
Temporal Forecasting of High-Rate Dynamic Using Physics-Informed
Machine Learning and Hardware-Software Co-Design

by

Puja Chowdhury

Master of Science
University of Ulsan, 2016

Bachelor of Science
Chittagong University of Engineering & Technology, 2013

Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in

Mechanical Engineering

Molinaroli College of Engineering and Computing

University of South Carolina

2024

Accepted by:

Austin R.J. Downey, Major Professor

Jason D. Bakos, Committee Member

Yi Wang, Committee Member

Junsoo Lee, Committee Member

Ann Vail, Dean of the Graduate School

© Copyright by Puja Chowdhury, 2024
All Rights Reserved.

ii

Dedication

To my loving parents.

iii

Acknowledgments

After a prolonged search for the right research track and a three-year study break, my

dream of pursuing a PhD seemed increasingly elusive. That changed when I received

a life-changing email from Dr. Austin Downey. From that day on, my focus moved

from the ultimate goal of achieving a PhD to cherishing the enriching journey itself.

Dr. Downey, with his exceptional patience, guidance, and support, taught me not

only research but also instilled in me a profound sense of professionalism and growth

in personal life. Professor, words cannot adequately express my gratitude for your

invaluable mentorship.

I am also deeply thankful to the faculty members who have taught me, collabo-

rated with me, and served on my dissertation committee. Their encouragement and

expertise have made a significant impact on my learning.

I feel fortunate to have been part of a lab filled with kind and cooperative col-

leagues, as well as collaborative partners. Their friendship and support have made

this journey more rewarding. Lastly, I appreciate the help and support from the

school’s staff who have made my time here smoother and more enjoyable.

Furthermore, I would like to thank the Air Force Office of Scientific Research

(AFOSR) and the National Science Foundation (NSF) for funding this work and

the other projects I accomplished during my PhD program. This material is based

upon work supported by the Air Force Office of Scientific Research (AFOSR) through

award no. FA9550-21-1-0083. This work is also partly supported by the National

Science Foundation (NSF) grant numbers 1937535, 1956071, and 2237696. I also

extended the data-driven approach of this work in structural health monitoring of the

iv

levee which was funded by the NSF grant number 2152896. Any opinions, findings,

conclusions, or recommendations expressed in this material are those of the authors

and do not necessarily reflect the views of the National Science Foundation or the

United States Air Force.

For this entire quest, I want to express my gratitude to my family, including my

parents, elder sister, and brother. They laid the foundation for my life from childhood

and encouraged me to dream big. And that dream came true with support from the

funniest and most whimsical person in my life, my beloved husband, Dr. Tanmoy

Chowdhury. When I felt down, he provided me with forklifts (figuratively speaking,

of course), and when I felt lost, he hugged me with so much energy that I forgot

to breathe. We’ve grown together like the biggest collaborators without any official

title. You’ve been my rock, my cheerleader, and my trusty sidekick. Thank you,

my beloved life partner. I am also fortunate to have the unwavering support of my

in-laws. Also, some friends who were always there for me.

I want to pay a special tribute to my father, whom I lost along this voyage, but

who instilled in me the aspiration to pursue a Doctorate. A heartfelt immense love

to my newborn, Upakhyan Oikki Chowdhury, for bringing me joy and tranquility

throughout my pregnancy and beyond. Finally, gratitude to the divine power that

ensures everything works perfectly, always.

v

Abstract

Due to aging, fatigue, corrosion, and even natural disasters; the health of the structure

is prone to degradation throughout its service life. The explosively-fast growing

efforts on Structural health monitoring (SHM) always try to exploit different aspects

of the automation of damage detection, localization, and prognosis tasks. One of

the main challenges is the hardware and software co-design to implement the model

in real-life situations. On the other hand, the fast-advancing artificial intelligence

draws the researchers’ attention to adopt different data-driven approaches in this

field. This brings other challenges like domain-specific model adaptation, data bias,

data scarcity, model validation by physics rules, etc. To find a common ground

between computational model approaches and data-driven approaches; new interest

is growing in physics-informed machine learning (ML).

