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Structural Health Monitoring (SHM) System

• SHM system is a method of evaluating and monitoring structural health. 
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Figure: Bridge Monitoring and Evaluation Figure: Levee Monitoring

Source: https://www.sciencedirect.com/science/article/abs/pii/S0167610515000501 Source: https://www.agiusa.com/sites/default/files/field/image/Dam%20Monitoring_Header.png



Case Study: High-Rate Dynamics (HRD)

• Description of High-rate dynamics:

• high-rate (< 100 ms)

• high-amplitude (acceleration > 100 g)

• such as a blast or an impact

• The high-rate dynamics are subjected to
• large uncertainties in external loads

• high levels of nonstationarities and heavy 
disturbances

• generation of unmodeled dynamics from 

changes in system configuration 
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Ballistics packages

Hypersonic vehicles Space launch system

Vehicle collision

• Jacob Dodson, Austin Downey, Simon Laflamme, Michael Todd, Adriane G. Moura, Yang Wang, Zhu Mao, Peter Avitabile, and Erik Blasch "High-Rate 
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Exposition on Structural Dynamics 2021, Springer International Publishing, p. 213-217, Oct 2021. doi:10.1007/978-3-030-76004-5_23

• Hong, J., S. Laflamme, J. Dodson, and B. Joyce. 2018. “Introduction to State Estimation of High-Rate System Dynamics,” Sensors, 18(2):217, 

doi:10.3390/s18010217.



Time Series Prediction

• Time Series: A time-series is a set of observations, Y on a quantitative variable collected over time, t.

• In time series analysis, we analyze the past behavior of a variable in order to predict its future behavior.

• Component of Time Series:

• Long Term Trend (T): Growth/Decline/Constant

• Seasonal Variation (S): Upward or Downward movement repeat at the same time each year.

• Cyclical Variation (C): Similar to seasonal variations except that there is likely not a relationship to the time of the year

• Random Effects (I) : Unexplained variations which we usually treat as randomness.

• Time-Series Model: 

• Additive Model: 𝑌𝑡 =  𝑇𝑡 + 𝑆𝑡 + 𝐶𝑡 + 𝐼𝑡

• Multiplicative Model: 𝑌𝑡 =  𝑇𝑡 ∗ 𝑆𝑡 ∗ 𝐶𝑡 ∗ 𝐼𝑡

6 Research Overview



Time Series Prediction (Continued)
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•Autoregressive Integrated Moving average (ARIMA)

•Seasonal ARIMA (SARIMA)

•Least Absolute Shrinkage and Selection Operator (LASSO)

Statistical models

•Artificial neural network (ANN)

•Decision Tree

•Gradient Boosting Decision Tree

Machine learning models

•Multilayer Perceptron (MLP)

•Convolutional Neural Network (CNN)

•Recurrent Neural Network (RNN)

Deep learning models

•Physics-Constrained ML

•Data Augmentation

•Transfer Learning

•Delta Learning (Missing Physics)

•Delta Learning (ML Prediction)

•ML Assisted Prediction

Physics-informed models
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• Xuan, Ang, et al. A Comprehensive Evaluation of Statistical, Machine Learning and Deep Learning Models for Time Series Prediction. No. 6716. EasyChair, 2021.

• Thelen, Adam, et al. "A comprehensive review of digital twin—part 1: modeling and twinning enabling technologies." Structural and Multidisciplinary Optimization 65.12 (2022): 354.
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Event Forecasting in HRD System

• Goal: Temporal Forecasting
• Application: Real-time decision-making of structures
• Required Technologies:

• Low-latency model updating
• System state prognostics in real-time

• Challenges:
• Computation power is limited

• Memory, available energy, processors

• Unknown sources of the inputs (forces, location)
• Inability to calculate fault scenarios in advance
• Rare and extreme situations
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Research Question 1: How to design hardware and software for real-time forecasting for SHM?



• Goal for RQ1:
• Data generation in experimental environment.
• Model development for temporal forecasting.
• Hardware implementation in FPGA.

• Contribution:
• Using co-design approaches
• Developing Faster system
• Real time implementation

• Cons:
• Only used data driven approaches.
• Memory problem.
• Computational time.

Hardware and Software Design for SHM

Research Overview9

Research Question 1: How to design hardware and software for real-time forecasting for SHM?

HW-SW 
Design

Time series prediction:

Data Generation

Model Development

HW Implementation

Co-design

FFT, MLP



Data-driven

Evidence -> Hypothesis -> Decision

• Advantages

• Self-learning systems

• Handling more complex problems

• Performing better with less human interaction 
than rule-based systems

• Adapting over time (via continuous learning) to 
changes in data and environment.

