [12, 13]. This methodological advancement reflects a signif-

icant stride in structural model updating techniques, catering to the exigent demands

of real-time applications with a latency constraint in the sub-millisecond range.
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This study underscores the evolution of real-time model updating technologies,

highlighting the pivotal role of LEMP in reducing the number and complexity of

calculations required for accurate and rapid updating of structural models. These

advancements are instrumental in safeguarding the integrity and enhancing the re-

silience of structures critical to various sectors, particularly when subjected to extreme

events that necessitate immediate corrective actions. Through the meticulous devel-

opment of models designed for real-time applications, with an emphasis on reducing

latency to meet the stringent requirements imposed by high-rate dynamics, this body

of work marks a significant advancement in the pursuit of safer, more reliable struc-

tural systems capable of enduring most challenging conditions [14, 15, 16]. The con-

tributions of this works are (1) Reformulated the Local Eigenvalue Modification Pro-

cedure (LEMP) using divide-and-conquer techniques, modal reduction, and Bayesian

sampling to achieve millisecond to microsecond update speeds, (2) Experimentally

validated the proposed methodology using real-world testbeds such as DROPBEAR,

demonstrating both high performance and real-time feasibility, (3) Extended the ap-

plicability of the framework to a wide range of structures including 1D beams, 2D

plates, and printed circuit boards (PCBs), highlighting its versatility across aerospace,

defense, and electronics domains, and (4) Demonstrated edge-readiness through suc-

cessful deployment on hardware-in-the-loop (HIL) systems, enabling use in embedded

and cyber-physical system environments.
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Chapter 2

Development of real-time solver using Local

Eigenvalue Modification Procedure1

Abstract

Real-time model updating for active structures experiencing high-rate dynamic events

such as; hypersonic vehicles, active blast mitigation, and ballistic packages require

that continuous changes in the structure’s state be updated on a timescale of 1 ms or

less. This requires the development of real-time model updating techniques capable of

tracking the structure’s state. The Local Eigenvalue Modification Procedure (LEMP)

is a structural dynamic modification procedure that converts the computationally

intensive global eigenvalue problem used in modal analysis into a set of second-order

equations that are more readily handled. Implementation of LEMP for tracking

a structure’s state results in secular equations that must be solved to obtain the

modified eigenvalues of the structure’s state. In this work, the roots of the secular

equations are solved iteratively using a divide and conquer approach, leading to faster

root convergence. The present study reports on developing a real-time computing

module to perform LEMP in the context of real-time model updating with a stringent

timing constraint of 1 ms or less. In this preliminary work, LEMP is applied to

tracking the condition of a numerical cantilever beam structure, which depicts changes

1Ogunniyi, Emmanuel A., Austin RJ Downey Jr, and Jason D. Bakos. "Development of a
real-time solver for the local eigenvalue modification procedure." Sensors and Smart Structures
Technologies for Civil, Mechanical, and Aerospace Systems 2022. Vol. 12046. SPIE, 2022. doi:
https://doi.org/10.1117/12.2613208. Reprinted here with copyright for manuscript provided by
publisher
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in a structure’s state as a change in the roller position. A discussion of variations in

timing results and accuracy are discussed.

Keywords: real-time model updating, high-rate dynamics, eigenvalue modification,

state estimation.

2.1 Introduction

Real-time updating of structures experiencing high-rate dynamics is significant in

predicting the behavior of the structures. High-rate dynamics systems such as hy-

personic vehicles, impact protection systems, ballistic, and active blast mitigation

systems operate at timescales of less than 100 ms with a high amplitude of over 100

gn. These high-rate dynamic structures are characterized by large uncertainty in ex-

ternal loads, high levels of non-stationarity, severe disruptions, and the formation of

unmodeled dynamics from changes in system events [17]. The ability to measure,

estimate, and predict these structures’ varying states overtime is beneficial for the

development of next-generation control systems [18]. One way to track the state of

structures operating in high-rate dynamic environments is to use structural model

updating to update the system state in real-time [19, 20]. A system that can track

the state of a structure undergoing high-rate dynamic events must have a model up-

dating technique that is flexible in order to adapt and learn changing external load

conditions without relying on pre-trained data. The system must also be capable of

updating within a 1 ms timescale to allow real-time data-driven decisions to be made

online [18].

For civil and aeronautical structures, real-time model updating approaches have

been established, primarily using Finite Element Analysis (FEA) [21, 22, 23, 24].

However, due to the computing expenses associated with solving FEA models, the

execution time requirements in these initiatives were from hours to months, and

they were frequently done offline. Furthermore, the implementation of a finite ele-
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ment analysis with pre-calculated databases of structural conditions for this type of

structure is limited due to the system’s unmodeled dynamics, which are common in

high-rate dynamic events [17]. Resolving the difficulty of accounting for unmodeled

dynamics involves the development of online model updating systems that can track

the system’s state with minimal offline training.

The authors previously showed that by utilizing a simplified Euler-Bernoulli beam

model and updating the model in the frequency domain, real-time model updating

could be achieved for a structure undergoing a simulated high-rate event with a

latency limit of 1 ms [20]. However, the FEA model had to be reduced to 23 nodes to

achieve the 1 ms constraint. The generalized eigenvalue problem took 0.6 ms to solve

in this arrangement, accounting for most of the computational load. Furthermore,

due to its O(n3) complexity, the generalized eigenvalue formulation scales poorly for

larger FEA models.

In this paper, real-time modeling is performed utilizing the local eigenvalue mod-

ification process (LEMP) to simplify state equations on an Euler-Bernoulli beam of

five nodes undergoing a single-state change. [25, 26]. All variables for the altered state

are specified in terms of the initial state and changes made between the current and

initial state. Only information for the degrees of freedom (DOF) at which changes

occur is required when using LEMP. Since the solutions to the initial state equations

are constant, this decreases the number of calculations required. Furthermore, LEMP

reduces the initial eigenvalue solution to a collection of second-order equations that

can be easily solved. The resulting set of secular equations of complexity O(n2) as

compared to the general eigenvalue problem of complexity O(n3) is then solved using

the divide and conquer approach. Li Ren-Cang developed an efficient approach to

solve the secular equation using divide and conquer which takes less than four iter-

ations to arrive at the expected root of the equation [27]. The divide and conquer

approach solves for each root sequentially; hence, reducing computational require-
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ments. The divide and conquer algorithm is less complex than other functions for

solving the roots of equations.

The contributions of this work are 1) Introduction of the divide and conquer ap-

proach in the LEMP algorithm to solve the resulting secular equation, leading to faster

root convergence, and; 2). Validation of the LEMP algorithm accuracy using a sim-

ple Euler-Bernoulli beam against the full-rank generalized eigenvalue approach. Also,

algorithm timing, complexity, and error induced by the replacement of the Sympy

function “solveset” with the divide and conquer approach in the LEMP algorithm are

investigated and discussed.

2.2 Background studies

This section provides background information on solving the generalized eigenvalue

problem in addition to the use of LEMP for solving a single state change for a system.

2.2.1 Generalized Eigenvalue

Neglecting damping effects, the equation of motion for a system’s initial state, can

be found in Eq. 2.1 below.

M1ẍ+ K1x = 0 (2.1)

ẍ and x represent the acceleration and displacement in physical space, respectively.

Moreover, M1 and K1 are the system’s mass and stiffness matrices in physical space

where the subscript 1 represents that they are in their initial state. Both matrices

are square symmetric and have dimensions of n×n, with n being the system’s degree

of freedom.The generalized eigenvalue problem for Eq. 2.1 is defined as K1U1 =

M1U1λ, Eq. 2.2 and Eq. 2.3 below can be used to solve the GE problem.

det[K1 − λM1] = 0 (2.2)

[K1 − λM1]U1 = 0 (2.3)
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The eigenvalues λ and eigenvectors U1 are shown in Eq. 2.4 and Eq. 2.5, which are

the squares of the first n natural frequencies and the first n modal vectors for the

system respectively. It is important to note that the modal matrix in eq 2.5 is not

the same as mode shapes, although it can be used to calculate them.

λ =



ω2
1 0 0 0

0 ω2
2 0 0

0 0 . . . 0

0 0 0 ω2
n


(2.4)

U1 =
[
~u1

1 ~u1
2 · · · ~u1

n

]
(2.5)

2.2.2 Local Eigenvalue Modification Procedure

By monitoring changes in the system’s dynamic response, such as frequencies and

mode shapes, structural dynamic modification (SDM) identifies physical alterations

made to the system parameters such as mass, stiffness, or damping [28, 29, 30]. SDM

is performed by using mass, stiffness, or damping matrices to model the altered state

as a mixture of the initial state and the changes made to the initial state in the

EOM for the altered system. SDM employs the modal synthesis principle, which

states that any dynamic response of a vibrating structure can be decomposed into a

set of individual contributions of single frequencies [31, 32], effectively defining the

initial system of n DOF as a collection of n independent single DOF systems. Each

independent DOF corresponds to one natural frequency of the modal system with

a modal mass and stiffness value which are related to the physical system response

through modal transformation. The changes made to the initial system results in an

altered modal system.

Weissenburger created LEMP in 1968 to avoid eigenvalue solutions in SDM when

just one change is made to the system. The goal was to make state calculations

easier because computers at the time had limited processing capability [25, 33, 34].
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To do this, LEMP uses a single GE solution for the initial system and simplifies

altered state equations by translating them into modal space, isolating the DOFs that

contribute to state changes, and formulating equations in terms of the initial state,

as explained in SDM. However, additional simplifications are achieved by truncating

the n independent single degree of systems to include the m modes of interest. This

yields a matrix with dimensions of m ×m and a modal matrix U1 with dimensions

of n×m.

This modal reduction further simplifies the altered state equations. Figure 2.1

depicts an overview of the LEMP algorithm, which will be expanded upon using

a numerical system later in this work. The GE equation is reduced to a set of

second-order equations whose roots are determined by the system’s initial frequencies,

resulting in a smaller domain over which the problem can be solved [25]. These

simplifications lower the number and complexity of equations required to compute

the structure’s state, leading to shorter computation times.

Figure 2.1 Flowchart detailing the for making a single-state change to a structural
system.
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2.3 Methodology

2.3.1 LEMP Process Algorithm

The technique for applying LEMP is depicted in Figure 1. After obtaining the GE

solution for the initial state, the EOM for the altered state will be built using Eq.

2.6 while ignoring the damping effects [26].

M2ẍ+ K2x = 0 (2.6)

M2 and K2 are the altered state’s mass and stiffness matrices in physical space, both

with dimensions of n × n. The addition of a roller boundary condition at a node

along the beam results in a change in the system state. This restricts bending in the

beam at that position with FEA, leading to row and column cancellation. There is

only change to the stiffness matrix, which is indicated by ∆K12 and has dimensions

of n× n. As illustrated in Eq. 2.7, mass and stiffness of the altered state are defined

in terms of the initial state and variations between the two.

M2 = M1, K2 = K1 + ∆K12 (2.7)

Eq. 2.8 is obtained by substituting Eq. 2.7 into the initial EOM for the altered state.

M1ẍ+
(
K1 + ∆K12

)
x = 0 (2.8)

The m modes of the initial state’s n independent single DOF systems are reduced to

only include the m modes of interest to ease calculations. This yields a matrix with

m × m dimensions and a corresponding modal matrix U1 with n × m dimensions.

The system response is transformed from physical to modal space using Eq. 2.9,

where q1 and q̈1 are the system displacement and acceleration vectors in modal space,

respectively.

x = U1q1, ẍ = U1q̈1 (2.9)
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Eq. 2.10 is obtained by converting the EOM to modal space using Eq. 2.9.

M1U1q̈1 +
(
K1 + ∆K12

)
U1q1 = 0 (2.10)

The mass and stiffness matrices are normalized in modal space by multiplying each

term by UT
1 , yielding diagonal matrices shown in Eq. 3.15.

diag(M1)q̈1 +
[
diag(K1) + ∆K12

]
q1 = 0 (2.11)

M1 and K1 are the modal mass and stiffness matrices, respectively, and ∆K12 is

the difference in modal space between the initial and altered states. After modal

truncation, these matrix dimensions are reduced from n × n to m ×m. Eq. 3.16 is

obtained by scaling Eq. 3.15 to unit modal mass, where I is the identity matrix with

dimensions of m×m.

Iq̈1 +
[
λ + ∆K12

]
q1 = 0 (2.12)

The following approach is used to solve for the updated natural frequencies that

occur as a result of system changes. The GE solution of Eq. 3.16 is first obtained,

but not solved, as shown in Eq. 2.13.

det
[
(λ + ∆K12)−ΛI

]
= 0,

[
(λ + ∆K12)−ΛI

]
q12 = 0 (2.13)

Λ is a m × m-dimensional matrix with the squares of the updated frequencies as

diagonals and q12 as the modal change between states. Eq. 2.14 is then obtained by

rearranging the terms. [
(λ−Λ) + ∆K12

]
q12 = 0 (2.14)

Due to the applied nodal boundary condition, stiffness change occurs between

the state, hence only the diagonal values of the K1 and K2 matrices will be changed.

Furthermore, the diagonal value associated with the DOF where the roller is placed is

the only non-zero term in the ∆K12 matrix. The equation for ∆K12 is then simplified

to contain information from the contributing nodes, noting that the only non-zero
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values in ∆K12 are those connected with the DOF(s) that undergo a change in stiffness

from the initial to a changed state. Eq. 2.15 is used for spectral decomposition of

∆K12.

∆K12 = Tdiag(α)TT (2.15)

T, Eq. 2.16 is a tie matrix, T is a vector with an over-right arrow to denote it as a

vector and α is a m×m matrix. Eq. 2.17 shows how to convert Eq. 2.15 to modal

space.

T =
[
~t1 ~t2 · · · ~tn

]
(2.16)

∆K12 = UT
1 Tdiag(α)TTU1 (2.17)

By reducing ∆K12 to just contain non-zero values denoted by ∆k12, the contributing

values of ∆K12 can be redefined. The tie vector and alpha value of the affected DOF,

represented by tc and α respectively, are used to do this. These reduced matrices are

constructed using the relation in Eq. 2.18 where v is the one-dimensional contribution

vector.

~v = UT
1c
~tc, ~v =

[
v1 v2 · · · vm

]
(2.18)

To solve for ∆k12, Eq. 2.18 is combined with the alpha value associated with the

affected DOF as shown in Eq. 2.19, which gives the modal stiffness change equation

for contributing nodes.

∆k12 = ~vα~vT (2.19)

Since ∆k12 is the same as ∆K12, Eq. 2.19 can be substituted for ∆K12 in the initial

GE shown in Eq. 2.13, yielding the following equations:

[
(λ−Λ) + ~vα~vT

]
q12 = 0, (λ−Λ)q12 + ~vα~vTq12 = 0 (2.20)

S is defined as an arbitrary variable in Eq. 2.21 to further simplify the state equations.

S = ~vTq12 (2.21)
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The result is Eq. 2.22, which is obtained by substituting Eq. 2.21 into Eq. 2.20.

(λ−Λ)q12 + ~vαS = 0 (2.22)

Eq. 2.22 can be rearranged to solve for q12, as demonstrated in Eq. 2.23. Eq. 2.23 is

then multiplied by ~vT to give Eq. 2.24.

q12 = −(λ−Λ)−1~vαS (2.23)

~vTq12 = −~vT(λ−Λ)−1~vαS (2.24)

Using the relation from Eq. 2.21, this may be expressed as Eq. 2.25.

S = −~vT(λ−Λ)−1~vαS (2.25)

Both S matrices are eliminated by multiplying each side by S−1, leaving the matrix

equation presented in Eq. 2.26.

α−1 = −~vT(λ−Λ)−1~v (2.26)

~v is element-wise equal to ~vT because it is a one-dimensional vector. As a result,

decomposing Eq. 2.26 into its constituents components produces Eq. 2.27, with the

sole unknown being Ω2
r, or the natural frequency of the altered state. The number of

modes used to characterize the system is m, and r ranges from 1 to m.

−1
α

=
m∑
r=1

v2
r

ω2
r − Ω2

r

(2.27)

In summary, LEMP is made up of a single general eigenvalue solution for the

system’s initial state and an eigenvalue modification process that is updated for each

change in the state. The eigenvalue modification method simplifies state equations

by characterizing the system in terms of the initial state and modifications made to

the altered state.
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2.3.2 Solving the secular equation

The secular equation is defined as

0 = 1
α

+
m∑
k=1

v2
k

ω2
k − x

(2.28)

Eq. 2.28 hasm possible values of x that will be obtained using the divide and conquer

approach. The divide and conquer approach solves for each eigenvalue separately. It

start by selecting an initial guess (y) for the first eigenvalue [27] where y is the starting

value for x . The selected value lies between ωk and ωk+1. To make a correct decision,

the sign of f(ωk+ωk+1
2 ) must be checked, if positive, λk lies closer to ωk than to ωk+1.

First, consider the case where 1 ≤ k < n. The secular function Eq. 2.28 is rewritten

as Eq. 2.29.

g(x) = 1
α

+
m∑

r=1,r 6=k,k+1

v2
r

ω2
r − x

, and h(x) = v2
k

ω2
k − x

+ v2
k+1

ω2
k+1 − x

(2.29)

Then choose the right initial guess y from the two root of Eq. 2.30

g
(ωk + ωk+1

2
)

+ h(y) = 0 (2.30)

In the case where ωk+ωk+1
2 ≥ 0, solve for τ = y − ωk, else solve for τ = y − ωk+1.

Define ∆ = ωk+1 − ωk and c = g
(
ωk+ωk+1

2

)

τ = y − ωk = a−
√
a2 − 4bc
2c if a ≤ 0 (2.31)

= 2b
a+
√
a2 − 4bc

if a > 0 (2.32)

where if f
(
ωk+ωk+1

2

)
≥ 0,

K = k, a = c∆ +
(
v2
k + v2

k+1

)
, b = v2

k∆ (2.33)
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where if f
(
ωk+ωk+1

2

)
< 0,

K = k + 1, a = −c∆ +
(
v2
k + v2

k+1

)
, b = −v2

k+1∆ (2.34)

After obtaining the initial guess for y, compute a correction η to y for a “better” next

approximation y + η to λk using Eq. 2.35 and Eq. 2.36.

∆k = ωk − y, ∆k+1 = ωk+1 − y, x = y + η (2.35)

a = (∆k + ∆k+1)f(y)−∆k∆k+1f
′(y), b = ∆k∆k+1f(y)

c = f(y)−∆kψ
′

k(y)−∆k+1φ
′

k(y)

= f(y)−∆k+1f
′(y)− ψ′

k(y)(v2
k + v2

k+1)

= f(y)−∆kf
′(y)− φ′

k(y)(v2
k + v2

k+1)

(2.36)

where ψk(x) and φk(x) are obtained using Eq. 2.37

ψk(x) =
k∑
r=1

v2
r

ω2
r − x

, φk(x) =
m∑

r=k+1

v2
r

ω2
r − x

(2.37)

η = a−
√
a2 − 4bc
2c if a ≤ 0,

= 2b
a+
√
a2 − 4bc

if a > 0
(2.38)

For case where k = m, obtain ωk+1 using Eq. 2.39,

ωk+1 = ωk + vTv

ρ
(2.39)

After obtaining ωk+1, repeat the rest of the steps same as when k < mode. Iteration

stopping criteria is given as,

η2 ≤ εm min|ωk − x|, |ωk+1 − x|(|η0| − |η|) (2.40)
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Figure 2.2 Pseudocode for LEMP Algorithm.

The steps of the LEMP algorithm used for the state estimation through this paper

are presented as Pseudocode in Algorithm 2.2.

Table 2.1 shows the major operations in the LEMP algorithm and their complexity

level. These operations are those employed by the divide and conquer approach to

solve for the altered state frequencies. Other operations in the LEMP algorithm are

of O(n) complexity, however, the divide and conquer approach is of complexity O(n2),

hence, resulting in an overall LEMP algorithm complexity of O(n2).