To solve the above issues, this dissertation aims to achieve hardware-software

design for SHM in two aspects: (1) data-driven ML and (2) physics-informed ML.

The design approaches also want to adopt both co-design and sequential paradigms

based on domain-specific problems. As a byproduct of this dissertation, this research

also wants to contribute to the data generation process. The research community

will be benefited from the generated data as well as the methodologies involved to

generate the data because it will give them the flexibility to generate more data based

on their needs.

vi

Table of Contents

Dedication . iii

Acknowledgments . iv

Abstract . vi

List of Tables . x

List of Figures . xii

Chapter 1 Introduction . 1

1.1 Research Issues . 3

1.2 Contribution . 6

1.3 Dissertation Organization . 7

Chapter 2 Data . 9

2.1 Non-stationary vibration data . 9

2.2 Single impact data . 12

Chapter 3 FFT Based Time Series Forecasting for Structures
Subjected to Nonstationary Inputs 15

3.1 Background . 15

3.2 Methodology . 18

vii

3.3 Results and Discussion . 21

3.4 Conclusion . 26

Chapter 4 Hardware Implementation of Nonstationary Struc-
tural Dynamics Forecasting by FFT-based Prediction 28

4.1 Background . 29

4.2 Methodology . 32

4.3 Results . 37

4.4 Conclusion . 40

Chapter 5 Deterministic and low-latency time-series forecast-
ing of nonstationary signals by Ensembled MLP . . . 42

5.1 Background . 42

5.2 Methodology . 44

5.3 Hardware Validation . 46

5.4 Results . 47

5.5 Conclusion . 49

Chapter 6 Predicting Structural Responses in Impact Sce-
narios with Physics-Guided Machine Learning 50

6.1 Background . 51

6.2 Data Generation . 54

6.3 Methodology . 57

6.4 Results and Discussion . 60

6.5 Conclusion . 68

viii

Chapter 7 Online Structural Responses Forecasting Using a
Physics-informed Knowledge Transfer Mode 71

7.1 Background . 72

7.2 Relevant Background . 75

7.3 Problem Statement . 80

7.4 Methodology . 82

7.5 Experimental Validation . 89

7.6 Results and Discussion . 93

7.7 Supplement document for different data 101

7.8 Results and Discussion . 102

7.9 Conclusions . 110

7.10 Sequence Representation function §(·) 111

7.11 Performance evaluation metrics . 114

Chapter 8 Conclusions . 115

8.1 Publications . 119

Bibliography . 123

ix

List of Tables

Table 3.1 Collected frequencies . 20

Table 3.2 Parameter values . 21

Table 3.3 Performance metrics for various learning window lengths. 24

Table 3.4 Performance metrics for various computational times. 26

Table 4.1 FFT size and input length for different sampled data in hardware
implementation. 36

Table 4.2 For various sampling data, simulation outputs including RMSE,
SNR, and chosen frequencies. 37

Table 4.3 Time required for different aspects of FFT-based forecasting. . . . 39

Table 4.4 Device utilization for FFT-based forecasting where FPGA ele-
ments are shown by device utilization. 40

Table 5.1 Types and examples of timescales for high-rate monitoring [25]. . . 43

Table 5.2 Performance metrics of the predicted results. 48

Table 5.3 The FPGA elements are shown by the device utilization. 49

Table 6.1 Model Parameters used for PISP model. 60

Table 6.2 Performance analysis with and without physics information in
terms of percentage improvement. 67

Table 6.3 Comparison of data with and without physics-informed features . . 69

Table 7.1 Important notations used in this work, with corresponding de-
scriptions. 76

x

Table 7.2 Model Parameters used for PIMENTO. 93

Table 7.3 Selecting different PI feature combinations based on performance
metrics. 94

Table 7.4 Performance analysis with and without physics information in
terms of percentage improvement. 97