Rule-based

Hypothesis-> Decision

• Advantage

• Easy to understand and interpret

• Quick implementation

• Easy modification

• Durable in nature

• Compatible with ML/AI
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Forecasting Approaches in HRD System

Research Question 2: How to synergize between data-driven and rule-based system?

Physics-Informed Machine Learning

• Disadvantages:

• Problems with a vast number of variables

• Problems with many constraints

• Limited intelligence

• Disadvantages:

• Needs to see a large number of input

• Only learn from data

• Not intelligence in the sense that humans are.



• Goal for RQ2:
• Data generation in the experimental environment.
• Physics data generation via Finite Element Model
• Model development for temporal forecasting.

• Contribution:
• Integrating Physics data
• Transfer learning to reduce
• Problem-specific customized model development

• Cons:
• Only used data-driven approaches
• Memory problem
• Computational time

Integrating Physics-Informed ML for SHM
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Research Question 2: How to synergize between data-driven and rule-based system?

Physics-
Informed 

HSM

Physics-informed Time series 
prediction:

Experiment Data Generation

Physics Data Generation

Customized Model Development

PISP, PIMENTO
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Physics-informed Machine Learning (ML)

Jin, Hanxun, Enrui Zhang, and Horacio D. Espinosa. "Recent Advances and Applications of Machine Learning in Experimental Solid Mechanics: A Review." arXiv preprint arXiv:2303.07647 (2023).

Data-driven Machine learning

Physics-informed Machine learning

No physics

Big data
Some data

Small data

Some physics

Lots of physics

Computer Science Engineering and Physics

(a) Purely data-driven (c) Physics-informed ML(b) Physics-based data driven
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Relationship of Research

Final Dissertation

How to synergize between data-
driven and rule-based system?

Research Question 

HW-SW Design for Temporal 

Forecasting in SHM

How to design SW-HW for SHM?
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Overall Dissertation

FFT based Time series 
prediction

Data Generation

Model Development

HW Implementation

Adding Physics in SHM SystemHW-SW Development

MLP based Time series 
prediction:

Model Development

HW Implementation

Comparison

RQ 2: How to add physics?

Data-driven ML Physics-informed ML

Data generation

model development model development
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RQ1: How to design?

Physics data enhance 
Time series prediction

FE model development

Physics data generation

Integrate Physics data 
with experimental data

Physics knowledge 
transfer-based Time 

series prediction 

FE model development

Physics data generation

Transfer Learning-based 
Model Development

FE model development

Physics-informed model development

Physics-informed model development



Key Contributions

• Data Generation
• Experimental data generation: Developed solutions to overcome the lack of available data for HRD system research

• Physics-informed Data Generation: Utilized physics principles to generate realistic data for HRD systems.

• Data-driven model development
• Mathematical algorithm-based models: Employed mathematical algorithms, such as FFT in a windowed fashion, to develop models.

• Deep learning-based models: Leveraged deep learning techniques, including ensembled MLPs, to create models.

• Physics-informed model development
• Data augmentation: 

• Enhanced model performance by augmenting existing data.

• Problem-specific customized model (PISP): Designed a tailored model to address specific HRD system challenges.

• Transfer learning: 
• Applied transfer learning techniques, such as teacher-student models and BiLSTMs, to improve model efficiency.

• Customized model (PIMENTO): Developed a unique model architecture for HRD system applications.

• Hardware implementation
• Time deterministic hardware implantation of FFT model in FPGA.

• Time deterministic hardware implantation of ensemble MLP model in FPGA.

• Application:
• High-Rate Dynamic System:

• Non-stationary time series prediction: Accurately predicted non-stationary time series in HRD systems.

• Single impact prediction: Successfully predicted the impact of single events in HRD systems.

• Others (Not included in the dissertation)
• Data-driven fragility framework: Developed a framework for risk assessment of levee breaches.