Table 2.1 Major operations in the LEMP algorithm and their complexity.

Outermost loop Innermost loop Operation Lines Complexity
i = 1 : mode k ≤ mode Solve for a, b, c, and τ 9, 14 ξ1 = O(n2)
i = 1 : mode k ≤ mode Solve for initial y 10, 15 ξ2 = O(n)

i = 1 k = mode Solve for ωk+1 required for k = mode 13 ξ3 = O(n2)

To determine the viability of LEMP, the estimated states using the GE and LEMP

are compared using mean absolute error (MAE) and signal to noise ratio where the

GE is the measured value, and the LEMP is the estimated value. The MAE value

measures the numerical error between the GE and LEMP estimated states. [35, 36].
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Eq. 2.41 and Eq. 3.46 show the formula for MAE and SNR, respectively.

MEA =
∑z
i=1 |xtruei

− xesti
|

z
(2.41)

SNRdB = 10 log10

(Psignal

Pnoise

)
(2.42)

2.4 Results and Discussion

2.4.1 Single-state change updating with LEMP

To estimate the state change, a beam of 5 nodes which corresponds to 10 DOF

for Euler-Bernoulli beam (n = 10) as shown in figure 2.3 with properties shown in

table 2.2 was used. Only the first five modes to determine state changes to the system

(beam).

Figure 2.3 Initial state of the system (beam).

Table 2.2 Properties of the beam used in state-estimation process.

Properties value
Density - ρ (kg/m3) 7900

Cross-sectional area - Ac (m2) 0.000306
Total length - l (m) 0.35

Elemental length - li (m) 0.35
Young’s Modulus - E (Pa) 2e11

Construct the elemental mass and stiffness matrices (M1 and K1) which are Eq. A.2

and Eq. A.4 written in the appendix of this paper using the Euler-Bernoulli formular.

Then solve the general eigenvalue problem to obtain the squares of the first n natural

frequencies, and the first n modal vectors for the initial state.
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λ =
(60237 2682286 21391038 82438554 286161e3 748103e3

189786e4 442507e4 152856e6 448821e10)

State equations are simplified by reducing the initial state to just include the modes

of interest, as described in section 3.1. The square root of each eigenvalue is used to

calculate the natural frequency in rad/s, and thereafter converted to Hz. f1 shows

first five natural frequencies for the initial system in Hz.

λ =
(

60237 2682286 21391038 82438554 286161582
)

U1 =



−0.000005 0.00011 0.00051 0.00138 −0.00340

−0.000001 0.000008 0.000023 0.000046 −0.000088

−0.184749 0.862567 1.521322 1.535297 −0.796654

−3.95962 13.68743 10.37102 −17.27622 68.83187

−0.64779 1.52565 0.15321 −1.53923 0.260667

−6.37642 −1.72852 −3.28287 −6.21277 −80.17702

−1.26088 0.420824 −1.25908 1.14986 0.176068

−7.43893 −2.20332 13.1159 21.2392 76.3001

−1.92314 −1.86050 1.94283 −1.87065 −1.9711

−7.61313 −27.5937 46.6347 −63.1058 −96.1961



f1 =
(

39 261 736 1445 2692
)

Figure 2.4 Altered state of the system where the spring is added to the system.

Step 1: Adding roller condition
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The inclusion of a roller at node 4 means implementing a boundary condition at

DOF 8 according to the specification of an Euler-Bernoulli beam. ∆K12 depicts the

changes in physical space from the initial state to the altered state, where diagonal

values shown reflect spring stiffness changes with only the 8th diagonal value as the

sole nonzero term with a value of 1e10 N/m. The changes in modal space from the

initial to the altered state are represented by ∆K12 which is Eq. A.6 in the appendix.

∆K12 =
(

0 0 0 0 0 0 0 1e10 0 0
)

Step 2: Spectral decomposition of ∆K12

The next step is the spectral decomposition of the ∆K12 matrix using Eq. 2.15

to obtain the tie and alpha matrix.

T =
(

1 1 1 1 1 1 1 1 1 1
)
, α =

(
0 0 0 0 0 0 0 1e10 0 0

)

Step 3: Set truncation: include only contributing nodes

The contributing vectors are reduced to only those values in the 8th row of each

matrix. As a result, Eqs. UT
c and ~t can be used to write the contributing modal and

tie vectors, resulting in a change vector v as illustrated in Eq. 2.18.

UT
c =

(
−7.4389 −22.033 13.1159 21.2392 76.3000

)

~t =
(

0 0 0 0 0 0 0 1 0 0
)

~v =



−7.439

−22.03

13.12

21.24

76.30
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Step 4: Obtain Ω2 using Divide and Conquer

With the application of LEMP, the original 10th order GE problem was reduced

to a set of 5 second order equations that could be solved using Eq. 2.27, reducing

the complexity of the associated state equation. The squares of the updated natural

frequencies are obtained by solving for Ω2 in Eq. 2.27.

Ω2 =



293497 0 0 0 0

0 13405181 0 0 0

0 0 33185095 0 0

0 0 0 101330615 0

0 0 0 0 69856604350042



Table 2.3 Ω2 values using D&C and Sympy function “solveset”.

mode D&C frequency (Hz) Solveset frequency (Hz) error (Hz)
1 293496.95719048503 293496.95719048500 58.21 E−12
2 13405184.4772621 13405181.1772621 33.00 E−1
3 33185211.781733 33185095.485877 11.63 E+1
4 101330615.342713 101330615.250119 92.59 E−3
5 69856604350042.539 69856604350042.500 39.06 E−3

Figure 2.5 The system’s Ω2 root space showing (a) the five roots of the system,
solved for using divide and conquer, and; (b) the error values between the roots
found using divide and conquer and Sympy function “solveset”.
Figure 2.5(a) shows the root value for Ω2 obtained from the root space using the

divide and conquer approach; its values are represented at points where the plots
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pass through zero. The Ω2 values obtained using divide and conquer are compared to

the Sympy function “solveset” [37] as shown in Table 2.3, similar output is obtained

from both methods. Figure 2.5(b) shows a low percent error between Ω2 obtained

using divide and conquer and the Sympy function “solveset”.

Step 5: Solve for new frequencies

The new natural frequencies f2 in Hz are then calculated for the five modes in the

model utilized.

f2 =
(

86 583 917 1602 1330221
)

Step 6: Update roller position

The final step of the process is to use the obtained frequency value to determine

the position of the added roller on the beam. This can be done through an error

minimization approach, as previously demonstrated by Downey et al. [20].

Figure 2.6 Timing for (a) each step in LEMP algorithm for state estimation, and;
(b) the distribution of 1000 simulations of the state estimation process using divide
and conquer in the LEMP algorithm.

Figure 2.6(a) shows the timing of each steps above using the algorithm described in

section 3, step 1 takes approximately 0.0019 ms, step 2, 0.0662 ms, step 3, 0.0074 ms,

step 4, 0.3353 ms and step 5, 0.0184 ms. A computer with processor Intel(R),

Core(TM) i7-10700K CPU 3.80GHz was used for running the test. The total time

for a single state estimation using LEMP is approximately 0.4296 ms. Step four in
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the LEMP process, where divide and conquer is used to solve for the altered state

frequencies, took the most time at 0.335 ms. This step accounts for approximately

84% of total LEMP time. While the scope of this preliminary work does not contain

a full-fledged comparison for the use of the divide and conquer solver against other

numerical methods; the divide and conquer solver has proven to be significantly faster

than the Sympy “solveset” function which takes about 40 ms to solve the same equa-

tion. Figure 2.6(b) reports a detailed investigation of the timing for step 4. Here,

1000 simulations were performed using the same beam parameters. The min process

time is 0.349 ms, while the max is 0.438 ms, and with an average time of 0.361 ms.

Figure 2.7 Maximum time required for state estimation using beam with element
number 4 to 30.

Figure 2.7 show the maximum time in 1000 simulations required to achieve single state

change estimation using the divide and conquer solver in the LEMP algorithm for

different number of elements on the Euler-Bernoulli beam. With a beam of element

number 28 and lower, the algorithm easily achieve a state estimation time of less than

1 ms.

2.4.2 State estimation comparison using LEMP and GE

With the inclusion of a roller support at node four on the Euler-Bernoulli beam in

figure 2.3, an effective comparison between the LEMP algorithm and the reference

GE algorithm is carried out for tracking the system state. Figure 2.8(a) - (e) shows

the state of the beam after the addition of a roller support at node four. A close
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Figure 2.8 State estimation using LEMP and general eigenvalue for the first five
modes of the five node Euler-Bernoulli beam in figure 2.3.

system state estimation is seen using the Local eigenvalue modification algorithm

when compared to the reference general eigenvalue algorithm. Here, the frequencies

obtained using the generalized eigenvalue approach is assumed to be the true value,

while the LEMP is the estimated frequency value and Eq. 2.41 and Eq. 3.46 are used

to calculate the error and SNR,. Table 2.4 show the mean absolute error in Hz and

the signal to noise ratio. Small deviations are seen in the fifth mode; however, the

percentage error observed is low, and a considerable high SNR is seen in the first four

modes as shown in figure 2.9(a) and (b). This result demonstrates the feasibility of

the of the LEMP algorithm with the divide and conqure solver for simple structure.

It’s viability for more complex state estimations are topic for future works.

2.5 Conclusion

The paper demonstrated the potential of using the local eigenvalue modification pro-

cedure (LEMP) to estimate the state of a system. The sample five node Euler-

Bernoulli beam was used to investigate the timing of each step in the LEMP process

for a single-state change. Initial investigation of the LEMP algorithm using the
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Table 2.4 Mean absolute error and signal to noise ratio for the LEMP and GE.

mode mean absolute error (Hz) SNRdB

1 0.2989 30.02
2 0.3193 33.38
3 0.5575 33.54
4 9.8136 25.10
5 262.80 13.18

Figure 2.9 Figure showing the (a) signal to noise ratio for the GE and LEMP state
estimation, and; (b) the error in percent between the two approaches.

Sympy function “solveset” to solve the resulting secular equation in the LEMP al-

gorithm showed that it took about 40 ms to perform a single-state change update,

making it impossible to achieve the the 1 ms time step required for real-time model

updating of structures operating in high-rate dynamic environments.

The introduction of the divide and conquer approach to solve the secular equation

in the LEMP process formulated a solver that significantly reduced the time taken to

solve the system’s secular equation. Experimental results demonstrated an average

time of 0.361 ms for single state change updating was achieved using the five nodes

beam. Using the same 5-nodes beam, an accuracy investigation between the reference

general eigenvalue algorithm and LEMP with the divide and conquer solver was

undertaken. Results showed that the frequencies obtained for state estimation at the
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nodes from both approaches are close. Signal to noise ratios SNRdB above 20 and low

mean absolute error is observed in the first four modes, however, the fifth mode has

a lower SNRdB around 14 and higher error. The error at the last node is expected to

reduce as the number of nodes in the beam increases. With the addition of the secular

equation solver; divide and conquer approach at extremely low latencies, the LEMP

algorithm has the potential to enable real-time frequency-based model updating of

complex systems that would not be achievable using the general eigenvalue approach.
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Chapter 3

Real-time Structural Model Updating using

Local Eigenvalue Modification Procedure for

Application in High-Rate Dynamic Events1

Abstract

Estimating the state of structures that experience high-rate dynamics requires real-

time model updating capabilities. High-rate dynamic events are characterized by

1) large uncertainties in the external loads, 2) high levels of non-stationarities and

heavy disturbances, and 3) unmodeled dynamics generated from changes in system

configurations. In order to achieve real-time model updating for high-rate dynamics,

an algorithm should be able to update the structure’s state on a timescale of 1 ms

or less while circumventing pre-calculations to enable its operation over un-modeled

event. This work formulates an algorithm to meet the stringent latency requirements

using the local eigenvalue modification procedure (LEMP). In doing so, the model

is transformed from the physical domain into the modal space which numerically

simplifies the calculations needed to determine the state of a complex structure.

To track the system through time, the structure’s state is continuously updated by

adjusting the associated model through online modal analysis. Its future states are

1Ogunniyi, E.A., Drnek, C., Hong, S.H., Downey, A.R., Wang, Y., Bakos, J.D., Avitabile, P.
and Dodson, J., 2023. Real-time structural model updating using local eigenvalue modification
procedure for applications in high-rate dynamic events. Mechanical Systems and Signal Process-
ing, 195, p.110318. doi:https://doi.org/10.1016/j.ymssp.2023.110318. Reprinted here copyright for
manuscript provided by publisher
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estimated using a Bayesian search algorithm to compare the measured signals with

selected modal models. New modal models are built based on the enhanced estimate

of the structure’s state and used for subsequent state estimations. The methodology

is applied to an experimental testbed experiencing varying dynamics to update a

surrogate model. Results show that the LEMP algorithm could update the state of

the high-rate dynamics system within 1 ms for up to 250 nodes, a speed up of 125

times when compared to solving for the systems state using the generalized eigenvalue

approach. The timing, accuracy, and computational resources are discussed in this

paper and compared to the baseline generalized eigenvalue approach. An example

problem and code are provided in a public repository.

Keywords: real-time model updating, high-rate dynamics, model reduction, eigen-

value modification, modal analysis, adaptive structures .

3.1 Introduction

High-rate dynamics are defined as the dynamic responses of a system that are high-

rate (<100 ms) and high-amplitude (acceleration> 100 gn), such as those caused by a

blast or impact [1]. Such events are complicated by instantaneous and unpredictable

changes in the loading conditions acting upon a system, which alters the magnitude

and location of internal and external forces experienced by the structure throughout

the event. Because the changes experienced by the structure are sudden and unknown,

tracking the state of the structure throughout the event remains a challenge.

One approach to tracking the state of such structures through a high-rate dy-

namic event is to utilize structural model updating techniques to update a digitized

representation of the system state with real-time constraints. For accurate state esti-

mations of structures experiencing high-rate dynamics, the model updating technique

must: (1) be flexible to adapt to changing external load conditions without relying

on pre-trained data and; (2) be capable of updating structural models within a 1 ms
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real-time latency constraints to enable real-time decision-making [5]. Model updat-

ing of structures using frequency-based methods is achieved using error minimization

techniques [38, 8]. In addition, frequency-based methods do not require exact knowl-

edge of the input [7]. However, better performance and stability can be achieved

when the input characteristics are either known or estimated [9].

Real-time model-updating enables tracking complex structures experiencing high-

rate dynamic events such as in-flight monitoring systems and impact mitigation sys-

tems. In-flight monitoring can be applied to manned and unmanned aerial vehicles

and spacecraft. In the case of an unmanned vehicle, where a pilot is not present

to monitor the aircraft, operators on the ground must rely on sensor readings to

determine the system’s condition. Real-time model updating would allow the oper-

ating software to receive state data almost instantaneously, enhancing the knowledge

of the system and its surroundings allowing for mission-critical actions [39]. In the

case of manned vehicles, real-time model updating would allow for the incorporation

of decision-making software that will respond to changing environments faster than

human occupants can in a time of stress such as system or component failure [39].

Impact mitigation technology can be found in the defense and automotive indus-

try, with examples including active blast mitigation systems and airbag deployment

systems. Active blast mitigation systems minimize the blast’s impact or counter the

blast’s effects after impact. Large forces associated with an incoming blast and close-

range threats require the system to detect the presence of a blast threat, determine

the magnitude and location of an incoming threat, and deploy countermeasures on

a millisecond timescale [3]. Airbags are an essential safety component in vehicles;

however, in some cases, the deployment of airbags can cause additional injuries to

passengers. The Delphi Dual Depth airbag is an adaptive airbag that controls the ex-

tent of inflation based on factors such as the size and seated position of the passenger

as well as the crash severity and location [40]. Real-time model updating would allow
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for additional adaptive measures, such as modifying the shape of an inflated airbag

or adjusting the inflation rate to maximize protection within the latency constraints

(i.e., allotted response time). In each application, real-time model updating would

prioritize occupant’s safety and mitigate the damage experienced by the system by

providing users with the system’s current state, thereby preventing further losses or

failure.

Real-time model updating methodologies for structures have been developed for

civil and aerospace structures by leveraging the Finite Element Analysis (FEA)

[41, 42, 43, 44, 45, 46, 47]. However, the execution time requirements in these efforts

were on the order of hours to months and often executed offline due to the computa-

tional costs associated with solving FEA models. Additionally, unmodeled dynamics

characteristic of high-rate dynamic events limit the application of an FEA approach

with pre-calculated databases of structural conditions for this class of structures [1].

The challenge of accounting for unmodeled dynamics necessitates the formulation of

online model updating techniques that can track the system’s state while requiring

only a limited amount of offline training (e.g., the initial state of the structure). In

prior work, the authors have experimentally demonstrated that real-time model up-

dating can be accomplished for a structure undergoing a simulated high-rate event

with a latency constraint of 1 ms using a simplified Euler-Bernoulli beam model and

updating the model in the frequency domain [7]. However, to obtain the 1 ms latency

constraint, the FEA model was limited to 23 nodes. In this configuration, 0.6 ms were

required to solve the generalized eigenvalue problem, accounting for most of the com-

putational load. Furthermore, the generalized eigenvalue formulation scales poorly

for larger FEA models due to its O(n3) complexity.

Real-time modeling in this work is accomplished using the local eigenvalue modi-

fication procedure (LEMP), which simplifies state calculations when only one change

is made to the system [10] and a Bayesian probabilistic approach that reduces the
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search space. Advantages to applying LEMP are that all variables for the altered

state are defined in terms of the initial state and changes made between the two.

They only require information for the degrees of freedom (DOF) at which changes

occur, which reduces the number of calculations required since the solution for the

initial state equations is constant. Additionally, the original eigenvalue solution is

reduced to a set of second-order equations through LEMP. Additional search space

reduction is achieved by applying a Bayesian probabilistic approach that considers

the current state of the structure given an initial uncertainty about the estimate

itself [12]. A similar approach proposed by Madarshahian et al. [13] utilized a two-

layer Bayesian approach to minimize the computational cost of estimating prior and

posterior distributions. Huang et al. used the Bayesian learning to reconstruct sig-

nal from a compressive sensor to reduce the cost of signal transfer and storage [48],

while Bayesian theory is used to produce the posterior joint probability distribution

of the structure’s physical properties in [49]. Moreover, Kurata et al. implemented a

Bayesian approach conjointly with branch and bound search techniques to model the

crack growth within aluminum hull structures [50].

The key contributions of this work are 1) the formulation of a real-time model

updating technique that leverages an eigenvalue modification procedure to reduce the

original eigenvalue problem to a set of second-order equations, and 2) the introduction

of a Bayesian probabilistic approach for the sampling of potential structural states.

Together, these advantages reduce the number and complexity of equations needed

to compute the state of the structure and advance state-of-the-art structural model

updating techniques for real-time applications with a latency constraint in the sub

1 ms range.
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Figure 3.1 DROPBEAR testbed as configured for this work.

3.2 Background

3.2.1 DROPBEAR Experimental Testbed

This work uses the DROPBEAR testbed, which was initially developed by Joyce et al.

[51]. The DROPBEAR was constructed specifically for simulating high-rate dynamic

events in the laboratory. It features two programmable changes: a detachable mass

secured using an electromagnet and a movable roller boundary condition attached to

a linear actuator, both used to simulate damage to the structure. The DROPBEAR

testbed is advantageous when modeling high-rate dynamic cases because the setup

is capable of repeatedly altering test parameters. These parameters can be changed

during a test instead of between test runs, allowing researchers to gain insight into the

system’s real-time response. In this work, only the movable roller is utilized, and the

algorithm is focused on its capability to model the nonstationary boundary conditions

of the system. The experimental configuration used here is shown in Fig. 3.1.

The experimental configuration features an accelerometer (PCB Piezotronics model

393B04) mounted at the free end of a 51× 6× 350 mm steel cantilever beam with a

density of 7800 kg/m3, Young’s Modulus of 2e11 N/m2 and Poisson’s Ratio of 0.26.