Research Overview15
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Research Area 1: HW-SW Development
• Event Forecasting in HRD system (Discussed in previous slides)

• Time series prediction

• Data Generation

• Implementation

• Software

• Hardware

• Key Takeaways of Research Area 1

HW-SW Design for Temporal Forecasting in SHM17
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Experimental Setup for Data Generation

• This data is available in a public repository [1]

control computer

power amplifier

data acquisition

beam structure

accelerometer

[1] High-Rate-SHM-Working-Group. Dataset-4 univariate signal with nonstationarity.

https://github.com/High-RateSHM-Working-Group/Dataset-4-Univariate-signal-withnon-stationarity

electromagnetic shaker

RA1: HW-SW Development: Data Generation

https://github.com/High-RateSHM-Working-Group/Dataset-4-Univariate-signal-withnon-stationarity


Data structure

• Two sine wave signals are concatenated together 

• Concatenated at t = 5  

• A nonstationary is present due to a change of frequency

• Four different sampled data were created

First Half Frequencies (Hz) Second Half Frequencies (Hz)

50, 70, 100 50, 100

19 RA1: HW-SW Development: Data Generation



FFT-based prediction

Measure 
frequency

Measure 
phase

Measure 
amplitude

Collect 

frequencies

Extend 
time scale

Add trend 

FFT 

End 

Find trend

Input data

Start 

computational 

time per cycle

0.1

- 0.1

0.0

t=0

learning prediction

T

FFT-based 

prediction

L P

time (s)

20

SW Implementation Direction 1: FFT Based Prediction

20 RA1: HW-SW Development: SW Implementation
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Results

Time series prediction for 0.5 s learning window length  in different states

pre-event steady state

transient-event 

post-event steady state



Learning Window Effect Computational Time

RA1: HW-SW Development: SW Implementation22

Results
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• 𝑒𝑚𝑒𝑎𝑛 ∝
1

𝐿𝑤𝑖𝑛𝑑𝑜𝑤

• 𝑡𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 ∝ 𝐿𝑤𝑖𝑛𝑑𝑜𝑤

Effect of various learning window lengths (L) showing:

(a) MAE in different states, and; (b) transient time. 

• 𝑒𝑚𝑒𝑎𝑛 ∝ 𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙

• 𝑡𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 ∝ 𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙

Effect of various computational time (T) in a specific learning window length (L) showing: 

(a) MAE in different states, and;(b) transient time. 



RA1: HW-SW Development: SW Implementation

SW Implementation Direction 2: Ensembled MLPs

RMSE (m/s2) SNR Convergence (ms)

before nonstationary 

event

0.019 6.09 18.5

after nonstationary 

event

0.031 5.63 71.6
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RA1: HW-SW Development: HW Implementation

HW Implantation Workflow on FPGA

https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000YHVTCA4&l=en-US

LabVIEW 
FPGA

• Module for designing and 
translating them directly to 
hardware.

Xilinx 
Vivado

• Compilation 
tools

Bitstream
• BitFile 

generation 
Complete

Hardware

cRIO-9035 

Kintex-7 70T FPGA

24

https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000YHVTCA4&l=en-US


Hardware validation (FFT)

RA1: HW-SW Development: HW Implementation

Flowchart for data collection and processing during FFT-based forecasting in case of hardware implementation.

sampling rate 

(S/s)

FFT size input

(samples)

25600 128 256

512 512 512

256 256 256

128 128 128

• The built-in LabVIEW FPGA FFT function has a range of size 
limitations between 8 to 8192 samples.

• Each size of FFT has a latency of cycles from 16 to 16384.
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Simulation Results

• The frequency list reveals that 25600 S/s utilized more frequencies.

RA1: HW-SW Development: HW Implementation

Sample 

rate

(S/s)

RMSE SNR frequency list

25600 0.0017 17.12 50, 70, 100, 210, 220, 240, 260, 

280, -50, -70, -100, -210,-220, -

240, -260, -280

512 0.0019 16.33 50, 70, 100, -50, -70, -100 

256 0.0019 16.18 50, 70, 100, -50, -70, -100 

128 0.0338 0.15 50, 58, 22, 14, 20, 24, -50, -58, -

22, -14, -20, -24 
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Hardware Validation Results

• The 512 S/s sampling rate takes greater computation time than other sampling rates.

• Device utilization, the signal sampled at 512 S/s uses 96% of the FPGA slices.

• The 25,600 S/s required its pairing with reduced FFT sizes to enable its deployment on the chosen FPGA 
hardware. 

RA1: HW-SW Development: HW Implementation27



RA1: HW-SW Development: HW Implementation

Hardware Validation (MLP)

Time required for different aspects of the process. 

slices 

used

slices 

available

percentage used 

(%)

total slice 9895 10250 96.5

slice 

registers

36661 82000 44.7

slice LUTs 27917 41000 68.1

block RAMs 19 135 14.1

DSP48s 48 240 20.0

The FPGA elements are shown by the device utilization. 

• Total system latency of 25.76 µs can be achieved on a 

Kintex-7 70T FPGA with sufficient accuracy for the 

considered system.

28



Key Takeaways of Research Area 1 

• RQ1: How to design the SW-HW for SHM System?