The design also features a sliding roller cart on a linear actuator that constrains

vertical beam displacement between 48-17 mm from the fixed end and a magnetic

displacement sensor that measures the roller’s displacement throughout the test. Ad-

justing the roller location during tests simulates damage to the system by producing
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Figure 3.2 Roller testing parameters used in this work.

a user-defined change to the system input, which results in a change to a measured

system output (e.g., acceleration). The use of rollers ensures the repeatability of

each test, as the damage is simulated. This study investigates the reference data

set initially presented in Downey et al. [7]. In this preliminary work, all results are

obtained using the previously recorded sensor data. The measured test profile of the

roller locations used in this work is presented in Fig. 3.2 and is open sourced; provided

via a public repository [52].

3.2.2 Model development for the DROPBEAR Experimental Testbed

Initial state calculations are made using a finite element model and the Euler-Bernoulli

beam theory. As shown in Fig. 3.3, the modified DROPBEAR testbed is modeled as

a cantilever beam with the far-left end fixed and no additional support (i.e., no roller

present). Each element has two nodes and 4 degrees of freedom (two rotation θ and

two displacements v). The beam is split into N elements of equal length resulting in

N+1 evenly spaced nodes along the beam. Two forces and two moments characterize

an Euler-Bernoulli element, also shown in Fig. 3.3, resulting in 2(N+1) DOF for the

system.

The mass (Mi) and stiffness (Ki) matrices for an Euler-Bernoulli beam element

can be found using Eq. 3.1 and Eq. 3.2 as well as Table 3.1 which lists the material

and geometric properties of the DROPBEAR testbed. These elemental matrices are

32



Figure 3.3 DROPBEAR modeled as a cantilever Euler-Bernoulli beam.

combined to construct the global mass (M1) and stiffness (K1) matrices for the initial

sate.

Mi = ρiAili
420



156 22li 54 −13li

22li 4l2i 13li −3l2i

54 13li 156 −22li

−13li −3l2i −22li 4l2i


(3.1)

Ki = EiIi

li



12/l2i 6/li − 12/l2i 6/li

6/li 4 − 6/li 2

− 12/l2i − 6/li 12/l2i − 6/li

6/li 2 − 6/li 4


(3.2)

Table 3.1 Material and geometric properties of the DROPBEAR testbed.

Density - ρ (kg/m3) 7800
Cross-sectional area - Ac (m2) 0.000306
Total length - l (m) 0.35
Elemental length - li (m) 0.35/N
Young’s Modulus - E (Pa) 2e11

The equation of motion (EOM) for the entire system modeled as an Euler-Bernoulli

beam is shown in Eq. 3.3 where M1ẍ and K1x are the mass and stiffness terms, re-

spectively, for the initial system. The damping term (Cẋ) can be ignored as its effect

on the frequency of vibration is insignificant. The critical damping ratio (ζ) for the
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case when the roller is 48 mm distant from the support was found to be 0.0076 in

experimental testing in Downey et al. [7]. As a result, the theoretical resonant fre-

quency of the beam may be calculated using an impact excitation that excites all

of the beam’s frequencies equally. The predicted resonant frequency differs from the

undamped natural frequency by only 0.005%. As a result, a simplified expression of

the equation of motion that does not include the damping term can be utilized as

follows:

M1ẍ+ K1x = 0 (3.3)

Here, ẍ and x are the acceleration and displacement vectors in physical space of

length n. Additionally, M1 and K1 are the mass and stiffness matrices that are

square symmetric and have dimensions of n× n, where n is the DOF for the system.

By definition, the generalized eigenvalue (GE) problem for Eq. 3.3 is K1U1 =

M1U1λ, where λ is a matrix of eigenvalues and U1 is the matrix of eigenvectors,

both having dimensions of n× n. The GE problem can be solved using Eq. 3.4 and

Eq. 3.5 below.

det[K1 − λM1] = 0 (3.4)

[K1 − λM1]U1 = 0 (3.5)

Solutions to the previous equations yield eigenvalues and eigenvectors according

to Eq. 3.6 and Eq. 3.7 respectively. Eigenvalues are related to the natural frequency

of the system, while eigenvectors are related to mode shapes of the system and are

assembled in matrix form as:
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λ =



ω2
1 0 0 0

0 ω2
2 0 0

0 0 . . . 0

0 0 0 ω2
n


(3.6)

U1 =
[

#»u 1
1

#»u 1
2 . . . #»u 1

n

]
(3.7)

where ωn and #»u 1
n are the nth frequency and modal vector for the initial state of

the system where the arrow denotes a vector. Although the modal matrix does not

represent system mode shapes, it can be used to calculate them.

3.2.3 Local Eigenvalue Modification Procedure

Structural dynamic modification (SDM) identifies physical modifications made to

system properties such as mass, stiffness, or damping by monitoring changes in the

system’s dynamic response such as frequencies and mode shapes or vice versa [53, 54,

55, 56]. SDM is accomplished by modeling the altered state as a combination of the

initial state and the changes between the states using changes to mass, stiffness, or

damping matrices in the EOM for the altered system. SDM also utilizes the principle

of modal synthesis, which states that any dynamic response of a vibrating structure

can be decomposed into a set of individual contributions of single frequencies [57, 58].

Also, it effectively defines the initial system of n DOF as a set of n independent single

DOF systems, as illustrated in Fig. 3.4. This is done by utilizing the relationship

between the modal properties and spatial properties of a structure, which simplifies

state estimations for complex systems by transforming equations from physical space

to modal space using the GE solution of the initial state [53, 54].

In Fig. 3.4, each DOF responds to one natural frequency of the physical system

with a modal mass and stiffness value related to physical system response through

modal transformations. Any changes made to this initial system result in an altered
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Figure 3.4 Modal representation of initial system.

modal system. These changes (e.g., mass and stiffness) can be transformed into modal

space where matrix values on the diagonal represent a mass or stiffness change from

the initial system (i.e., Fig. 3.4) to ground, and off-diagonal values in the matrix

couple individual systems together as shown in Fig. 3.5 by the connecting springs.

Figure 3.5 Modal representation of altered system.

One advantage of operating in modal space is that the model for the initial struc-

ture only needs to contain information for the DOF where modifications are made,

thereby reducing the size of the matrices in the EOM, and the number of correspond-

ing calculations required [59, 60]. Therefore, solving the reduced EOM in modal

space requires processing a smaller GE solution to find the model’s new frequencies

and mode shapes. While this reduces the computational cost compared to solving the

original GE, it still requires solving a GE problem which may still be too computa-

tionally expensive given the stringent timing constraints demanded by the high-rate

dynamics problem [61].

Weissenburger originally developed LEMP in 1968 to avoid eigenvalue solutions

in SDM when the system undergoes a single change. The idea was to simplify state

calculations to meet the limited processing power of computers at the time [10, 62,

63, 64]. Following the initial modification, the system equations had to be updated,

and other additional modifications had to be performed; this was a time-consuming
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procedure. LEMP utilizes a single GE solution for the initial system and simplifies

altered state equations by transforming them into modal space, isolating the DOFs

that contribute to the changes between states, and defining equations in terms of

the initial state as discussed in SDM. However, additional simplifications occur by

truncating the n independent single degree of systems to only include the m modes

of interest. This results in a λ matrix with dimensions m ×m and a corresponding

modal matrix U1 of dimensions n×m. This modal truncation further simplifies the

altered state equations. An overview of the LEMP is shown in Fig. 3.6 and will be

discussed further in the following sections.

Figure 3.6 Flowchart of LEMP algorithm.

The benefit of applying LEMP is that the GE equation is reduced to a set of

second-order equations whose frequency roots are bounded by the initial frequencies of

the system, thereby reducing the domain over which the equation is solved [10]. These

simplifications reduce the number and complexity of equations needed to compute

the structure’s state, equating to less computing time than the previously mentioned

GE solutions.

Accelerating computations would allow for more complex models such as those
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with additional nodes or various element types. More complex models would sig-

nificantly enhance the usefulness of physics-informed state estimation of structures

experiencing high-rate dynamic events. Moreover, these high-quality models are crit-

ical to performing prognostics and enabling decision-making for these structures.

LEMP algorithm

LEMP is applied according to the process illustrated in Fig. 3.6. After the GE solution

is obtained for the initial system, the EOM for the altered state is created according

to Eq. 3.8 while ignoring the effects of damping.

M2ẍ+ K2x = 0 (3.8)

where M2 and K2 are the mass and stiffness matrices of the altered state in physical

space, both with dimensions of n × n. In this work, the change between system

states results from adding a roller boundary condition at a node location along the

beam. In traditional FEA approaches, the application of a roller limiting bending

in the beam at that location allows for row and column cancellation. Instead, here

we assume a large numerical stiffness (K=10,000 N/m) for the roller at a given node

position, allowing for calculations using a full matrix without varying the resulting

state calculations. Therefore, there is no change made to the mass matrix, only a

change made to the stiffness matrix, denoted by ∆K12 with dimensions of n×n. The

mass and stiffness of the altered state are defined in terms of the initial state and

changes between the two as shown in Eqs. 3.9 and 3.10 respectively.

M2 = M1 (3.9)

K2 = K1 + ∆K12 (3.10)
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Substituting Eqs. 3.9 and 3.10 into the original EOM for the altered state yields Eq.

3.11.

M1ẍ+ (K1 + ∆K12)x = 0 (3.11)

To simplify future calculations, the n modes of the n independent single DOF

systems of the initial system are truncated to only include the m modes of interest.

This results in λ matrix with dimensions m×m and a corresponding modal matrix

U1 of dimensions n ×m. This modal truncation further simplifies the altered state

equations. Additional simplifications occur by transforming the system response from

physical space to modal space using the relations shown in Eqs. 3.12 and 3.13, where

p1 and p̈1 are the system displacement and acceleration vectors in modal space whose

length is reduced from n to m after modal truncation occurs.

x = U1p1 (3.12)

ẍ = U1p̈1 (3.13)

Converting the EOM to modal space utilizing Eqs. 3.12 and 3.13 yields Eq. 3.14

below.

M1U1p̈1 + (K1 + ∆K12)U1p1 = 0 (3.14)

By multiplying each term by UT
1 the mass and stiffness matrices are normalized

in modal space which yields diagonal matrices as shown in Eq. 3.15.

diag(M1)p̈1 + [diag(K1) + ∆K12]p1 = 0 (3.15)

where M1 and K1 represent the modal mass and stiffness matrices and ∆K12 repre-

sents the changes made in modal space between the initial and altered state. These
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matrix dimensions are reduced from n× n to m×m after modal truncation occurs.

Diagonal values of ∆K12 represent ground connections and off-diagonal values couple

the single DOF systems as shown between Figs. 3.4 and 3.5. Note the overline on

∆K12 in Eq. 3.15 which is the change made in modal space is different from ∆K12 in

Eq. 3.14 which is the change made in physical space.

Scaling Eq. 3.15 to unit modal mass yields Eq. 3.16, where I is the identity matrix

with dimensions of m × m. The benefit of scaling to modal mass is that the state

equation for the altered state in modal space can be written in terms of the initial

eigenvalues, which were already obtained by Eq. 3.6. Also note that the ∆K12 in

Eq. 3.16 is different from that in Eq. 3.15 as it has been scaled to unit modal mass.

Ip̈1 + [λ + ∆K12]p1 = 0 (3.16)

To solve for the updated natural frequencies that occur as a result of system

changes, the following procedure is implemented. First, the GE solution of Eq. 3.16

is set up, but not solved according to Eqs. 3.17 and 3.18 below.

det[(λ + ∆K12)−ΛI] = 0 (3.17)

[(λ + ∆K12)−ΛI]p12 = 0 (3.18)

Λ is a matrix with dimensions of m×m whose the diagonals are the squares of the

updated frequencies and p12 is the modal change between the states. The terms are

then rearranged to yield Eq. 3.19.

[(λ−Λ) + ∆K12]p12 = 0 (3.19)

Because the stiffness change between states occurs as a result of applying a nodal

boundary condition, only diagonal values will be affected between the K1 and K2
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matrices. Furthermore, the only non-zero term in the ∆K12 matrix is the diagonal

value associated with the DOF where the roller is located. Noting that the only

non-zero values in ∆K12 are those associated with the DOF(s) that experience a

change in stiffness from the initial to an altered state. The equation for ∆K12 is

then simplified to only contain information from the contributing nodes. This is

accomplished through spectral decomposition of ∆K12 as shown in Eq. 3.20.

∆K12 = Tdiag(α)TT (3.20)

where T is the n × n tie matrix consisting of a set of row tie vectors as shown in

Eq. 3.21 and α is a matrix of size n obtained from the single value decomposition of

∆K12. The tie matrix represents connections between the two system’s states while

the alpha value is the singular change in the stiffness.

T =
[

#»
t 1

#»
t 2 · · ·

#»
t n

]T
(3.21)

Equation 3.20 is then transformed to modal space by multiplying each side by U1

and UT
1 as shown in Eq. 3.22.

∆K12 = UT
1 Tdiag(α)TTU1 (3.22)

The contributing values of ∆K12 can be redefined by reducing ∆K12 to only

include non-zero values which is denoted by ∆k12. This is done by using the tie vector

and alpha value associated with the affected DOF, denoted by tc and α respectively.

∆k12 can then be transformed to modal space utilizing the corresponding rows of U1,

denoted by U1c . These reduced matrices only include information associated with

the DOF(s) experiencing a stiffness change and are obtained using the relation in

Eq. 3.23 where #»v is the one-dimensional contribution vector, of length m, associated

with the affected DOF as noted in Eq. 3.24.
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#»v = UT
1c

#»
tc (3.23)

#»v =
[
v1 v2 . . . vm

]T
(3.24)

The relation from Eq. 3.23 is then used along with the alpha value associated

with the affected DOF to solve for ∆k12. This is done according to Eq. 3.25 which

yields the equation for the modal stiffness change in terms of contributing nodes only.

∆k12 = #»v α #»v T (3.25)

Noting that ∆k12 is equivalent to ∆K12, and of dimension n × n, Eq. 3.25 can be

substituted for ∆K12 in the original GE problems shown in Eqs. 3.17 and 3.18 which

yields the following equations:

[(λ−Λ) + #»v α #»v T]p12 = 0 (3.26)

(λ−Λ)p12 + #»v α #»v Tp12 = 0 (3.27)

To further simplify state equations, S is defined as an arbitrary variable according

to Eq. 3.28.

S = #»v Tp12 (3.28)

Eq. 3.28 is then substituted into Eq. 3.27 to yield Eq. 3.29.

(λ−Λ)p12 + #»v αS = 0 (3.29)

Which can be rearranged to solve for p12 as shown in Eq. 3.30

p12 = −(λ−Λ)−1 #»v αS (3.30)
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Then, Eq. 3.30 is multiplied by #»v T to yield Eq. 3.31

#»v Tp12 = − #»v T(λ−Λ)−1 #»v αS (3.31)

Which can be rewritten as Eq. 3.32 using the relation from Eq. 3.28

S = − #»v T(λ−Λ)−1 #»v αS (3.32)

By multiplying each side by S−1, both S matrices are eliminated leaving the matrix

equation shown in Eq. 3.33.

α−1 = − #»v T(λ−Λ)−1 #»v (3.33)

Since #»v is a one-dimensional vector, #»v is element-wise equal to #»v T. Therefore,

breaking Eq. 3.33 into components yields the following equation, where the only

unknown is Ωr or the natural frequency of the altered system. Here, r ranges from

1 to m, where m is the number of modes used to describe the system. The LEMP

algorithm results in a secular equation of Eq 3.34 solved using the divide and conquer

approach described in [14].

−1
α

=
m∑
r=1

v2
r

ω2
r − Ω2

r

(3.34)

In summary, LEMP consists of two main parts: a single GE solution for the initial

state of the system and an eigenvalue modification process for the altered system

state that is updated for each roller position. The eigenvalue modification process

consists of simplifications to state equations accomplished by defining the system in

terms of the initial state and changes made between the two states, utilizing modal

representation, and isolating contributing nodes.
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Figure 3.7 Modal participation factors for the altered state with roller at n2.

Model creation

As previously noted, additional simplifications occur within LEMP by truncating the

n independent single DOF systems to only include the m modes of interest. However,

this process requires the creation of a pre-selected surrogate model, which includes

determining the number of modes and nodes to use when modeling the system. The

goal is to include enough information about the system to ensure the state estimate

contains a minimal error without including excess information that negatively affects

computation time.

Not all initial modes will contribute equally to altered frequencies, but missing

modes that do contribute will drastically increase the estimation error due to trunca-

tion. Therefore, predetermining which initial modes contribute and how much each

contributes to the altered states is essential. This is accomplished by solving for

modal transformation matrix U12, of dimensions n× n, which uncouples the modifi-

cation between states. Recall from the altered EOM in modal space, as shown by Eq.
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Figure 3.8 Modal participation factors for the altered state with roller at n3 (b), n4
(c), n5 (d), and n6 (e)
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Figure 3.9 Modal participation factors for the altered state with roller at n7 (f), n8
(g), n9 (h) and n10 (i)
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3.15, that p1 and p̈1 are initial system displacement and acceleration in modal space of

initial length n. The initial modal response can also be rewritten as a function of the

modal response of the altered state and the modal transformation matrix according

to the following relations:

p1 = U12p2 (3.35)

p̈1 = U12p̈2 (3.36)

Where p2 and p̈2 are also of length n. If LEMP were not applied, the GE solution of

Eq. 3.15 given the transformation shown in Eqs. 3.35 and 3.36 could be solved using

Eq. 3.37 below.

{[diag(K1) + ∆K12]− λ12diag(M1)}U12 = 0 (3.37)

Where Eq. 3.37 is generalized eigenvalue solution for equation Eq. 3.15 and λ12 is

the eigenvalue. The eigenvectors of Eq. 3.37 are the columns of matrix U12 and are

called participation factors. These values offer insight into each initial mode’s weight

in defining the altered modes. Values range between -1 and 1, where absolute values

closer to 1 correspond with a larger modal contribution.

In the case of this work, the modal response of the initial system is that of a

cantilever beam, and the addition of a roller alters modal responses. To determine

the participation factors of the system used here, the number of nodes was initially

set to 10, which corresponds to 20 DOFs due to the characterization of the system as

an Euler-Bernoulli beam (yielding a 20 × 20 U1 matrix). The participation factors

were calculated at each node along the beam, excluding the fixed end, and plotted

according to the key in Fig. 3.7. The participation factors were not calculated for the

node at the fixed end because the system is already constrained in the bending and
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rotational DOF due to the boundary condition; therefore, adding a roller would not

change the system response.

Figures 3.7-3.9 illustrate the modal participation factors for a roller located at

nodes ranging along the beam. The initial modes of the cantilever beam are listed on

the vertical axes, and altered modes of the cantilever beam with a roller placed at a

node are listed along the horizontal axes. Boxes are color-coded based on the value

of the participation factor, where white boxes represent little to no contribution and

yellow represents high levels of contribution. For example, in Fig. 3.7, the altered

modes (horizontal axis) are the modes for the system when the pin is at the second

node. In this case, the fifth mode for the altered shape can be represented as a

combination of modes 4, 5, and 6 from the initial cantilever beam with participation

factors of 0.2383, 0.7717, and 0.5489, respectively. Future analysis will focus on

contributions greater than 0.2 from initial modes.

Using Figs. 3.7-3.9, the contributions from initial modes were tallied based on

participation factors. The total counts and contribution percentage for initial modes

whose contribution factors were greater than 0.2 are summarized in Table 3.2.

Participating modes were selected if their contribution percentage was significant

(5 % or greater). Therefore, initial modes 1-9 and 12 were selected. Additional limi-

tations due to the experimental setup and accelerometer selection further reduced the

selected modes. In order to utilize a mode in state estimations, the data acquisition

system must be capable of measuring that mode experimentally. Therefore, each

mode type and frequency must be considered when selecting modes. Mode shapes

and natural frequencies are shown for all participating modes in Fig. 3.10.