• Data Generation

• Showed the co-design approaches for HRD system

• FFT based

• MLP based

• Experimental Analysis

RA1: HW-SW Development29

FFT based Time series 
prediction:

Data Generation

Model Development

HW Implementation

HW-SW Development

MLP based Time series 
prediction:

Model Development

HW Implementation

Comparison

Data-driven ML

Data generation

model development model development

RQ1: How to design?



Overall Dissertation

FFT based Time series 
prediction

Data Generation

Model Development

HW Implementation

Adding Physics in SHM SystemHW-SW Development

MLP based Time series 
prediction:

Model Development

HW Implementation

Comparison

RQ 2: How to add physics?

Data-driven ML Physics-informed ML

Data generation

model development model development

Research Overview30

RQ1: How to design?

Physics data enhance 
Time series prediction

FE model development

Physics data generation

Integrate Physics data 
with experimental data

Physics knowledge 
transfer-based Time 

series prediction 

FE model development

Physics data generation

Transfer Learning-based 
Model Development

FE model development

Physics-informed model development

Physics-informed model development



Research Area 2: Adding Physics
• Background

• Problem Formulation

• Beam Static Analysis

• Key Takeaways of Research Area 2

HW-SW Design for Temporal Forecasting in SHM31



Single Impact Data Generation:

• Modal hammer is used to generate a single sudden impact



Physics Data Generation

FEA model of a steel cantilever beam

• The fixed support cantilever beam is excited as an experimental 
excitation force through the free end.

• Total displacement, equivalent elastic strain, x, y, and z three 
displacement  are generated.



Physics Data Generation

• The overall physics-informed data from the FEA model have 
been generated for one of the single data here. 

Physics informed dataExperimental data



Adding Physics Direction 1: Data Augmentation 

• Problem-specific customized model: Designed a tailored model to address specific HRD system challenges
• Physics Informed Series Prediction: PISP

• Physics data enhance time series prediction

• A model for series prediction from PI-augmented Data

35

Experimental data

Experimental data

P
I 
d
a
ta

PISP

Traditional Model



Methodology:

• This study introduces the PISP (Physics Informed 
Series Prediction) model designed to enhance the 
accuracy of dynamic response forecasts for 
structural systems

• A physics-informed data-augmented machine 
learning model for time-series prediction.

• Improving the temporal forecasting in the case of 
univariate data with data augmented physics-
informed model is the main contribution of this 
model.

• This model is a combination of Bidirectional Long 
Short-Term Memory (Bi-LSTM) representation 
learning to digest raw information; where the 
generation of latent features and fully connected 
layers-based regression for time series prediction is 
evolved eventually.



Results

• A total of five PI features: total displacement, strain, x-axis displacement, y-axis displacement, and z-axis displacement; the data-augmented PISP 
model has been developed in four fashions with different PI feature combinations.

• Displacement

• Displacement + strain

• Strain+ x-axis displacement+ y-axis displacement

• Strain+ x-axis displacement+ y-axis displacement + z-axis displacement 
    

• Acceleration experimental data is included as well in the four configurations listed above. Only experimental data acceleration with no PI 
features is taken into consideration in the case of 0 PI feature configuration. 
          
         

RA2: Adding Physics Direction 1: Data 

Augmentation 
37



Results

• A comprehensive comparison of the performance with and without physics-informed features across multiple 
datasets. This broader analysis further highlights the significant impact of incorporating physics-informed features on 
the model’s accuracy and effectiveness. 
           
  

RA2: Adding Physics Direction 1: Data Augmentation 38

data 1 data 2 data 3 data 4 data 5 data 6 data 7 data 8 data 9 Average

data configuration

hammering around (sec) 4.74 2.2809 2.294 2.356 2.173 2.365 2.137 2.173 2.2977 2.54
sample rate (S/s) 2560 25600 25600 25600 25600 25600 25600 25600 25600 23040

data duration (sec) 9.75 9.75 9.75 9.75 9.75 9.75 9.75 9.75 9.75 9.75
hammer force (N) 315.73 234.5 248 386 350 312 420 351.5 416 337.0811111

without physics informed (0 PI 
features)

RMSE 9.97E-02 1.07E-01 7.10E-02 1.36E-01 1.13E-01 1.77E-01 1.70E-01 1.13E-01 1.33E-01 1.24E-01
MAE 3.74E-02 6.67E-02 3.08E-02 8.51E-02 4.82E-02 1.39E-01 1.12E-01 3.14E-02 6.25E-02 6.81E-02
SNR 8.925125 7.9368 10.22905 7.185807 8.601029 3.393895 7.259046 9.001195 7.993113 7.836117371

TRAC 0.8965 0.8439 0.906 0.8088 0.8758 0.6148 0.8138 0.8889 0.8416 0.832233333

with physics informed (4 PI 
features)

RMSE 9.03E-02 1.01E-01 6.95E-02 1.31E-01 1.05E-01 1.49E-01 1.61E-01 1.05E-01 1.20E-01 1.15E-01
MAE 3.37E-02 5.91E-02 2.76E-02 6.08E-02 2.50E-02 7.18E-02 9.23E-02 3.14E-02 3.79E-02 4.88E-02
SNR 9.787 8.3776 10.4153 7.5018 9.2063 4.8486 7.7097 9.2574 8.9272 8.447877778

TRAC 0.9046 0.858 0.9091 0.8235 0.8914 0.6952 0.8337 0.8886 0.8743 0.853155556

percentage improvement

RMSE 9.44% 4.95% 2.12% 3.57% 6.73% 15.42% 5.06% 7.28% 10.20% 7.20%
MAE 9.80% 11.42% 10.47% 28.46% 48.12% 48.19% 17.92% 0.08% 39.39% 23.76%
SNR 9.65% 5.55% 1.82% 4.40% 7.04% 42.86% 6.21% 2.85% 11.69% 10.23%

TRAC 0.91% 1.67% 0.35% 1.81% 1.78% 13.09% 2.45% 0.03% 3.88% 2.89%



Results

RA2: Adding Physics Direction 1: Data Augmentation 39



Results

RA2: Adding Physics Direction 1: Data Augmentation 40



PROS

• Can utilize physics data

• Achieves the data 
augmentation

CONS

• Needs Physics data in the 
inference stage also

HW-SW Design for Temporal Forecasting in SHM41

Key takeaways

Solution: Transfer learning based model



Data Augmentation Transfer Learning

HW-SW Design for Temporal Forecasting in SHM42

Data Augmentation vs Transfer Learning



Adding Physics Direction 2: Transfer Learning

Corrector model 

Estimator model 



Results

• A total of five PI features: total displacement, strain, x-axis displacement, y-
axis displacement, and z-axis displacement; the data-augmented PISP 
model has been developed in four fashions with different PI feature 
combinations.

• strain

• y-axis displacement + z-axis displacement 

• Strain+ x-axis displacement+ y-axis displacement

• Strain+ x-axis displacement+ y-axis displacement + z-axis displacement 
    

• Acceleration experimental data is included as well in the four configurations 
listed above. Only experimental data acceleration with no PI features is 
taken into consideration in the case of 0 PI feature configuration. 
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Results

• Corrector and Estimator performance analysis with different features.

• Sensitivity analysis.

• For other data, detailed results are added in the supplemental document in the dissertation.
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Key Takeaways

• Key Takeaways of Research Area 1:
• RQ1: How to design the SW-HW for SHM System?

• Data Generation

• Showed the co-design approaches for HRD system

• FFT based

• MLP based

• Experimental Analysis

• Key Takeaways of Research Area 2

• RQ2: How to synergies between data-driven and rule-based system?

• Physics data generation

• Data augmentation based model

• Transfer learning based model
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Key Contributions

• Data Generation
• Experimental data generation: Developed solutions to overcome the lack of available data for HRD system research

• Physics-informed Data Generation: Utilized physics principles to generate realistic data for HRD systems.

• Data-driven model development
• Mathematical algorithm-based models: Employed mathematical algorithms, such as FFT in a windowed fashion, to develop models.

• Deep learning-based models: Leveraged deep learning techniques, including ensembled MLPs, to create models.

• Physics-informed model development
• Data augmentation: 

• Enhanced model performance by augmenting existing data.

• Problem-specific customized model (PISP): Designed a tailored model to address specific HRD system challenges.

• Transfer learning: 
• Applied transfer learning techniques, such as teacher-student models and BiLSTMs, to improve model efficiency.

• Customized model (PIMENTO): Developed a unique model architecture for HRD system applications.

• Hardware implementation
• Time deterministic hardware implantation of FFT model in FPGA.

• Time deterministic hardware implantation of ensemble MLP model in FPGA.

• Application:
• High-Rate Dynamic System:

• Non-stationary time series prediction: Accurately predicted non-stationary time series in HRD systems.

• Single impact prediction: Successfully predicted the impact of single events in HRD systems.

• Others (Not included in the dissertation)
• Data-driven fragility framework: Developed a framework for risk assessment of levee breaches.
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