The experimental setup in this work utilizes a single-axis accelerometer mounted

at the far end of the beam, which limits measurable modes to those of bending in the

Y direction. Additionally, the maximum frequency range of the accelerometer was

(±3 dB) 0.02 - 1700 Hz [65]. Therefore, the modes used to describe the system were
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Table 3.2 Counts and percentages for contributing initial modes.

Contributing Yellow Green Blue Purple Total Counts Contribution
Mode (0.8-1) (0.6-0.8) (0.4-0.6) (0.2-0.4) Percentage (%)
1 5 2 6 13 26 6.3725
2 4 4 4 18 30 7.3529
3 4 3 6 20 33 8.0882
4 6 2 1 14 23 5.6372
5 2 7 7 15 31 7.5980
6 4 5 3 18 30 7.3529
7 8 1 2 10 21 5.1470
8 5 4 4 13 26 6.3725
9 9 0 1 18 28 6.8627
10 9 0 0 1 10 2.4509
11 9 0 0 8 17 4.1666
12 9 0 0 12 21 5.1470
13 9 0 2 8 19 4.6568
14 9 0 0 9 18 4.411
15 9 0 0 11 20 4.9019
16 9 0 0 7 16 3.9215
17 9 0 0 3 12 2.9411
18 9 0 0 0 9 2.2058
19 9 0 0 0 9 2.2058
20 9 0 0 0 9 2.2058

limited to modes 1-4.

Figure 3.10 Participating mode shapes and natural frequencies.

The number of nodes determines how refined the solution is, with more nodes

offering a more accurate estimation but requiring a longer calculation time and fewer

nodes saving time but offering rougher estimates. The first four natural frequency
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responses are plotted as the roller moves along the beam for models with varying node

numbers to determine the number of nodes required. The true frequency is defined

using LEMP with 101 nodes, then compared to reduced models containing 51, 26,

and 21 nodes. The relative error between the true and reduced models increases

as the number of nodes decreases and exceeds the maximum allowable error of 10

mm when the number of nodes is reduced to 21. Therefore, the reduced model with

26 nodes is selected to represent the system. The first four natural frequencies of

the system plotted using the selected 26-node reduced model are shown in Fig. 3.11.

Fig. 3.11 represents a horizontal error (mm) between the two models estimated roller

position, and as observed, the 26 nodes model lags the 101 nodes model, as opposed

to a vertical error (Hz), on which the 26-node model consistently overestimates the

frequency when the roller is located near the fixed end, jumps in error levels out as

the roller moves along the beam. Furthermore, it was shown in Downey et al. in

Ref. [7] that a 26 node FEA model could be solved in 2 ms using the GE approach,

and Ogunniyi et al. also showed in ref. [14] that a 26 node FEA model could be

solved in less than 1 ms using the LEMP approach.

Roller location selection

In this work, the high-rate dynamic system is represented by the FEA model. Three

roller locations are sampled using a normal probability density function according to

figure 3.12, where the mean of the distribution is the center of the beam before the

estimation process starts. After each successive iteration process, the mean of the

distribution changes to the previous roller location. The mean, µ, and the standard

deviation, σ, are used to sample the three roller locations. The two remaining roller

locations are selected above the mean since the roller is assumed to be always moving

to the right. Three FEA models are built using these roller locations, then all three

models’ first natural frequencies are obtained by doing a modal analysis on them
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Figure 3.11 First four frequency responses for a 26 node model solved using the
LEMP process along with the reference 101 node model and the error.

simultaneously (ω1, ω2, ω3). In order to determine the location of the roller, the

measured frequency (ωtrue) of the real system, which was derived from the FFT of the

accelerometer data, is compared with (ω1, ω2, ω3). The PDF algorithm that was used

to sample the sites is then modified considering comparisons between the estimated

roller location and frequency. By contrasting the natural frequencies derived from

the experiments and the FEA models and creating new FEA models based on the

improved estimate of the position, it is possible to narrow down the determination of

the roller position constantly.

Bayesian search space for roller location selection

The function of the Bayesian probabilistic approach is to select the most probable

roller locations at which to apply LEMP. This selection improves initial estimations

and reduces the number of comparison points selected and the required error calcu-
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Figure 3.12 Analytical application of the likelihood function and Bayes algorithm.

lations. Fig. 3.12 illustrates the Bayesian procedure applied in this work.

Let R denote the hypothesis that the roller is moving from left to right along the

beam. It is initially assumed that the roller is located at the center of the beam and

is moving right with a probability P (R) = .6 (therefore P (L) = .4); all future calcu-

lations assess the probability that the roller will continue to move right. Weighting

initial directional probabilities is equivalent to making predictions about how a system

will degrade based on previous knowledge. For example, when modeling structures,

the equivalent stiffness will decrease over time as the structure degrades; therefore, the

initial weighted prediction and future estimations would assess a decrease in stiffness.

Three roller locations are sampled as comparison points given a PDF of normal

distribution centered on the previous roller position. The first location is taken to

be the previous mean (µB), assuming that there is no damage occurring between

the two estimations. A random location (x) is chosen above the mean value. The

likelihood functions for the selected point (x) are calculated according to the two

previous distributions, Eq. 3.38 and Eq. 3.39 respectively. Here B represents the

previous distribution, and A represents the distribution prior to that. As the roller
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is assumed to always move to the right, the distribution prior to the previous is

always to the left of the previous distribution; except when the posterior distribution

P(R | E) > 0.5.

P(E | R) = 1√
2πσ2

exp −1
2

(x− µB)2

2σ2 (3.38)

P(E | L) = 1√
2πσ2

exp −1
2

(x− µA)2

2σ2 (3.39)

Here, σ is the standard deviation of the position distribution, µB is the last estimated

roller location, µA is the estimated roller location from two iterations ago. If µB > µA,

the roller was last moving right. If µA > µB, then the roller was last moving left.

The likelihood function is then used in the Bayes’ theorem as follows:

P(R | E) = P(R)P(E | R)
P(R)P(E | R) + P(L)P(E | L) (3.40)

The output of Eq. 3.40 is the posterior or updated distribution for the roller

location after information regarding the previous location selections and likelihoods

are taken into consideration [66]. If P(R | E) > 0.5, then it is assumed that the roller

is currently moving to the right; therefore, the remaining two sample locations are

selected from above the previous mean value. If P(R | E) < 0.5, then it is assumed

that the roller is currently moving to the left; therefore, the remaining two sample

locations are selected from below the previous mean value. If P(R | E) = 0.5, then

the remaining two sample locations are selected at random.

In summary, the Bayes procedure refines roller positions to select probable loca-

tions based on past estimates and uncertainty. The selected points are then used

as input for LEMP, which calculates the analytical frequency at each point. The

analytical frequencies are then compared to the true experimental frequency to make

state estimations, and the analytical loop repeats itself.
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3.2.4 Real-time model updating and model assessment

Real-time model updating can be completed in two steps: 1) calculating the analytical

frequency at selected roller positions and 2) choosing the best estimation to represent

the current system state using comparison methods. Analytical solutions for system

states in this work are calculated using three methods: GE, LEMP, and LEMP

with a Bayesian search space. The analytical solutions are used to estimate system

states by two methods: error minimization and bounded regression, each using three

comparison points. The error minimization method compares the true (measured)

frequency with the frequency at the three testing points and selects the location that

minimizes absolute error. The bounded regression approach was adopted from Hong

et al. [67], where the linear model by least-squares method is given in its general

form by Eq. 3.41 [? ].

a
b

 = (XTX)−1XTY (3.41)

When three locations selected for comparison of frequency based on roller location,

X and Y are defined as below:

X =


x1 1

x2 1

x3 1

 (3.42)

Y =


ω1 − ωtrue

ω2 − ωtrue

ω3 − ωtrue

 (3.43)

Where a and b are regression parameters such that ω−ωtrue = ax+ b. Therefore,

ω = ωtrue when x = − b/a. However, because errors in the regression model propagate
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where sample data is limited, the estimated roller location is bound between the

minimum and maximum comparison locations as shown:

xc =



xmin − b/a < xmin

xmax − b/a > xmax

− b/a elsewhere

(3.44)

The estimated roller displacements are compared to the measured values by mean

absolute error (MAE), signal-to-noise ratio (SNR) and Time Response Assurance

Criterion (TRAC) to assess the viability of each method. While MAE quantifies

the numerical error between the measured and estimated states, the TRAC value

quantifies the similarity between time traces [68, 69, 70] by comparing the numerical

error and time delay of each estimation. The equations for MAE, SNR, and TRAC

are shown in Eqs. 3.45 and 3.47 respectively.

MAE =

z∑
i=1
|xtruei

− xesti
|

z
(3.45)

SNRdB = 10 log10

(Psignal

Pnoise

)
(3.46)

TRAC = [{tm}T{te}]2

[{tm}T{tm}][{te}T{te}]
(3.47)

Where z is the in Eq 3.45 is the number of samples used for the state estimation, and

tm and te are time traces of the measured and estimated data, respectively. A TRAC

value of one indicates perfect time alignment, and a value of zero indicates that the

signals have no temporal synchronization (i.e. signals not in phase). Therefore, the

ideal model would yield a low MAE value and a TRAC value near one.

In this experimental investigation, the objective is to optimize two parameters;

estimation error and iteration time. The number of nodes and the number of FEA
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models needed to obtain optimum objective parameters can be obtained using the

single objective optimization problem formulated as shown in eq 3.48:

minimize
P

fit = (1− α)e(P)
e′

+ α
t(P)
t′

subject to P = [pnodes, pmodels] ∈ P
(3.48)

Where P is the combination of pnodes and pmodels which are the number of nodes

and the number of models used, respectively, and P is the parameter search space.

In this formulation, e is the estimation error, and e′ is the maximum desired error,

while t and t′ are the iteration time and maximum desired time, respectively. α is the

scalarization factor and can be selected based on the characteristics of the dynamic

environment it is applied to. For a problem with error an minimization focus, α is

selected as 0; for an iteration time focus, α would be set to 1. In this manuscript,

a value of α = 0.5 is selected, along with e′ = 10 mm and t′ = 1 ms. An example

problem and code are provided in a public repository [71].

3.3 Results and Discussion

This section presents the results and provides a discussion on key considerations.

3.3.1 Model Updating Results

Fig. 3.13 illustrates results for the estimated roller position of the DROPBEAR

testbed using the error minimization technique for a 26 node beams with 3 FEA

models solved in parallel. Fig. 3.13(a) presents the estimated roller position using

the traditional GE formulation, while Fig. 3.13(b) shows the results obtained using

LEMP. Lastly, Fig. 3.13(c) reports the estimated roller position obtained using LEMP

with Bayesian search space. Initially, it is assumed that the roller is located at the

midpoint of the beam and is moving to the right. This assumption accounts for the

spike in error at the start of each estimation process. The fluctuation in estimations
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Table 3.3 Assessment of the error minimization comparison method when solving
for 3 FEA models 26 nodes.

Solution Type Mean Absolute Error (mm) TRAC SNRdB
GE 10.280 .959 8.755
LEMP 10.286 .957 8.752
LEMP with Baysian search space 10.320 .959 8.730

between Fig. 3.13(a) and (b) are similar; therefore, it cannot be concluded that LEMP

alone provides smooth estimates. However, as seen in Fig. 3.13(c), implementing a

Bayesian search space with LEMP solutions allows for less fluctuation and smoothens

the estimates since comparison points are not selected at random but rather by using

a probabilistic approach. This is most advantageous when the roller is stationary, as

estimates remain constant for the most part.

The mean absolute error between the estimated and true position and the TRAC

values obtained using error minimization are shown in table 3.3. The GE method has

a mean absolute error of 10.280 mm with a TRAC value of 0.9596 compared to LEMP

with an error of 10.286 mm with a TRAC value of 0.9577 and LEMP with a Bayesian

search space has an error of 10.320 mm, and TRAC value of 0.9592. Figure 3.13

shows that the estimated data is improved. However, higher MAE and lower SNR

is observed in both LEMP approaches compared to the GE approach because of

the overshoot in estimated data when the roller is stationary. Accounting for the

overshoot observed in LEMP with Bayesian estimated data will result in a better

estimate than GE as the MAE is reduced to 5.65 mm. Therefore, it’s concluded that

LEMP with Bayesian somewhat improves the estimated value, with the Bayesian

approach offering a slightly better estimate.

Fig. 3.14 illustrates the estimated roller pin location results obtained for the GE,

LEMP, and LEMP with a Bayesian search space for a bounded regression approach

used as the comparison method. Again, the fluctuation in estimations between

Fig. 3.14(a)-(c) are similar, but there is slightly less fluctuation in the LEMP ap-
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Figure 3.13 Roller estimations solved using error minimization by: (a) the tradi-
tional GE approach; (b) LEMP estimations, and; (c) LEMP estimations using a
Bayesian search space.
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Table 3.4 Assessment of the bounded regression comparison method when solving
for 3 FEA models 26 nodes.

Solution Type Mean Absolute Error (mm) TRAC) SNRdB

GE 8.54 .963 9.555
LEMP 11.17 .958 8.392
LEMP with Bayesian search space 10.85 .957 8.518

proach that utilizes a Bayesian search space. The MAE between the estimates using

the bounded regression technique and true position, SNR, and the TRAC values for

each method are shown in Table 3.4. The GE method has a mean absolute error of

8.54 mm and TRAC value of 0.9637 compared to LEMP with an error of 11.17 mm

and TRAC value of 0.9580 and LEMP with a Bayesian search space with an error of

10.85 mm and TRAC value of 0.9575. As mentioned earlier, the LEMP algorithm will

offer better estimation after accounting for the overshoot when the roller is stationary.

Note that the error for LEMP with a Bayesian search space is greater when linear

regression is applied than when the error minimization technique is applied. This

is due to the conflicting approaches of Bayes and linear regression when the roller

is stationary. When minimizing error, the previous location is selected as a roller

location and chosen as a state estimation when the roller is stationary. However, for

linear regression, the approach creates a line of best fit which might not contain the

previous location.

While the error minimization approach yields lower MAE values, there are signif-

icant fluctuations in the estimates, which are reduced by applying a Bayesian search

space as shown in Fig. 3.13. The bounded regression method allows estimations

of roller locations not located on pre-selected nodes, yielding smoother estimation

curves. The one exception is the LEMP estimates using a Bayesian search space

for linear regression because of their conflicting nature. In summary, a LEMP ap-

proach using a Bayesian search space would perform best using an error minimization

technique, while LEMP alone would perform best using a linear regression technique.
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Figure 3.14 Roller estimations solved using bounded regression by: (a) the tradi-
tional GE approach; (b) LEMP estimations, and; (c) LEMP estimations using a
Bayesian search space.
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Figure 3.15 Solver time for the GE and LEMP showing: (a) the time taken by both
solver to solve for new state frequency, and; (b) the ratio between the GE and LEMP
solver representing the speed up of the GE.

Figure 3.16 Iteration(state update) time comparison between the error minimization
technique and bounded regression when using: (a) the traditional GE, and; (b) LEMP
and LEMP with Bayesian.

Figure 3.17 Iteration (state update) time using different comparison methods show-
ing: (a) error minimization, and; (b) bounded regression.
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Figure 3.18 Figure showing the effect number of nodes and number of sampled
roller locations has on (a) the mean absolute error, and; (b the iteration time using
the LEMP algorithm with bounded regression comparison methods.

Table 3.5 Time, MEA, and SNR for LEMP and LEMP with Bayesian using error
minimization and bounded regression for three FEA models.

LEMP LEMP Bayesian
error minimization bounded regression error minimization bounded regression

21 26 51 101 21 26 51 101 21 26 51 101 21 26 51 101
time 0.251 0.253 0.271 0.306 0.320 0.329 0.342 0.381 0.299 0.305 0.318 0.363 0.370 0.372 0.392 0.444
MEA 12.77 10.28 10.01 9.71 11.72 11.17 10.31 10.20 13.52 10.32 9.97 9.62 12.48 10.85 10.21 9.66
SNRdB 7.811 8.75 9.01 9.52 8.18 8.39 9.23 9.62 7.56 8.73 9.12 9.77 7.90 8.52 9.45 10.12
TRAC 0.954 0.957 0.961 0.972 0.956 0.958 0.960 0.978 0.957 0.959 0.971 0.984 0.956 0.957 0.962 0.971

3.3.2 State estimation update time

The LEMP approach offers a lower computational time when compared to solving

the GE problem as the structure is simplified through its modal space representation.

The state update time for GE, LEMP, and LEMP with the Bayesian search space

for several numbers of nodes are investigated in this work; using a computer with a

Intel®, Core© i7-10700K processor with a base clock of 3.80 GHz and 64 GB of RAM.

There is a significant difference in timing between the GE solver and the LEMP

solver; this is expected as the LEMP algorithm has the new state roots (eigenvalues)

bounded to the previous state frequencies, therefore avoiding having to find eigensolu-

tions; which reduces the computational cost and therefore makes it faster. Figure 3.15

presents the solver time details for GE and LEMP up to 250 nodes. Figure 3.15(a)

shows the time it takes both solvers to solve for a new state frequency for a model

with 10 to 250 nodes. The solver here is exclusive to other state update procedures
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like comparison methods and the addition of Bayesian search space. As presented

in figure 3.15(a), the generalized eigenvalue solver takes more time than the LEMP

solver. In figure 3.15(b), the data shows the speed up offered by the LEMP solver

compared to GE. Between 10 to 250 nodes, the GE solver’s time is seen to increase ex-

ponentially with a speedup of about 125 times at the 250 node model, which roughly

relates to the largest model that can be updated within the 1 ms timing constraint

using LEMP. As the number of nodes increases beyond 250, the speedup offered by

LEMP will continue to increase.

For the focus nodes of 21, 26, 51, and 101, the GE had a timing of 0.19, 0.24, 0.64,

and 1.86 ms, respectively. This result shows that the GE approach would not meet

the stringent real-time constraints set by the high-rate dynamic system challenge as

the number of nodes increases. On the other hand, the LEMP solver had a timing

of 0.045, 0.046, 0.050, and 0.061 ms for 21, 26, 51, and 101 nodes, respectively. This

significant time difference is also due to the prioritization of the contributing nodes.

There was no significant difference in timing between the two comparison methods

(error minimization and bounded regression) as shown in figure 3.16(a) and (b). For

the GE and LEMP solver, the error minimization technique can perform slightly

faster than bounded regression. This is expected as the regression process takes

more time than mere error calculations. However, both comparison methods offer

advantages when considering the approach to use. Moreover, figure 3.16(b) reports

the timing results for LEMP with Bayes estimator. As expected, the addition of the

Bayes calculation adds computation cost and, therefore, time to its calculations.

The solver’s time alone does not determine how long it will take to update the

system’s current state. The number of FEA models solved in parallel at each time

step, and the comparison method influences the time taken to update the system’s

state. Figure 3.17 shows the time data for three FEA models for both the error

minimization technique in figure 3.17(a) and bounded regression in figure 3.17(b).
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The timing for both approaches is similar; however, the time performance of LEMP

against GE is not. The figures show that the time constraint of 1 ms is only met

at 21 and 26 nodes when using the GE, whereas, for both LEMP and LEMP with

Bayesian, the state update time of 1 ms can be achieved for models with more than

101 nodes.

Figure 3.18 reports the performance space for the model updating scheme. Fig-

ure 3.18(a) shows how the mean absolute error of state estimation is affected by the

number of nodes used to build the FEA model of the beam and the number of FEA

models solved in parallel. The data shows that the number of FEA models selected

will cause the estimation to exceed the allowable error if it is one or two. There is no

noticeable reduction in error if the number of FEA models selected is beyond three

for nodes between 51 and 101. However, the error when using fewer nodes can be

reduced by selecting a higher number of FEA models during the state update process.

Figure 3.18(b) displays data on how the number of nodes and the number of FEA

models solved in parallel affect the iteration time. As the number of nodes increases,

the iteration time increases, and the same is seen for the number of FEA models

used. Since selecting three FEA models allows the state estimation to stay within

the allowable error, it is reasonable to discard the usage of the higher FEA models

to reduce computation time. Parameter optimization is carried out as earlier de-

scribed and shown in figure 3.18(c); an optimal algorithm configuration is seen to be

at around 250 nodes with seven FEA models. This optimal algorithm configuration

may change on different hardware.

Detailed data on time, mean absolute error, signal-to-noise ratio, and TRAC

values on the state estimation results for the LEMP and LEMP with Bayesian with

three FEA models solved in parallel for 21, 26, 51, and 101 nodes is presented in

table 3.5. The data shows that error is decreased as the number of nodes increases,

whereas time increases as the number of nodes increases.
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3.4 Summary and Conclusion

In this work, a real-time model updating technique that leverages the local eigenvalue

modification procedure (LEMP) to reduce the original eigenvalue solution to a set of

second-order equations is formulated. Experimental validation was undertaken using

data from the DROPBEAR testbed, and the proposed algorithm was implemented

offline. For the relatively simplistic structure considered here, modeling errors in the

initial formulation of the system were not found to be a challenge.

Roller estimations were calculated by GE solutions, LEMP solutions, and LEMP

solutions utilizing a Bayesian search space using both error minimization and lin-

ear regression as comparison methods. The error minimization technique generally

resulted in sharp transient errors during roller movement and fluctuation when the

roller remained stationary. Both of which were improved with the application of a

Bayesian search space. Applying the bounded regression technique generally reduced

estimation fluctuation during roller movement but not during stationary periods.

The GE and LEMP solutions offered similar accuracy; the LEMP solutions with

a Bayesian search space yielded smoother results with less fluctuation during roller

movements and stationary periods, which is advantageous when tracking an unchang-

ing system as false reports of damage would be minimal. However, the results also

showed that GE would scale poorly with the higher node when time is a critical factor

being considered. Therefore, the LEMP algorithm is used on the DROPBEAR data

to update its state under 1 ms for up to 250 nodes.

From this work, it can be inferred that LEMP solutions reduce the number and

complexity of calculations required for state estimations. Furthermore, it is shown

that LEMP performs best using a linear regression method, while LEMP approaches

using a Bayesian search space perform best using an error minimization method. It

is concluded from this work that the LEMP approach yields state estimations that

are comparable to those found using a GE solution and provide a viable method for
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updating models in real-time. An example problem and code are provided in a public

repository.
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Chapter 4

Microsecond Model Updating for 2D

Structural Systems Using the Local Eigenvalue

Modification Procedure1

Abstract

Systems that experience high-rate dynamics, such as blast or impact, are susceptible

to rapid alterations that could result in loss of life and financial investments. These

systems are characterized by a high dynamic response with a high-rate (< 100 ms)

and high amplitude (> 100 gn). A system exposed to high-rate dynamic environ-

ments is frequently prone to rapid plastic deformation, which can cause structural,

electrical, and sensor damage. A feedback loop of fast-acting actuators empowered

with rapid state estimates can be utilized to stop further harm. The state estimator

must be quick and resilient to the significant uncertainties, non-stationarities, and

strong disturbances associated with high-rate dynamic systems. A model for 2Di-

mensional systems is developed to demonstrate high-rate tracking or estimation of a

structure where a change in stiffness at locations on the system represents damage.

The Local Eigenvalue Modification Procedure (LEMP) algorithm is applied to solve

the system’s equation quickly and efficiently within a set latency for state estima-

tion. LEMP utilizes a single generalized eigenvalue solution for the initial system

1OGUNNIYI, E.A., VEREEN, A.B. and DOWNEY, A.R., 2023. Microsecond model updat-
ing for 2d structural systems using the local eigenvalue modification procedure. STRUCTURAL
HEALTH MONITORING 2023. doi:https://doi.org/10.12783/shm2023/36937. Reprinted here
copyright for manuscript provided by publisher
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and simplifies altered state equations by transforming them into modal space, isolat-

ing the DOFs that contribute to the changes between states, and defining equations

in terms of the initial state, thereby reducing computational time. This preliminary

work develops a 2D finite element model using classical plate theory. A 2D model

simulation of the plate’s initial state is carried out on Abaqus and compared to the

analytical model formulated solved using the generalized eigenvalue approach to test

the formulated model. The changes made to the plate are then solved using LEMP

to avoid solving the time-consuming eigenvalue solution. In this work, the change in

the system is demonstrated by change in stiffness at different locations on the plate.

Results report the performance metrics for the considered case. The approach’s ap-

plicability to deployment on edge computing systems for real-time model updating

of structures operating in high-rate dynamic environments is discussed.

Keywords: real-time model updating, high-rate dynamics, model reduction, eigen-

value modification, modal analysis, adaptive structures .

4.1 Introduction

High-rate structural dynamics is a field of study concerned with the response of

structures to dynamic loading at high high-amplitude accelerations (> 100 gn) and

occur at high-rates (<100 ms) such as those experienced during impacts, explosions,

or seismic events. The behavior of structures under these extreme conditions can be

significantly different from their response under static or low-rate loading [1]. This

makes it essential to understand the behavior of structures under high-rate loading to

design safe and reliable structures that can withstand extreme events. These events

are complex and unpredictable, as the loading conditions on the structure change

abruptly and unexpectedly, altering the internal and external forces experienced by

the system. As a result, tracking the state of the structure throughout the event poses

a significant challenge due to the sudden and uncertain nature of the changes. High-
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rate structural dynamics has numerous applications, including designing protective

structures, such as blast-resistant buildings and nuclear power plants, and developing

new materials for high-speed transportation systems. [3, 40].

Model updating is essential for ensuring the safety and integrity of structures,

especially those subject to dynamic loads and uncertain environmental conditions.

Model updating can be either data-driven or model-based. For example, Samte et al.

in [6] deployed LSTM models in real-time, a data-driven approach for high-rate state

estimation. Downey et al. also applied a model-based approach to update the state

of high-rate dynamic events generated on the DROPBEAR experimental testbed [7].

Model-driven real-time control of structures operating in high-rate dynamic envi-

ronments requires models updated on the microsecond timescale. Model updating

is a critical process in model-driven structural control as the model determines the

control decisions to be executed by the active structures. Without model updating,

the control system may not function as expected, leading to reduced effectiveness in

mitigating vibrations or preventing damage to the structure.

The local eigenvalue modification procedure method simplifies a system state cal-

culations by truncating the number of independent systems with a single degree of

freedom to include only the most significant modes [10, 54]. Doing so transforms the

generalized eigenvalue equation into a set of second-order equations that can be solved

based on the system’s initial frequencies. This reduces the number and complexity of

equations required to determine the structure’s state, leading to faster computation

times. The LEMP approach is advantageous because it does not require solving the

generalized eigenvalue problem, making it a more efficient method for calculating the

dynamic response of a structure.

The authors previously used LEMP to solve the system’s equation for a 1D sys-

tem undergoing a single change [14, 15]. In this work, the authors investigate the

performance of LEMP on 2D systems formulated using the Mindlin plate theory. The
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LEMP algorithm is used alongside the generalized eigenvalue procedure to calculate

the change in frequency when a single change is applied to the system. The contribu-

tions of this work are 1) formulation of a model for a 2D system, 2) applying LEMP

to solve for a single change in the system, and 3) evaluation of the performance of

LEMP against GE using the error and time as criteria.

4.2 Methodology

The 2D model is created by employing the Mindlin plate theory to develop shell

elements for rectangular plates. This involves superposing a 2D solid element onto

a 2D plate element. The solid element addresses in-plane effects like membrane

behavior, and the plate element manages off-plane effects like bending. Figure 4.1

shows the shell element formation and its coordinate system, where Figure 4.1(a)

shows how an element is broken into nodes, Figure 4.1(b) and (c) shows the coordinate

system of a 2D solid element with 2 DOFs. Figure 4.1(d) depicts a plate structure,

and Figure 4.1(e) is the shell coordinate system that combines the 2D solid element

and plate structure.

The 2D plate model development process can be summarized into Three steps:

1. Construction of shape functions matrix N that satisfies Eqs. 4.1

2. Formulation of the strain matrix for 2D element B, Eq. 4.3 and 2D plate, BI

and BO shown in Eqs. 4.4 and 4.5.

3. Calculation of ke and me using shape functions N and strain matrix in step 2

to obtain Eqs. 5 and 6.

Step 1: Construction of shape functions for the 2D elements and plate is obtained

in Eq. 4.1 where Ne is shape function for 2D element and Np is for 2D plate. This

study uses the Mindlin plate theory to develop rectangular elements for the 2D plate.
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When analyzing the plate structure, it is assumed that the element has a uniform

thickness, denoted as h.

Ne =

N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4

 (4.1)

Np =


N1 0 0 N2 0 0 N3 0 0 N4 0 0

0 N1 0 0 N2 0 0 N3 0 0 N4 0

0 0 N1 0 0 N2 0 0 N3 0 0 N4

 (4.2)

Step 2: Formulation of the strain matrix B. The 2D solid element has one strain

matrix Eq. 4.3, while the 2D solid plate has two strain, BI and BO as shown in Eqs.

4.4 and 4.5.

The strain matrix BI represents the strain energy associated with the in-plane stress

and strain while BO relates to the strain energy associated with the off-plane shear

Figure 4.1 Shell element formation and its coordinate system where; (a) represents
the nodal construction on the element; (b) shows the coordinate system of a 2D solid
element with 2 DOFs; (c) shows the transformation of the coordinate system with
dimension; (d) depicts a plate structure, and; (e) is the shell coordinate system that
combines the 2D solid element and plate structure.
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stress and strain.

B = LN = 1
4
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BI =
[
BI

1 BI
2 BI

3 BI
4

]
, BI

j =


0 0 −∂Nj/∂x

0 ∂Nj/∂x 0

0 ∂Nj/∂y −∂Nj∂y

 (4.4)

BO =
[
BO

1 BO
2 B0

3 B0
4

]
, BO

j =

∂Nj/∂x 0 Nj

∂Nj/∂y −Nj 0

 (4.5)

This work uses a plate represented by a two-dimensional domain in the x− y− z

plane, as shown in Figure4.1(d). As depicted in Figure4.1(a), the plate has been

divided into rectangular sections appropriately. Each of these sections comprises four

nodes and four straight edges. At a node, the degrees of freedom (DOFs) include the

deflection u, v, and w, as well as the rotation about the x-axis (θx), y-axis (θy) and

z-axis (θz), resulting in a total of six DOFs per node. Thus, for a rectangular section

with four nodes, the total number of DOFs for that section would be 24.

Step 3: Calculation of ke and me using shape functions N and strain matrix to

obtain Eqs. 4.6 and 4.7.

The element matrices can be obtained using the shape function and nodal vari-

ables. Similar matrices can be obtained for 2D elements and plates; however, in 2D

plates, 3 DOFs are used for defining the system, while 2 DOFs are used for the 2D

element. The mass and stiffness matrices can be obtained using the energy functions,

and Hamilton’s principle described in Liu et al. [72]. Eq 4.6 is the mass matrix where

I is a diagonal matrix.
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Table 4.1 Material properties

Type Poisson’s ratio Young’s modulus density thickness
steel 0.3 200e9 7700 kg/m3 0.006 m

I =


ρh 0 0

0 ρh3/12 0

0 0 ρh3/12

 , me =
∫
A
hρNTNdA, mp =

∫
Ap

NTINdA (4.6)

where ρ and h are the density and thickness of the plate respectively.

ke =
∫
A
hBTcBdA, kp =

∫
Ap

h3

12
[
BI
]T
cBIdA+

∫
Ap

κh
[
BO

]T
csBOdA (4.7)

The integration in the stiffness matrix ke, can be evaluated analytically, however, the

Gauss integration scheme is used to evaluate the integration numerically.

To validate the 2D model formulated above, a frequency analysis of a 2D system

was conducted using Abaqus. The analysis was carried out according to the following

procedure:

First, a 2D plate model is created, which includes defining the plate’s geometry,

thickness, and material properties based on Table 4.1. For preliminary validation

of the model, no boundary conditions were defined. Material properties such as

density, Young’s modulus, and Poisson’s ratio were assigned to the plate material to

enable accurate simulation of the plate’s mechanical behavior. The plate was meshed

using finite element analysis techniques built in Abaqus. In this analysis, only four

elements were generated, corresponding to nine nodes and 54 DOFs on the plate.

The frequency range of interest was set to a maximum of 2000 Hz. The frequency

and mode shapes of the model were then generated, with the first elastic mode of the

plate observed at mode 7, with a frequency of 232 Hz. The simulated results for each

mode up to mode 12 were shown in Figure 4.2.
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Figure 4.2 Mode shapes of a 2D plate shown in figure 1.

Table 4.2 Base state frequency extraction

mode 7 8 9 10 11 12
Abaqus 232.12 378.77 515.89 598.64 594.64 944.72

Generalized
Eigenvalue 232.027 379.044 515.983 598.768 598.768 945.03

error (abs) 0.093 0.274 0.0093 0.128 4.128 0.31

The formulated 2D model’s initial state (base state) frequencies were calculated

using the generalized eigenvalue approach. The frequencies from the simulated model

(Abaqus) and the GE at modes 7 to 11 were then compared and tabulated in Table

4.2. The system frequencies were calculated with the generalized eigenvalue approach

closely aligned with those from the Abaqus model. The low error between both

frequencies obtained indicates that the 2D model developed is correct.

RESULTS

A local change is applied to a 9-node plate as a form of increased stiffness at

the nodes. Before a stiffness change is applied at each node, the four corners of the

plate are fixed by increasing the stiffness by 5e100 N/m of both the deflection and

rotation on the z-axis. This nodal change is then applied at at each node, from node

1 to 9. The first eight modal frequencies are obtained using generalized eigenvalue

and LEMP approaches. The performance of the LEMP algorithm compared to the
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generalized eigenvalue procedure on the 2D system is recorded. Figure 4.3 shows

similarity in frequencies calculated using both approaches for nodes 1-9. A notable

change in frequency is only observed in the second mode, where the error value is

higher than at other modes; however, the difference is less than 10 Hz at most nodes.

The generalized eigenvalue and LEMP solver were also tested on 2D plates with

increasing numbers of nodes numbers of nodes. As opposed to the 1-D system, where

the matrix of the system grows gradually, the 2D system grows exponentially quicker

as the system has 6 DOFs per node in the 2D system compared to just 2 DOFs in

the 1-D system. To expand, the system matrix is 54 × 54 as compared to 18 × 18

for a 1-D system. Also, at 100 nodes, the 2D system has a matrix of size 600 ×

Figure 4.3 Frequency of the first eight modes of the 2D plate for a change of 1e100
N/m stiffness introduced to the system at one of he nine nodes in the system. The
frequency response of the system is calculated using both GE and LEMP and the
error between the two is reported.
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Figure 4.4 Frequency response calculated for: (a) the first elastic mode using GE
and LEMP on a plate of 9 nodes up to 169 nodes as tabulated in table 4.3, and; (b)
time taken to solve the system equation at each number of nodes tested shown in
Table 4.3.

600, whereas the 1-D system has a size 200 × 200. Table 4.3 reports how the matrix

size grows as the number of nodes increases. This matrix size growth also shows the

need for a faster algorithm for solving the system equation. The first elastic mode

frequency calculated using GE and LEMP for nine nodes up to 169 nodes is shown

in Figure 4.4(a). A closer frequency value between the two approaches is achieved as

the number of nodes increases. The system equation solving time is expanded upon

in Figure 4.1(b). Up to 100 nodes, the LEMP algorithm can still achieve 691 µs while

GE is already at 0.56 s. At 169 nodes, the LEMP algorithm stands at 1.5 ms and

the GE at 4 s which defiles the microsecond constraint investigated.

Table 4.3 Single state change calculated using the LEMP and generalized eigenvalue
process

single change calculated using: generalized
eigenvalue LEMP

no. of nodes no. of element DOF matrix size freq (Hz) time GE (s) freq (Hz) time LEMP (s) error (Hz)
9 4 54 54 x 54 232.027 0.001093 227.099 0.000384 4.928
16 9 96 96 x 96 228.458 0.00320 226.120 0.000456 2.338
25 16 150 150 x 150 224.914 0.009031 224.123 0.000458 0.791
36 25 216 216 x 216 222.886 0.024529 223.01 0.000464 -0.124
49 36 294 294 x 294 221.78 0.067579 222.1 0.000399 -0.32
64 49 384 384 x 384 221.599 0.212773 221.67 0.000475 -0.071
81 64 486 486 x 486 220.837 0.348656 220.610 0.000539 0.227
100 81 600 600 x 600 219.975 0.559744 219.41 0.000691 0.565
121 100 726 726 x 726 222.409 0.994675 221.919 0.000890 0.488
144 121 864 864 x 864 218.505 2.197694 217.68 0.001285 0.825
169 144 1014 1014 x 1014 219.147 4.075451 219.234 0.001523 -0.087
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4.3 Conclusion

This work demonstrated the potential of using the local eigenvalue modification pro-

cedure (LEMP) to estimate the state of a 2D system formulated using the Mindlin

plate theory. The model developed accuracy was compared to 2D shell simulation on

Abaqus, where the base state frequencies obtained were compared to ones from the

generalized eigenvalue approach. A nine-node 2D element is then used to investigate

the performance and timing of the LEMP process for a single-state change in the sys-

tem. A singular change is applied to the system in the form of a change in stiffness

at each node from one to nine, and the corresponding change in frequencies due to

the change is calculated using GE and LEMP. The obtained frequencies from both

approaches were close; however, the timing performance is different. As the system

matrix grows, the GE fails the time constraint, while the LEMP still achieves a single

state change update of 1.5 ms at 169 nodes.
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Chapter 5

Online Model-based Structural Damage

Detection in Electronic Assemblies1

Abstract

Electronic assemblies are subjected to damaging impact and shock loadings in vari-

ous scenarios, including aerospace, automotive, and military applications. In safety-

critical situations, the online detection, quantification, and localization of damage

within the electronic assembly would enable intelligent systems to take corrective ac-

tions to mitigate or circumvent the effects of damage within the electronic assemblies.

This preliminary work investigates a reduced-order model-based method for online

damage detection, quantification, and localization of printed circuit boards (PCBs).

The local eigenvalue modification procedure (LEMP) is used to accelerate the com-

putational processing time of the model, thereby enabling its use in online damage

detection during an impact or shock event. The proposed method tracks changes in

the model’s state using an error minimization technique in the frequency domain.

A baseline state is established by creating and simulating a numerical model that

accurately represents a healthy PCB response. Potential reduced-order models with

varying stiffness matrices are developed online and compared to the system’s cur-

rent state. These reduced-order models introduce a single change in stiffness to the

1Ogunniyi, E., Satme, J.N. and Downey Jr, A.R., 2024, May. Online model-based structural
damage detection in electronic assemblies. In Active and Passive Smart Structures and Inte-
grated Systems XVIII (Vol. 12946, pp. 283-287). SPIE. doi:https://doi.org/10.1117/12.3010987.
Reprinted here copyright for manuscript provided by publisher
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system. LEMP calculates the overall change in the system to obtain the new system-

level dynamic response. Incorporating LEMP within the frequency-based analysis

demonstrates the potential for effective damage detection on PCBs. This work vali-

dates the proposed methodology using a rectangular PCB with induced damage. The

PCB is modeled pinned at each corner, and its dynamic response is simulated using

ABAQUS and processed with the generalized eigenvalue procedure. LEMP is used

to update a single change in the system while obtaining a 587 times speed up when

compared to the generalized eigenvalue approach. The LEMP algorithm performance

and reliability for updating the model state are discussed in the paper.

Keywords: real-time model updating, high-rate dynamics, eigenvalue modification,

state estimation.

5.1 Introduction

In electronic assemblies utilized across critical sectors such as aerospace, automotive,

and military, the integrity of printed circuit boards (PCBs) is paramount. Electronic

assemblies, intricate in design and vital in function, are frequently exposed to harsh

conditions that may precipitate impact and shock loadings [2]. The consequences of

such stressors can be catastrophic, particularly in safety-critical applications where

the failure of an electronic component could result in severe outcomes. The ability

to detect, quantify, and localize damage within an electronic assembly in real-time

could dramatically enhance the resilience and reliability of these systems [4, 73].

By facilitating immediate corrective actions, such an online detection system would

act as a guardian, mitigating the ramifications of any inflicted damage. This work

delves into the preliminary stages of the reduced-order model-based method for online

damage detection for PCBs. The research gap identified by this study revolves around

the lack of methods that can perform real-time model updating with the requisite

speed and accuracy in an online setting, particularly for PCBs subjected to shock
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and impulse loading [74].

Tracking a structure’s state online and in real-time will be crucial for maintaining

safety and stability in next-generation active structures [75, 76]; particularly when

exposed to changing loads and unpredictable environmental factors. Real-time struc-

tural tracking can follow a data-driven methodology or rely on model-based strategies.

An introductory investigation into real-time high-rate state estimation was demon-

strated by Hong et al [77]. In the context of this work, high-rate is defined as a rapid

(> 100 ms) change in response behaviors of a system when subjected to events such as

blasts or impacts depicted here by a change in mass and stiffness. Similarly, Downey

et al [78] applied a model-based technique to update the status of rapid dynamic

events observed in the DROPBEAR experimental setup model as a 1D system and

achieved a model update every 4.04 ms with an accuracy of 2.9%.

The local eigenvalue modification procedure (LEMP) offers a computationally effi-

cient method to perform Structural Dynamic Modification (SDM) [11]. By analyzing

its dynamic behavior, SDM has traditionally been used as a tool for engineers and re-

searchers to discern the impact of alterations in a system’s physical properties—such

as mass, stiffness, or damping. LEMP introduces a more efficient approach by nar-

rowing the focus to the most relevant vibrational modes. One of the compelling

advantages of LEMP is its ability to cut down computation times drastically. By

circumventing the need to solve the generalized eigenvalue problem, LEMP enables

a swift prediction of the structure’s dynamic response to modifications [79]. Ogun-

niyi et al. have proposed the use of LEMP for real-time applications by developing

a computing module designed for high-speed model updating on 1D [80] and 2D

[16] system, achieving latency requirements—as tight as one millisecond for a Finite

Element (FE) derived model with 121 nodes.

The study focuses on a PCB tailored to the recommended standard, without any

electronic packages, and subjected to modal analysis through the FE method. In the
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Finite Element Analysis (FEA), ABAQUS software is used to model the entire PCB,

extracting natural frequencies and mode shapes from this model for the PCB’s base-

line (without damage) model and a second model of the PCB with nodal decreased

stiffness to represent damage. For the PCB model, a single alteration stiffness within

the system is added, and the resulting change in the system is calculated using gen-

eralized eigenvalue (GE) and LEMP. The work showed that LEMP could calculate

the overall change and deduce a new system-level dynamic response with a similar

level of accuracy as the GE and with faster model updating time. The contributions

of this work are 1) FEA of a standard PCB, 2) implementing LEMP to solve for a

single change in the system, and 3) evaluation of the performance of LEMP against

GE using the error and time as criteria.

5.2 Methodology

The PCB’s FE model was developed using the ABAQUS CAE 2021 tool. The design

of the PCB for this investigation is based on the standard PCB layout, consisting

of a rectangular board with a length and width of 76 mm and 38 mm, respectively,

with a thickness of 1.6 mm. For this study, No electronic modules were mounted on

the PCB. The mesh PCB profile for the baseline state (healthy PCB) is depicted in

Figure 5.1(a). For this study, the PCB was constrained for displacement and rotation

on all four corners. The healthy PCB was meshed with 50 elements, corresponding

to 66 nodes and a matrix size of 396 × 396.

Figure 5.1 FE mesh profile, showing the baseline state (healthy PCB)

81



A critical premise for conducting modal analysis using the FE method is the con-

sideration that it exhibits linear isotropic behavior. This assumption is fundamental

as it allows for treating the system as linear, a necessary condition for the execution

of modal analysis. Table 5.1 presents the material properties of the PCB used to

define the model.

Table 5.1 Material properties used to model the PCB.

Component Poisson’s
ratio, ν

Young’s modulus,
E (Pa)

density,
ρ (kg/m3) thickness (m) length (m) width (m)

PCB 0.35 1.7 e10 2200 0.00159 0.0762 0.0381

The maximum frequency of analysis was set to 10000 Hz, and the first vibrating

frequency was found to be in mode 1 at 484.15 Hz. Mode 1 to 17 fall under the

10000 Hz maximum frequency set in the analysis. Figure 5.2(a)-(d) shows the vibrat-

ing mode 1-14 for the baseline state (without damage) of the PCB while the modal

frequencies presented in Table 5.2 show vibrating frequencies of the first four modes

in Figure 5.2(a)-(d).

Figure 5.2 Vibration mode shapes from the finite element analysis of the PCB where
(a) is first mode; (b) second mode; (c) third mode, and; (d) fourth mode.

Table 5.2 Frequency of vibration from FEA of the PCB.

mode frequency (Hz)
1 484.15
2 1094.7
3 1542.1
4 2396.5
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5.3 Results

From the finite element analysis carried out in section 5.2 using ABAQUS, the mass

(M) and stiffness (K) matrices were extracted from the model results. The extracted

M and K matrices were solved using the GE procedure detailed in Downey et al.

[78] to obtain the eigenvalues and eigenvectors of the vibrating PCB. The correspond-

ing frequencies for each mode are calculated from the eigenvalues and tabulated in

Table 5.3, representing the frequencies of the initial PCB.

Table 5.3 Showing frequencies obtained using FEA and GE, and the corresponding
single state change frequencies computed using GE and LEMP for the PCB.

mode PCB
initial state error (Hz) final state error(Hz)
FEA GE single change

with GE
single change
with LEMP

1 484.15 799.66 315.51 97.333 192.70 95.367
2 1094.7 958.00 136.70 291.45 292.65 1.2000
3 1542.1 2141.1 599.00 1121.4 1625.3 503.87
4 2396.5 2310.9 85.600 2613.4 2675.8 62.400
5 2607.3 3446.0 838.70 2741.6 2756.6 15.000
6 3120.4 3807.8 687.40 3957.3 4059.4 102.10
7 4150.4 4012.9 137.50 4556.6 4351.3 205.30
8 4841.7 4845.8 4.1000 6547.2 6582.4 35.20
9 5125.3 5551.1 425.80 8470.4 8171.5 298.90
10 6113.7 6277.2 163.50 9632.9 9738.6 105.70

Figure 5.3(a) graphically presents the vibration frequency for modes 1-10 obtained

from the FEA and GE methods and the error between the two approaches. The

finite element analysis and the generalized eigenvalue procedure produce increasing

frequencies for higher modes, typical behavior for structural dynamic analyses. The

frequencies obtained from both methods are quite close, as indicated by the proximity

of the two lines representing them. However, there are discrepancies, as shown by the

error line. The error could be due to the difference between the numerical methods

and algorithms used to solve the finite element analysis and generalized eigenvalue
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problems, which can also introduce errors, especially as the frequency increases and

the calculations become more complex.

Figure 5.3(b) depicts the data from a single state change from the initial state

presented in Table 5.3. The single change in the system is achieved by decreasing

a single node stiffness by a large number (10e100) and computing the final state

frequencies using GE and LEMP. The updated stiffness on the undamaged PCB by

GE and LEMP are significantly similar, with low errors in each vibrating mode. Even

though the two methods achieved similar results, the first vibration mode frequency

was solved at 270 ms via GE and 0.46 ms through LEMP. The 587X speedup in

timing suggests a preference for using LEMP modal updating for more nodes.

Figure 5.3 Vibration frequencies of the undamaged PCB for (a) the initial state
computed using FEA and GE, and; (b) single state change computed using GE and
LEMP.

5.4 Conclusion

The paper uses a reduced-order model-based method to detail a study on online dam-

age detection, quantification, and localization in printed circuit boards (PCBs). The

local eigenvalue modification procedure (LEMP) is applied to enable rapid computa-

tional processing that is suitable for real-time applications. This study demonstrated

the use of LEMP for efficient and accurate model updating in PCBs subject to dam-

age. This was accomplished through comparative analysis against the traditional
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generalized eigenvalue procedure (GE), showing LEMP’s superior speed with compa-

rable accuracy.

A finite element analysis of a standard PCB, both in a baseline healthy state and

with simulated damage, was conducted. GE and LEMP were then utilized to detect

changes in system dynamics and update the model accordingly. LEMP can achieve

model updating with millisecond latency, meeting the tight latency requirements nec-

essary for real-time applications. The time for LEMP to solve for a single change in

the system was 0.46 ms, as opposed to 270 ms using GE. The findings suggest that

the LEMP method can potentially be employed in a real-time control framework

for safety-critical applications where PCBs experience shock and impact events, en-

hancing system resilience by allowing immediate corrective actions following damage

detection.

The potential limitations include the complexity of implementing the method in

various real-world scenarios or the challenges in integrating this approach with exist-

ing electronic systems for diverse applications. However, the method has potential

applications in the aerospace, automotive, and military sectors, where PCBs are inte-

gral to system operations, and real-time damage assessment is crucial for maintaining

functionality and safety. Future research will focus on scaling the LEMP approach

for complex systems with multiple damage sites, enhancing the method’s robustness

against a variety of real-world variables.

This material is based upon work supported by the Air Force Office of Scien-

tific Research (AFOSR) through award no. FA9550-21-1-0083. This work is also

partly supported by the National Science Foundation (NSF) grant numbers 1937535,

1956071, and 2237696. Any opinions, findings, conclusions, or recommendations ex-

pressed in this material are those of the authors and do not necessarily reflect the

views of the National Science Foundation or the United States Air Force.
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Chapter 6

Reduced Order Model-based Framework for

Microsecond Model Updating of

Two-Dimensional Structural Systems Using the

Local Eigenvalue Modification Procedure

Abstract

Structural Health Monitoring (SHM) plays a vital role in ensuring the integrity and

safety of critical engineering systems, particularly in high-rate dynamic environments

such as those found in aerospace, defense, and electronics. In these scenarios, struc-

tures like printed circuit boards (PCBs) are frequently subjected to shock, impact,

and vibrational loads that can induce rapid changes in structural characteristics.

Traditional SHM techniques rely heavily on the Generalized Eigenvalue Procedure

(GEP) to determine natural frequencies and mode shapes. While GEP remains a

foundational structural analysis tool, its real-time monitoring application is limited

due to the high computational cost associated with solving large-scale eigenvalue

problems after every structural change. This makes GEP inefficient for applications

that demand continuous and immediate updates.

This study introduces and validates a two-dimensional extension of the Local

Eigenvalue Modification Procedure (LEMP) for real-time structural model updating.

Unlike GEP, LEMP can efficiently compute eigenvalue changes by locally modifying

the system matrices without solving the full eigenvalue problem. A reduced-order
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finite element model (FEM) of a cantilever plate with 25 nodes was developed and

selected based on an optimal trade-off between computational speed and frequency

accuracy. Modal analysis was conducted using both free and cantilever boundary

conditions to identify key elastic modes. To simulate structural changes, a high

stiffness value was introduced at specific nodes in the Uz degree of freedom, and

the updated modal frequencies were calculated using both LEMP and GEP. The

percentage error between the two methods was analyzed to assess LEMP’s accuracy.

The results revealed that the 25-node plate maintained frequency prediction errors

within 10% for all tested nodes, validating its use as a reduced model for real-time

analysis. Among all modes, mode seven consistently exhibited the lowest predic-

tion error and was selected as the optimal mode for characterizing the cantilever

plate. Further validation showed that LEMP executed updates significantly faster

than GEP—approximately 20 times faster for a single structural change and 22 times

faster for four concurrent changes. This speed improvement highlights LEMP’s po-

tential for deployment in environments where rapid and repeated model updates are

essential.

This work builds upon existing applications of LEMP in one-dimensional systems

and successfully extends its functionality to two-dimensional structures. The study

not only demonstrates the feasibility of applying LEMP to reduced-order FEMmodels

but also provides a comprehensive framework for selecting optimal modal parameters

for model updating. The contribution is significant because it enables accurate, real-

time structural monitoring with minimal computational burden, overcoming the key

limitations of traditional GEP-based methods. The developed methodology can be

readily applied to SHM in PCBs and other mission-critical systems, with potential

integration into digital twin platforms, edge computing units, and adaptive mainte-

nance systems.
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6.1 Introduction

Structural Health Monitoring (SHM) has become increasingly vital in maintaining

the reliability and safety of complex engineering systems operating under high-rate

dynamic environments [5, 81], such as those encountered in aerospace, automotive,

defense, and electronics. Systems like printed circuit boards (PCBs) are often exposed

to dynamic events—shocks, impacts, and vibrations, that can lead to rapid, unpre-

dictable structural changes or failures [82]. These events require a continuous and

accurate real-time assessment of the system’s dynamic state. Classical approaches to

model updating in SHM have relied on the Generalized Eigenvalue Procedure (GEP),

which involves solving the full eigenvalue problem defined by the mass and stiffness

matrices of the structure [83]. While this method provides accurate modal character-

istics, it is computationally expensive and unsuitable for real-time applications where

quick adaptation to structural changes is essential. The demand for faster, scalable,

and more localized model updating procedures has led to the exploration of alter-

natives like the Local Eigenvalue Modification Procedure (LEMP), which provides

a more efficient means of updating structural models by modifying only the local

regions affected by change [11, 15].

The Local Eigenvalue Modification Procedure (LEMP) has been proposed and

developed in response to the growing need for more efficient model updating tools.

LEMP is a physics-based model updating method that efficiently modifies only por-

tions of the eigenvalue structure in response to localized changes, such as the intro-

duction of damage or stiffness loss at discrete locations [36]. Previous work on LEMP

has demonstrated its effectiveness in 1D systems, particularly in beam-like structures

[15, 14]. However, for broader adoption in real-world applications, there is a com-

pelling need to expand this method to 2D systems, such as plates and PCBs, which

present more complex boundary conditions, higher degrees of freedom, and intricate

dynamic behaviors. The transition to two-dimensional systems is nontrivial and in-
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troduces challenges in model formulation, computational load, and mode selection

for tracking localized changes.

This study presents a comprehensive framework for implementing LEMP in two-

dimensional structures, specifically focusing on a reduced-order model of a cantilever

plate. The methodology includes constructing a finite element model (FEM) of a

square steel plate using quadrilateral elements and realistic material properties. A

mesh refinement study is conducted, leading to the selection of a 25-node reduced-

order model that balances computational efficiency with frequency accuracy. The

plate is initially modeled as a free structure, after which cantilever boundary con-

ditions are imposed by constraining the degrees of freedom of five nodes along one

edge. This transformation allows for the simulation of more realistic structural con-

figurations found in PCB-like applications.

To simulate localized structural changes, a high-stiffness perturbation (1×1010N/m)

is introduced sequentially at the out-of-plane (Uz) degree of freedom of selected nodes.

A mirror symmetry assumption is applied to reduce the computational domain, lead-

ing to perturbations at twelve unique nodes. For each perturbation, modal frequencies

from Mode 1 to Mode 15 are computed using the GEP and the formulated LEMP. The

percentage error between LEMP and GEP results is evaluated to assess LEMP’s accu-

racy in tracking frequency shifts resulting from local changes. The analysis identifies

Mode 7 as the most robust and sensitive mode for real-time tracking, as it consis-

tently appears among the three lowest error modes across all perturbation locations.

A detailed error count reveals that Mode 7 ranks highest in frequency sensitivity and

prediction consistency.

In addition to accuracy assessment, the study performs a comparative timing

analysis to evaluate the computational efficiency of LEMP relative to GEP. LEMP

completes the update in 0.43 ms for a single local change, while GEP takes 9.01 ms.

When four structural changes are applied simultaneously, LEMP requires only 1.62
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ms, compared to GEP’s 36.04 ms. These results confirm that LEMP achieves signif-

icant computational speedups, over 20 times faster, without compromising accuracy,

thereby validating its suitability for real-time structural monitoring in environments

with rapid or multiple structural changes.

The contributions of this work to scientific and engineering practice are multi-

fold. 1) it extends the application of LEMP from 1D to 2D structural systems,

demonstrating its robustness and accuracy in plate-like configurations. 2) it intro-

duces a methodology for reduced-order modeling and mode selection in real-time

SHM frameworks. 3) it provides empirical validation through extensive simulations,

showing that LEMP can accurately track localized changes while achieving signifi-

cant computational gains. 4) the proposed framework lays the foundation for future

research integrating LEMP with probabilistic filtering techniques and data-driven

learning models. This advancement supports the development of adaptive, scalable,

and real-time SHM systems suitable for deployment in edge devices, digital twins,

and predictive maintenance systems, thereby contributing to the next generation of

intelligent structural monitoring technologies.
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6.2 Background Studies

6.2.1 High-rate Dynamics

High-rate dynamics refers to the structural response of materials and systems sub-

jected to extreme, rapidly applied loads such as shocks, impacts, and sudden ac-

celerations [5, 1]. These dynamic phenomena are common in aerospace structures,

defense systems, automotive crash events, and electronic assemblies, where traditional

static or low-frequency dynamic models are inadequate for capturing rapid structural

changes. The study of high-rate dynamics is essential for predicting failure mecha-

nisms and ensuring the reliability and performance of critical systems operating in

demanding environments.

Structural analysis focused on static or quasi-static conditions until the advent

of high-speed applications revealed the need for models that could handle transient,

high-strain-rate events [84]. This led to the development of specialized experimen-

tal methods, such as Hopkinson bar and drop tower tests [85], and the evolution

of computational models capable of capturing complex dynamic behavior. Finite

Element Analysis (FEA), particularly through explicit dynamic solvers in tools like

ANSYS and ABAQUS, has been instrumental in simulating stress wave propagation,

deformation, and failure under high-rate loading. However, such simulations remain

computationally intensive, especially when accounting for large degrees of freedom

and nonlinear material behaviors.

Material modeling is a central challenge in high-rate dynamics, as many ma-

terials exhibit strain-rate-dependent responses [86]. Constitutive models such as

Johnson-Cook and Cowper-Symonds have been developed to accurately represent

the rate-sensitive behavior of metals, polymers, and composites under extreme load-

ing conditions. Complementing these models, high-speed sensors and advanced data

acquisition systems—such as digital image correlation and laser vibrometry have en-
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abled more detailed experimental validation and real-time monitoring of transient

events. In electronic systems like printed circuit boards (PCBs), high-rate dynamics

pose unique challenges due to solder joints and components’ intricate, layered struc-

ture and vulnerability. Specialized shock testing protocols and FEA models for PCBs

help predict failures under mechanical shock and support the design of more robust

electronic hardware.

As the field advances, researchers are integrating machine learning and real-time

simulation techniques with high-performance computing to overcome the limitations

of conventional modeling. Hybrid approaches that fuse experimental data with adap-

tive simulation are being explored to support real-time structural health monitoring

and predictive maintenance in high-rate environments.

6.2.2 Real-Time Structural Health Monitoring

Real-time Structural Health Monitoring (SHM) has evolved into a critical technology

across aerospace, civil engineering, energy, and electronics industries, where contin-

uous structural integrity assessment is essential [87, 88]. Traditional SHM relied on

manual inspections and periodic non-destructive testing (NDT) [89], which, while

effective in detecting visible damage, could not provide continuous monitoring or

respond to sudden structural changes. This limitation led to the development of

automated, sensor-based SHM systems that deliver real-time insights.

Integrating sensor technologies marked a transformative phase in SHM [90, 91].

Initial implementations focused on vibration monitoring using accelerometers and

strain gauges, providing operational insights but often in a reactive manner. Sen-

sors, such as fiber-optic, piezoelectric, and MEMS sensors, combined with wireless

sensor networks (WSNs), enabled continuous monitoring with higher precision and

flexibility, even in remote or difficult-to-access structures. These improvements laid

the foundation for scalable, real-time SHM solutions for bridges, aircraft, offshore
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platforms, and more.

Despite these advancements, real-time model updating remains a key challenge

due to the computational load in processing high-frequency data and adapting com-

plex structural models in real time. Physics-based approaches like FEM updating offer

accuracy but are computationally intensive. At the same time, data-driven methods

using machine learning provide faster alternatives but depend heavily on high-quality

training data and can suffer from reduced generalizability [92]. Both methods face

limitations in achieving efficient, accurate, and scalable real-time implementation.

A major bottleneck in real-time SHM is the reliance on global eigenvalue-based

procedures, which require solving large-scale eigenvalue problems for every structural

change. While accurate, these methods are time-consuming and impractical for rapid

updates. Reduced-order modeling techniques offer some relief but often at the cost of

accuracy, an unacceptable trade-off in critical applications [93]. Finite element anal-

ysis (FEA) remains a key tool for modeling and validating SHM responses. However,

its integration with real-time data poses challenges regarding computational speed

and model recalibration.

The rise of the Internet of Things (IoT), cloud computing, and edge computing

is now reshaping the landscape of real-time SHM [94]. IoT-enabled SHM systems

facilitate remote monitoring, cloud storage, and parallel processing, while AI-driven

analytics improve anomaly detection and predictive maintenance. Edge computing

further enhances responsiveness by enabling on-device processing, reducing latency,

and supporting faster decision-making. Digital twin technologies, which maintain

real-time virtual counterparts of physical structures, are also gaining traction as tools

for predictive simulation and failure prevention.
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6.2.3 Generalized Eigenvalue Procedure

The Generalized Eigenvalue Procedure (GEP) is a core analytical method in struc-

tural dynamics, often employed in vibration analysis and structural health monitoring

(SHM) to extract the dynamic characteristics of a system. The standard mathemat-

ical representation of this procedure is given by the equation:

Kφ = λMφ (6.1)

where K is the global stiffness matrix, M is the global mass matrix, λ are the

eigenvalues (which correspond to the square of the natural frequencies), and φ are

the eigenvectors (representing the mode shapes).

This equation arises from the free vibration analysis of linear time-invariant sys-

tems, assuming the system undergoes small deformations. The eigenvalues λi yield

the natural frequencies ωi by ωi =
√
λi. The solution of the generalized eigenvalue

problem provides insight into the vibrational response of the structure, which is cru-

cial for understanding its integrity under operational and environmental conditions.

The matrices K andM can be large and sparse, particularly for fine finite element

meshes used in realistic structural models. Solving the GEP in such cases becomes

computationally demanding. The computational effort typically involves:

• Assembly of global matrices from element-level contributions.

• Application of boundary conditions.

• Numerical solution of the eigenvalue problem.

There are two broad categories of numerical techniques for solving GEPs:

1. Direct Methods: These include the QR algorithm and inverse iteration tech-

niques. They offer high accuracy but are computationally intensive, making

them suitable for small to moderate-sized problems.
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2. Iterative Methods: Methods such as Lanczos and Arnoldi algorithms approx-

imate a few dominant eigenvalues and eigenvectors efficiently [95]. These are

suitable for large-scale systems where only a subset of modes is required.

In the context of SHM, the need for real-time computation introduces several

challenges. A structure experiencing operational loads, environmental influences, or

local damages requires continuous monitoring. GEP must be solved repeatedly as

the stiffness and mass distributions evolve. Unfortunately, this re-solving step is

computationally expensive due to matrix factorizations and inversions. A significant

limitation is the global dependency of the eigenvalues. Even minor local modifications

to a structure, such as a reduction in stiffness at a single location, require re-evaluation

of the entire system matrix. Thus, GEP-based solvers may not be well-suited for

localized damage detection or real-time updating unless optimized.

To address this, reduced-order modeling (ROM) techniques have been introduced.

Techniques like Component Mode Synthesis (CMS) and Proper Orthogonal Decom-

position (POD) aim to represent the dynamic behavior of large structures using a

limited number of dominant modes [96, 97]:

u(t) ≈
r∑
i=1

αi(t)φi (6.2)

where φi are selected mode shapes and αi(t) are time-varying modal coordinates.

ROMs significantly reduce the size of the eigenvalue problem while maintaining ac-

curacy in modal predictions.

Further improvements stem from advancements in high-performance computing.

Parallel solvers and GPU-based implementations enable faster solutions of large eigen-

value problems [98]. These tools are gradually making real-time GEP solvers feasible

for practical SHM. Machine learning (ML) has also emerged as a supplementary tool.

For example, neural networks can be trained to map structural parameter variations

to modal frequencies, effectively bypassing the need for repeated GEP solutions [99].
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While these data-driven models lack the rigor of physics-based solvers, their speed and

adaptability are advantageous in real-time settings. Despite these advances, hybrid

approaches combining physics-based solvers and data-driven prediction are consid-

ered the most promising path forward. These methods allow for real-time inference

while maintaining a physical foundation for model correction and validation.

6.2.4 Local Eigenvalue Modification Procedure (LEMP)

The Local Eigenvalue Modification Procedure (LEMP) is a computationally efficient

method developed for real-time structural model updating, particularly suitable for

structural health monitoring (SHM) applications. Unlike traditional methods that re-

quire solving the full generalized eigenvalue problem, LEMP focuses on updating only

the affected eigenvalues and mode shapes due to localized changes in the structure,

significantly reducing computational cost.

Classical Eigenvalue Problem

The undamped equation of motion for an n-DOF system is:

Mẍ(t) +Kx(t) = F (t) (6.3)

where M is the mass matrix, K is the stiffness matrix, x(t) is the displacement

vector, and F (t) is the force vector. The classical eigenvalue problem for free vibration

is obtained by assuming F (t) = 0:

Kφ = λMφ (6.4)

where φ are the eigenvectors and λ = ω2 are the eigenvalues.
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Modal Transformation

The transformation to modal coordinates is achieved by:

x = U1p (6.5)

where U1 is the modal matrix of eigenvectors and p is the vector of modal coordinates.

Substituting into the equation of motion and premultiplying by UT
1 leads to the modal

form:

p̈+ Ω2p = UT
1 F (t) (6.6)

assuming unit modal mass and diagonal stiffness matrix Ω2 = diag(ω2
1, . . . , ω

2
m).

Structural Modification and Projection to Modal Space

When the structure is modified, the mass and stiffness matrices become:

M2 = M1 + ∆M, K2 = K1 + ∆K (6.7)

The changes projected into modal space are:

∆Mmodal = UT
1 ∆MU1, ∆Kmodal = UT

1 ∆KU1 (6.8)

The modified eigenvalue problem becomes:

(Ω2 + ∆Kmodal − ω2(I + ∆Mmodal))p = 0 (6.9)

Local Eigenvalue Modification via SVD Decomposition

Using Singular Value Decomposition (SVD), the change in stiffness (or mass) is ex-

pressed as:

∆K =
r∑
i=1

αitit
T
i (6.10)

The change is projected into modal space as:

∆Kmodal =
r∑
i=1

αiuiu
T
i , ui = UT

1 ti (6.11)
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The eigenvalue shift is then computed using the secular equation:

r∑
i=1

αi(uTi ui)
ω2 − ω2

i

= 1 (6.12)

This yields a set of scalar equations that are significantly easier to solve than recom-

puting the full eigenvalue problem. For multiple local changes, this equation must be

solved for each affected mode individually.

Updated Mode Shapes

The updated modal matrix U2 is computed as a linear combination of the original

modes:

φ
(2)
i =

m∑
j=1

aijφ
(1)
j (6.13)

where the coefficients aij are determined during the solution process. This approach

maintains consistency with the original modal basis and ensures that updates reflect

physically plausible changes.

LEMP offers significant computational advantages, particularly in real-time ap-

plications, by reducing a high-order eigenvalue problem to a set of second-order scalar

equations. However, it assumes only one localized change at a time and may introduce

approximation errors if structural changes significantly alter the global dynamics.
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6.3 Methodology

6.3.1 Finite Element Model (FEM) Development

2D numerical model is developed using finite element analysis (FEA) in ANSYS to

simulate and validate structural responses. The model is based on a steel square plate

with predefined dimensions and material properties, ensuring a realistic representa-

tion of structural behavior under dynamic loading conditions.

Geometry

The study uses a steel square plate with the following dimensions:

• Length: 0.3 m

• Width: 0.3 m

• Thickness: 0.006 m

This plate represents a simplified structural component to analyze modal re-

sponses, stress wave propagation, and vibration characteristics.

Material Properties

The steel plate is modeled using elastic material properties, ensuring an accurate

simulation of structural behavior. The key material parameters are:

• Young’s modulus (E): 200 GPa

• Density (ρ): 7850 kg/m3

• Poisson’s ratio (ν): 0.3

These properties are standard for steel and will be used to compute stiffness and

mass matrices in the FEA model.
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Boundary Conditions

Appropriate boundary conditions are applied, to replicate real-world constraints:

• Fixed Edges: Certain edges may be fully constrained to represent clamped

conditions, preventing displacement and rotation.

• Free Edges: Other edges may remain unconstrained, allowing for natural

vibration modes to develop.

• Applied Loads: Dynamic loads such as impact forces, harmonic excitations,

or point loads will be introduced to simulate high-rate dynamic events.

• Imposed Constraints: Additional nodal boundary conditions may be in-

troduced based on the specific simulation scenario, ensuring realistic loading

conditions.

6.3.2 Simulation procedure

Modal analysis: The natural frequencies and corresponding mode shapes of the

baseline structure are extracted. This analysis provides critical insights into the

vibrational characteristics of the plate and serves as a reference for evaluating changes

due to structural modifications. To ensure numerical accuracy, an optimal mesh study

is performed, refining the finite element model until convergence is achieved in the

computed eigenvalues. This step is essential in verifying that the finite element model

accurately captures the true dynamic behavior of the steel plate.

Structural modification simulation: Targeted changes in mass or stiffness are

introduced at specific locations on the plate. These modifications simulate potential

damage scenarios, manufacturing variations, or material degradation effects, allow-

ing for a direct evaluation of how structural alterations influence the eigenvalues and

mode shapes. The resulting shifts in natural frequencies and changes in vibrational
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patterns are monitored to assess the structure’s sensitivity to localized modifications.

By systematically varying the structural properties and observing their impact, the

effectiveness of LEMP in capturing and updating the altered dynamic state is vali-

dated.

Figure 6.1 Reduced finite element models with increasing nodal densities: (a) 9
nodes; (b) 16 nodes; (c) 25 nodes; (d) 36 nodes; (e) 49 nodes; and (f) 64 nodes.
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6.4 Results and Discussion

This section presents the results and provides a discussion on key considerations

6.4.1 Optimal reduced model

Figure 6.1 presents a series of reduced-order finite element models for a square plate,

constructed using different levels of nodal discretization. The models vary in com-

plexity, with configurations including 9, 16, 25, 36, 49, and 64 nodes, as illustrated

in Figures 6.1(a)-(f). Each configuration represents a simplified approximation of the

full plate geometry, enabling analysis of the system’s dynamic characteristics with

varying computational effort.

For each reduced model, the global mass and stiffness matrices are formulated

based on the corresponding nodal arrangement and finite element discretization.

These matrices are then used to solve the generalized eigenvalue problem:

Kφ = λMφ (6.14)

whereK is the stiffness matrix,M is the mass matrix, λ represents the eigenvalues,

and φ denotes the mode shapes. The solution yields the natural frequencies and

associated mode shapes for each reduced model.

To evaluate the accuracy of these reduced-order models, the first 12 natural fre-

quencies of each configuration are compared against those obtained from a finely

meshed reference plate model, considered the benchmark. The comparison is per-

formed by computing the percentage error between the predicted frequencies from

each reduced model and those of the reference model. This analysis helps quantify

the impact of mesh resolution on the accuracy of modal predictions.

The results provide valuable insights into the trade-off between computational cost

and accuracy. Lower node configurations result in faster computations but higher
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approximation errors, while finer models improve accuracy at the expense of com-

putational resources. The study seeks for identification of an optimal discretization

strategy for applications requiring efficient yet accurate vibration analysis, such as

real-time structural health monitoring or model updating frameworks.

Figure 6.2 Boundary condition configurations for reduced models: (a) free plate,
and; (b) cantilever plate.

Figure 6.2 shows two distinct boundary condition configurations used in this anal-

ysis: a free plate and a cantilever plate. For each reduced-order model, simulations

are conducted under both boundary conditions. In the free plate case, the plate is

unconstrained, allowing free vibration along all edges. In the cantilever case, one edge

of the plate is fully fixed while the remaining edges are free to vibrate. This setup in-

troduces asymmetry in the stiffness distribution and affects the resulting mode shapes

and frequencies.

Each reduced model configuration, ranging from 9 to 64 nodes, is analyzed sepa-

rately for both the free and cantilever conditions. The computed natural frequencies

from the reduced models are compared with those obtained from a finely meshed ref-
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erence plate for each boundary condition type. This comparative study allows for the

evaluation of how the reduced models perform under different physical constraints

and provides insights into their generalizability and robustness. The results also help

identify how boundary conditions influence the trade-off between model resolution

and accuracy.

6.4.2 Modal Analysis and Error Evaluation for the Free Plate

Figure 6.3(a)-(d) and Figure 6.3(i)-(j) illustrates the results of the modal analysis

conducted for the finely meshed free plate. The figure captures mode shapes from

mode 7 to mode 12, which are identified as the elastic modes of interest in this study.

It is important to note that the first elastic mode for the free plate occurs at mode

7. Thus, the subsequent analysis and error evaluations focus exclusively on modes 7

through 15.

To assess the accuracy of the reduced-order models, the natural frequencies ob-

tained from each reduced model are compared with those of the perfect mesh for

modes 7 to 12. The percentage error between these frequencies is presented in Ta-

ble 6.1.

Table 6.1 Percentage error between reduced models and perfect mesh for modes 7
to 12 (Free Plate)

Mode 9 nodes 16 nodes 25 nodes 36 nodes 49 nodes 64 nodes
7 0.9 0.5 0.5 0.5 0.5 0.8
8 1.0 0.8 0.9 1.0 1.0 0.9
9 1.0 0.9 0.9 0.9 1.0 0.9
10 7.6 2.4 1.0 0.3 0.0 0.2
11 7.6 2.4 1.0 0.3 0.0 0.2
12 24.2 7.2 3.8 2.2 1.3 0.7

The percentage errors are further visualized in Figure 6.5, which presents a line

plot of the error distribution across modes 7 to 12 for each reduced nodal configura-

tion.
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Figure 6.3 Mode shapes of the perfectly meshed fee plate: (a) Mode 7 through (d)
Mode 10.

From the error plot, it is evident that only the 9-node reduced model exceeds

the acceptable error threshold of 10%, particularly in modes 10 through 12. This

renders the 9-node model unsuitable for use in this study as an optimal reduced-order

representation. In contrast, all other reduced models maintain percentage errors well
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Figure 6.4 Mode shapes of the perfectly meshed free plate: (i) Mode 11, and; (j)
Mode 12.

Figure 6.5 Percentage error in natural frequencies of reduced-order models compared
to perfect mesh for free plate.

below the 10% limit across the considered modes. Therefore, these configurations can

be considered acceptable for applications requiring reduced computational cost while

preserving modal accuracy.
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6.4.3 Modal Analysis and Error Evaluation for the Cantilever Plate

Figure 6.6(a)-(d), Figure 6.7(i)-(l) and Figure 6.8(q)-(t) shows the modal deformation

shapes of a finely meshed cantilever plate for modes 1 through 12. These modes

represent the key elastic response characteristics used in evaluating the reduced of

the reduced-order models developed in this study.

To evaluate the performance of the reduced models under cantilever boundary

conditions, the first 12 natural frequencies obtained from each reduced nodal config-

uration are compared to the results of the perfect mesh model. Table 6.2 presents

the percentage error for each mode and model configuration.

Table 6.2 Percentage error between reduced models and perfect mesh for modes 1
to 12 (Cantilever Plate)

Mode 9 nodes 16 nodes 25 nodes 36 nodes 49 nodes 64 nodes
1 0.5 1.2 0.1 1.2 3.0 4.6
2 3.4 1.1 0.5 0.2 0.2 0.8
3 5.2 0.7 0.4 0.7 0.7 0.8
4 1.1 0.4 0.1 0.2 0.4 0.6
5 11.1 3.3 1.5 0.7 0.6 0.2
6 28.5 9.4 4.9 2.7 1.6 0.9
7 3.6 1.6 0.5 0.1 0.2 0.7
8 1.6 2.7 0.9 0.8 0.9 0.6
9 18.5 16.5 4.8 1.5 0.6 0.6
10 27.4 15.0 0.6 3.7 2.3 1.0
11 14.2 17.4 5.2 0.3 1.4 2.0
12 59.8 14.7 9.9 5.4 1.8 0.3

Figure 6.9 shows the graphical representation of the error data in Table 6.2, clearly

illustrating the relative performance of each reduced model across the twelve analyzed

modes.

From the error results, it is observed that both the 9-node and 16-node reduced

models exceed the 10% allowable error threshold in several modes, notably in higher-

order modes such as 6, 9, 10, 11, and 12. Consequently, these two configurations are

considered unsuitable for use in this study.
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Figure 6.6 Mode shapes of the perfectly meshed cantilever plate: (a) Mode 1 through
(d) Mode 4.

Among the reduced-order models evaluated, the 25-node model is identified as the

smallest configuration that remains within the 10% error limit for all modes for both

the free and cantilever plate cases. This makes the 25-node model the most optimal

balance between accuracy and computational efficiency and is therefore selected for
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Figure 6.7 Mode shapes of the perfectly meshed cantilever plate: (i) Mode 5 through
(l) Mode 8.

further analysis and validation throughout the remainder of this study.

109



Figure 6.8 Mode shapes of the perfectly meshed cantilever plate: (q) Mode91
through (t) Mode 12.

6.4.4 Development of Cantilever Mass and Stiffness Matrices from Free

Plate Matrices

Figure 6.10(a) and (b) illustrates the transformation of a free plate finite element

model into a cantilever plate by imposing boundary conditions. The figure shows
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Figure 6.9 Percentage error in natural frequencies of reduced-order models compared
to perfect mesh for cantilever plate.

the nodal construction of the 25-node reduced-order plate model, which has been

previously selected as the optimal reduced model based on modal accuracy and com-

putational efficiency.

Figure 6.10 Transformation of 25-node reduced model from free plate to cantilever
plate by applying boundary conditions.

The finite element model of the free plate is defined by a global stiffness matrix
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Kfree and mass matrix Mfree that represent the unconstrained vibrational behavior of

the structure. Each of the 25 nodes possesses six degrees of freedom (DOFs): three

translational (Ux, Uy, Uz) and three rotational (θx, θy, θz). Therefore, the size of both

Kfree and Mfree is 150× 150.

To convert the free plate into a cantilever plate, boundary conditions are applied

by constraining all six DOFs of nodes 1, 2, 3, 4, and 5 along the left edge of the plate,

as highlighted in red in Figure 6.10. This constraint eliminates the corresponding

rows and columns in the global stiffness and mass matrices, effectively removing the

associated DOFs from the system.

The resulting matrices, Kcantilever and Mcantilever, represent the constrained system

and have reduced dimensions. Specifically, the removal of five nodes each with six

DOFs leads to a reduction of 30 DOFs. Hence, the final size of the cantilever matrices

becomes 120× 120.

The transformation process can be mathematically described using a Boolean

transformation matrix T :

Kcantilever = T TKfreeT, Mcantilever = T TMfreeT (6.15)

where T is a selection matrix that eliminates the DOFs corresponding to the fixed

nodes.

The application of these boundary conditions modifies the dynamic behavior of

the structure, as the vibrational freedom along the fixed edge is suppressed. This

modeling step is essential for accurately simulating the cantilever condition in both

the finite element analysis and in the implementation of model updating procedures

like LEMP. The cantilever matrices developed here are used in subsequent analy-

ses, including modal extraction, error comparison, and validation of reduced-order

modeling strategies.
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6.4.5 Optimal Mode Selection for Describing the Cantilever Plate

To effectively characterize the dynamic behavior of the cantilever plate using reduced-

order modeling, an optimal vibration mode must be selected. This mode should be

sensitive enough to detect localized changes in stiffness, which represent structural

modifications or damage. The selection process is illustrated in Figure 6.11, which

shows the nodal layout of the 25-node reduced model with fixed boundary conditions

applied to nodes 1 through 5 at the base.

Figure 6.11 Nodal configuration for optimal mode selection: fixed nodes 1–5 and
highlighted nodes 6–25 for localized stiffness modifications.

The approach involves systematically introducing a local stiffness change to the

remaining nodes of the plate, one at a time, at the out-of-plane degree of freedom Uz.

Specifically, a stiffness perturbation of magnitude 1 × 1010 N/m is applied to each

node from node 6 through node 25. These nodes span the entire active region of the

plate not fixed at the base.

However, due to the geometric and dynamic symmetry of the cantilever plate, only

one half of the structure needs to be investigated for efficiency. The frequency shifts

induced by local stiffness changes on one side of the plate can be assumed to reflect
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the response on the symmetric side. Therefore, local modifications are introduced to

the following subset of nodes:

• Lower edge nodes: 6, 7, 8

• Mid-region nodes: 13, 14, 15, 16, 17, 18

• Top edge nodes: 23, 24, 25

For each perturbation at these nodes, a modal analysis is conducted to compute

the change in natural frequencies. This frequency shift serves as a sensitivity indi-

cator, showing how responsive each vibration mode is to local structural changes at

specific locations. By comparing the frequency changes across multiple modes, the

mode that exhibits the highest sensitivity across the considered nodes is identified as

the optimal mode for use in real-time model updating and damage detection.

This strategy ensures that the selected mode provides sufficient spatial coverage

and sensitivity to local variations, allowing it to serve as a reliable descriptor of

the plate’s global dynamic behavior under the cantilever boundary condition. The

identified optimal mode will be utilized in subsequent sections for validating the

Local Eigenvalue Modification Procedure (LEMP) and performing structural model

updates based on limited modal data.

The evaluation involves applying a local stiffness perturbation to the plate model.

A stiffness value of 1×1010 N/m is introduced individually at the out-of-plane degree

of freedom (Uz) of nodes 6 through 25. These nodes are chosen because they cover

the upper surface of the cantilever plate while also reflecting one side of the plate due

to the structure’s mirror symmetry. This allows for a computationally efficient yet

representative analysis.

For each perturbation, the modal frequencies are recalculated using both the gen-

eralized eigenvalue (GE) approach and the LEMP algorithm. Frequencies correspond-

ing to the first fifteen vibration modes are extracted from both solvers. The accuracy
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Table 6.3 Percentage error for modes 1 to 15 at nodes 6 to 10.

% error at nodes
mode 6 7 8 9 10
1 2.532117 1.987089 2.686049 2.039476 2.574719
2 1.748493 2.466974 2.074156 2.063405 1.719738
3 0.953186 1.316698 0.813959 1.117853 0.946491
4 0.521762 1.485406 2.826987 1.614323 0.552273
5 4.700076 6.679389 3.521589 6.013716 4.744664
6 5.323287 6.451122 4.052768 6.503801 5.323287
7 0.766019 0.979711 1.636351 0.986735 0.801727
8 0.615614 3.333333 3.5367 3.298704 0.708041
9 7.734375 3.905734 5.084374 3.62077 7.997004
10 7.12605 3.78518 2.77063 3.562164 7.038741
11 5.682823 10.78792 7.697923 10.6093 5.700386
12 16.41868 13.98043 16.83436 14.0326 16.50432
13 10.00126 16.19612 18.27292 16.28644 9.983127
14 12.15216 7.737914 5.404227 7.856141 12.17155
15 12.0695 12.4493 12.30422 12.37868 12.09239

of LEMP is then quantified by computing the percentage error for each mode at each

perturbation site, comparing LEMP-predicted frequencies to those obtained from the

benchmark GE solver.

For each case, frequencies obtained using the Generalized Eigenvalue (GE) solver

and LEMP are plotted side-by-side. Additionally, a red error curve is overlaid, repre-

senting the percentage error between LEMP and GE for each mode. Across the test

range, it can be observed that LEMP maintains a consistent and acceptable accuracy

margin.

The resulting errors are presented in Table 6.3 through Table 6.6, highlighting

the performance of LEMP across all modes and nodes. In each table, the three

modes with the lowest percentage errors at a given node are highlighted in green,

denoting superior agreement between LEMP and GE. This visual method aids in

quickly identifying modes with consistently low errors.

To quantify which mode most reliably tracks structural changes using LEMP, a

count is performed to determine how many times each mode appears in the top three
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Table 6.4 Percentage error for modes 1 to 15 at nodes 11 to 15.

% error at nodes
mode 11 12 13 14 15
1 5.890645 7.965409 7.192803 8.101189 5.912551
2 4.619095 7.172105 9.368445 6.82218 4.638922
3 1.622843 3.017837 0.802334 2.8354 1.606298
4 3.596503 7.637173 4.136615 7.63092 3.629259
5 7.170588 9.990671 4.552547 9.260694 7.141813
6 3.910083 7.563697 4.103226 7.73393 3.9568
7 3.834675 4.717042 5.510132 4.827965 3.864438
8 7.865297 2.171119 5.033873 1.990343 7.854778
9 6.362704 11.00658 16.736 10.7485 6.453861
10 15.00322 10.56295 15.25906 10.64363 14.99295
11 17.08992 11.37399 9.440886 11.26693 17.09602
12 18.69787 18.48873 13.96 18.58958 18.63622
13 5.86878 17.09173 16.32266 17.25441 5.889439
14 17.33568 7.093032 7.79415 7.11567 17.34773
15 17.03949 22.45205 22.63504 22.4595 17.26478

Table 6.5 Percentage error for modes 1 to 15 at nodes 16 to 20.

% error at nodes
mode 16 17 18 19 20
1 9.497408 11.3315 22.76656 11.47762 9.488718
2 10.38528 7.715702 2.41712 7.677894 10.38767
3 2.176486 19.31973 11.59083 18.66725 2.193322
4 8.734441 12.74896 1.519571 12.62904 8.707256
5 6.561462 4.950766 6.674359 5.247573 6.607372
6 10.35219 5.378282 10.129 5.434294 10.38407
7 3.524868 2.327415 6.722739 2.226873 3.543342
8 3.76996 2.219439 9.296427 2.279138 3.821924
9 9.132671 9.428189 5.873433 9.418856 9.002907
10 7.980973 10.4069 7.539742 10.28782 8.098754
11 17.397 14.18785 18.35887 14.21432 17.44371
12 26.12778 24.16503 18.38648 24.10023 26.1124
13 10.39051 14.89921 21.69847 15.00948 10.35073
14 9.475202 11.05434 11.52126 11.05639 9.475202
15 8.317759 20.35461 12.34558 20.46007 8.32779
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Figure 6.12 Frequency comparisons and error profiles for local stiffness perturbations
at nodes 6, 7, and 8

lowest error slots across all perturbation nodes. The result of this frequency-based

evaluation is displayed as a histogram in Figure 6.16.

The histogram analysis reveals the following:

• Mode 3 appears in the top three lowest-error modes 15 times.
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Figure 6.13 Frequency comparisons and error profiles for local stiffness perturbations
at nodes 13, 14, and 15.

• Mode 7 appears 17 times, the highest among all modes.

• Mode 8 appears 11 times.

Mode 7 emerges as the most accurate and consistent in capturing frequency shifts

due to local changes, demonstrating superior robustness and minimal deviation when
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Figure 6.14 Frequency comparisons and error profiles for local stiffness perturbations
at nodes 16, 17, and 18.

LEMP is used as a solver. This consistency suggests that Mode 7 provides the best

compromise between sensitivity to local perturbations and overall numerical accuracy.

As a result, Mode 7 is selected as the optimal mode for real-time structural as-

sessment using LEMP. All subsequent validation tasks, error tracking, and simula-
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Figure 6.15 Frequency comparisons and error profiles for local stiffness perturbations
at nodes 23, 24, and 25.

tion analyses will reference this mode, ensuring accurate, computationally efficient

model updating within dynamic and uncertain environments. This suggests that the

LEMP solution for mode 7 is especially robust to structural changes introduced at

this location. Figure 6.17 compares GE and LEMP frequencies for mode 7 at each
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Table 6.6 Percentage error for modes 1 to 15 at nodes 21 to 25 along with cumulative
counts of appearances in the top three lowest errors.

% error at nodes
mode 21 22 23 24 25 count
1 5.442432 8.088518 12.67039 8.049198 5.424116 0
2 7.161676 12.92952 6.074223 12.94797 7.218211 2
3 3.166835 1.183541 2.701019 1.199321 3.237814 15
4 5.018165 9.199682 6.276045 9.173027 5.037879 9
5 7.077355 7.587955 6.927779 7.587955 7.083466 2
6 4.592651 8.067761 5.231131 8.051535 4.599511 2
7 2.234841 4.55528 5.883271 4.655953 2.35604 17
8 7.067435 3.274497 4.274147 3.215992 7.256163 11
9 10.38084 7.378596 12.53273 7.524065 10.44199 0
10 15.11541 12.33968 14.06895 12.4735 15.21763 0
11 15.27005 18.39393 16.90804 18.48926 15.27005 0
12 18.29072 14.16208 21.24383 14.14289 18.4094 0
13 2.5435 13.18581 16.70431 13.16257 2.571872 1
14 10.13109 10.91125 3.439656 10.95864 10.1351 0
15 10.62872 15.2532 18.76341 15.25852 10.55855 0

Figure 6.16 Histogram showing number of times each mode appears in the three
lowest-error positions across all nodes.

perturbation node from 6 to 25.

From the plot, it is evident that across all tested nodes, the deviation in LEMP-

predicted frequencies remains consistently within a 10% error threshold when com-

pared with the GE results. This reinforces the reliability of mode 7 in capturing

121



Figure 6.17 Frequencies of Mode 7 from GE and LEMP at local perturbation from
node 6 to node 25. Error percentages remain below 10% at all nodes.

system dynamics under local perturbation and confirms its appropriateness as the

optimal mode for tracking and real-time model updating tasks.

6.4.6 Multiple State Change Timing: GE vs LEMP on 25-Node Cantilever

Plate

To evaluate the computational performance of the proposed Local Eigenvalue Modifi-

cation Procedure (LEMP) compared to the traditional Generalized Eigenvalue (GE)

approach, timing study were carried out under scenarios involving both single and

multiple state changes. These simulations were performed on the 25-node cantilever

plate model previously identified as the optimal reduced-order model based on modal

accuracy.

Table 6.7 Comparison of GE and LEMP computation times on 25-node plate

Scenario GE LEMP Speed
Single state change 9.01 ms 0.43 ms 20x
Four state changes 36.04 ms 1.62 ms 22x

First, a single local stiffness change was introduced to one node of the cantilever

plate. Both GE and LEMP were used to compute the updated modal frequencies

following this single state change. The timing result, shown in Table 6.7, indicates
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Figure 6.18 Illustration of four local stiffness changes introduced at nodes 6, 14, 18,
and 22 on the 25-node cantilever plate.

Figure 6.19 Side view representation showing the vertical spring supports simulating
stiffness changes at the same four nodes.

that LEMP required only 0.43 ms to compute the change, whereas the GE approach

took 9.01 ms. This demonstrates that LEMP is approximately 20 times faster in

single update scenarios.

For a scenario involving four local state changes. The stiffness changes were in-

troduced consecutively at four different nodal locations (nodes 6, 14, 18, and 22),

123



as illustrated in the attached figures. This configuration simulates a more realistic

structural damage case where multiple parts of the structure undergo rapid modifi-

cations.

The GE solver required 36.04 ms to perform the updates and solve for the new

frequencies across all four modified nodes. In contrast, the LEMP approach completed

the same task in just 1.62 ms. This yields a performance boost of approximately 22

times, which becomes increasingly beneficial in real-time structural health monitoring

systems where time sensitivity is crucial.

6.5 Conclusion

This work presented a computationally efficient framework for real-time structural

model updating using the Local Eigenvalue Modification Procedure (LEMP), applied

to a 2D cantilever plate model with 25 nodes. The study aimed to overcome the

computational limitations of conventional generalized eigenvalue (GE) methods by

introducing a reduced-order model capable of rapid updates during high-rate dy-

namic events. The key achievement lies in extending LEMP from 1D systems to

2D plate structures while ensuring microsecond-level computation and maintaining

modal accuracy.

The methodology involved selecting the optimal reduced-order plate model through

mesh convergence analysis and modal error evaluation. A systematic nodal stiffness

modification approach was used to evaluate the frequency response and identify the

most sensitive mode for damage detection—Mode 7—based on its minimal error

across localized perturbations. The study employed a modal projection strategy to

update only the affected degrees of freedom, allowing for efficient computation with-

out solving the full eigenvalue problem.

Results demonstrated that LEMP consistently maintained error levels below 10%

across all tested scenarios, with significantly improved computational speed. In timing
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study, LEMP achieved speedups of 20x and 22x over GE for single and four-node

stiffness changes, respectively. These outcomes validate LEMP’s suitability for real-

time applications and its ability to provide fast, localized structural assessments.

The implications of these results are substantial for structural health monitor-

ing (SHM) systems in high-demand fields such as aerospace and electronics. The

method supports integration with real-time sensors and model-based diagnostics for

continuous monitoring. However, the current study assumes linear behavior and ideal

structural modifications, suggesting a need for future extension to nonlinear or mul-

tiphysics contexts.
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Chapter 7

Conclusion

This work presents a comprehensive investigation into real-time model updating of

structures undergoing high-rate dynamic events, culminating in the development and

validation of a reduced-order model-based framework using the Local Eigenvalue

Modification Procedure (LEMP). The research was driven by the increasing demand

for accurate, rapid, and computationally efficient structural health monitoring (SHM)

solutions in critical sectors such as aerospace, electronics, and defense, where high-

rate events pose significant risks to structural integrity.

In-depth exploration of the challenges associated with high-rate dynamics, includ-

ing the need for microsecond-level updates, computational limitations of traditional

finite element methods, and the unpredictable nature of structural changes due to lo-

calized stiffness or mass perturbations necessitate this work. LEMP was proposed as

a viable solution, capable of drastically reducing computational load by transforming

the global eigenvalue problem into a set of second-order secular equations that target

only the degrees of freedom affected by structural changes.

Methodologically, this work introduces a suite of mathematical tools and algo-

rithmic enhancements, notably the divide-and-conquer solver integrated into the

LEMP framework, enabling rapid convergence of frequency estimations. The frame-

work was first applied and validated on simple beam models, then scaled to two-

dimensional structural systems such as square steel plates and reduced-order printed

circuit boards. Modal reduction strategies were employed to identify optimal node

configurations—specifically, a 25-node cantilever plate was selected as the most ac-
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curate and computationally efficient model for further analysis. Key steps in this

development included performing modal analysis, introducing sequential and multi-

ple local changes, and identifying optimal tracking modes based on error minimization

across multiple perturbation cases.

In terms of results, the proposed framework consistently achieved sub-millisecond

update speeds, with timing for multiple state changes recorded as low as 1.62 ms using

LEMP, compared to 36.04 ms using the conventional generalized eigenvalue method.

Frequency tracking errors were kept below 10% across nearly all tested configurations,

and the signal-to-noise ratios remained above 30 dB in lower modes. Mode 7, in

particular, was identified as the optimal tracking mode due to its consistency in

yielding the lowest errors under various stiffness perturbations. Moreover, this work

extended the application of LEMP to more complex 2D plate systems, establishing the

practical feasibility of microsecond-level structural updates in real-world scenarios.

The contributions of this research are multifaceted. First, it reformulates the

traditional LEMP framework to support divide-and-conquer strategies and modal

truncation for enhanced performance. Second, it introduces a robust reduced-order

modeling methodology tailored for real-time applications. Third, it provides a val-

idated implementation pathway from 1D to 2D structural systems, demonstrated

through both numerical simulations and algorithmic benchmarks. Fourth, it opens

the door for future integration of probabilistic filters and machine learning for adap-

tive tracking under uncertainty.
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Appendix A

Matrices

M1 = (A.1)

0.0828 0.0010 0.02866 −0.0006 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0010 0.00002 0.0006 −0.00001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0287 0.0006 0.16564 0.0000 0.0287 −0.0006 0.0000 0.0000 0.0000 0.0000

−0.0006 −0.00001 0.0000 0.00003 0.0006 −0.00001 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0287 0.0006 0.1656 0.0000 0.0287 −0.0006 0.0000 0.0000

0.0000 0.0000 −0.0006 −0.00001 0.0000 0.00003 0.0006 −0.00001 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0287 0.0006 0.1916 0.0003 0.0377 −0.0008

0.0000 0.0000 0.0000 0.0000 −0.0006 −0.00002 0.0004 0.00004 0.0008 −0.00002

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0037 0.0008 0.1088 −0.0013

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 −0.0008 −0.00001 −0.0013 0.00002


(A.2)

K1 = (A.3)

1010 177960 −4067661 177960 0 0 0 0 0 0

177960 1010 −177960 5191 0 0 0 0 0 0

−4067661 −177960 8135322 0 −40676616 177960 0 0 0 0

177960 5191 0 20762 −177960 5191 0 0 0 0

0 0 −4067661 −177960 8135322 0 4067661 177960 0 0

0 0 177960 5191 0 20762 −177960 5191 0 0

0 0 0 0 −4067661 −177960 8135322 0 −4067661 177960

0 0 0 0 177960 5191 0 20762 −177960 5191

0 0 0 0 0 0 −4067661 −177960 4067661 −177960

0 0 0 0 0 0 177960 5191 −177960 10381


(A.4)

∆K12 = (A.5)
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−5e-6 −1e-6 −0.1847 −3.9596 −0.6478 −6.3764 −1.2609 −7.4389 −1.9231 −7.6131

0.00011 0.000008 0.8626 13.6874 1.5256 −1.7285 0.4208 −2.2033 −1.8605 −27.5937

0.00051 0.000023 1.5213 10.3710 0.1532 −3.2829 −1.2591 13.1159 1.9428 46.6347

0.00138 0.000046 1.5353 −17.2762 −1.5392 −6.2128 1.1499 21.2392 −1.8707 −63.1058

−0.00340 −0.000088 −0.7967 68.8319 0.2607 −80.1770 0.1761 76.3001 −1.9711 −96.1961

0.00733 0.00016 −0.1412 −121.432 1.4114 31.5312 −0.9034 95.7498 −2.1300 −145.1654

0.0132 0.00028 −0.8507 −136.014 0.4113 −177.991 1.1859 −26.0798 2.3692 2.2162

−0.0084 −0.00017 0.3836 45.9726 0.4752 119.004 0.5243 208.532 4.3617 510.2967


(A.6)

142



Appendix B

Mechanical Systems and Signal Processing

persmission to republish

B.1 Open Access Licences

B.1.1 User rights

All articles published gold open access will be immediately and permanently free for

everyone to read and download, copy and distribute. We offer authors a choice of user

licenses, which define the permitted reuse of articles. We currently offer the following

license(s) for this journal:

B.1.2 Creative Commons Attribution (CC BY)

Allows users to: distribute and copy the article; create extracts, abstracts, and other

revised versions, adaptations or derivative works of or from an article (such as a

translation); include in a collective work (such as an anthology); and text or data

mine the article. These uses are permitted even for commercial purposes, provided the

user: gives appropriate credit to the author(s) (with a link to the formal publication

through the relevant DOI); includes a link to the license; indicates if changes were

made; and does not represent the author(s) as endorsing the adaptation of the article

or modify the article in such a way as to damage the authors’ honor or reputation.

143