Table 7.5 Different metrics analysis of corrector and estimator during var-
ious physics-based features. 98

Table 7.6 Model Parameters used for PIMENTO. 101

Table 7.7 Selecting different PI features combination based on performance
metrics. 103

Table 7.8 Performance analysis with and without physics information in
terms of percentage improvement. 106

Table 7.9 Different metrics analysis of corrector and estimator during var-
ious physics-based features. 107

xi

List of Figures

Figure 1.1 Example of high-rate dynamics 2

Figure 1.2 Physics-informed vs Data-driven 7

Figure 1.3 Research relation overview . 8

Figure 2.1 Data acquisition setup . 9

Figure 2.2 Mode shapes and frequencies for the cantilever beam setup 10

Figure 2.3 The full 16-second test is shown in the upper plot while the
inset shows the 1 second around the nonstationarity. 11

Figure 2.4 Experimental setup of a cantilever beam with key components
and data acquisition setup. 13

Figure 2.5 The experimental test results, showing (a) the measured accel-
eration response, and (b) zoomed in portion of the response. . . . 13

Figure 3.1 Schematic Algorithm diagram of FFT-based time series predic-
tion algorithms. 18

Figure 3.2 Time series prediction using various learning window lengths. . . 22

Figure 3.3 Calculated instantaneous error over for the experiment data
with various learning window lengths. 23

Figure 3.4 Effect of various learning window lengths 25

Figure 3.5 Effect of various computational time (T) in a specific learning
window length (L) showing: (a) MAE in different states, and;
(b) transient time. 26

xii

Figure 4.1 Data set with varied sample rates, showing: (a) the native sam-
ple rate of 51200 S/s; (b) sub-sampled at 25600 S/s; (c) 512 S/s;
(d) 256 S/s; (e) 128 S/s; and inset plots provide a close look
around nonstationary for each sampled data. 31

Figure 4.2 Schematic Algorithm diagram of FFT-based time series fore-
casting algorithms. 33

Figure 4.3 Flowchart for data collection and processing during FFT-based
forecasting in case of hardware implementation. 35

Figure 4.4 Simulation outcomes of forecasting at various sample rates,
showing: (a) 25600 S/s; (b) 512 S/s; (c) 256 S/s; and (d) 128 S/s. 36

Figure 4.5 Effects of variously sampled data from simulation results, show-
ing: (a) RMSE; and (b) SNR. 38

Figure 4.6 Results of the hardware validation procedure for varied sampled
data in cases of (a) computation time required; and (b) device
utilization. 39

Figure 5.1 Schematic Algorithm diagram of an ensemble of MLPs using
the 50 most recent data points and predicting 25 data points
(1 ms) into the future. 44

Figure 5.2 Flow chart of data collection and processing in parallel MLP tracks. 46

Figure 5.3 Algorithm results . 47

Figure 5.4 Time required for different aspects of the process. 48

Figure 6.1 FEA model of a steel cantilever beam with detail mesh. 56

Figure 6.2 Physics informed data from FEA model showing: (a) total dis-
placement; (b) equivalent elastic strain; (c) x-axis displacement;
(d) y-axis displacement; and (e) z-axis displacement. 56

Figure 6.3 Simple overall architecture and workflow of the proposed model
PISP (a) training; and (b) inference. 57

Figure 6.4 Overall detailed architecture and workflow of the proposed model
PISP . 58

xiii

Figure 6.5 Different PI features are used for time series forecast from the
estimator model, but all have experimental data acceleration:
(a) no PI feature only acceleration; (b) PI feature strain; (c)
PI feature y-axis displacement, and z-axis displacement; (d) PI
feature strain, x-axis displacement, and y-axis displacement; (e)
PI feature strain, x-axis displacement, y-axis displacement, and
z-axis displacement; and all show a close look around nonsta-
tionary event. Second column shows RMSE, MAE, SNRdb, and
TRAC for different PI features time series forecast. 63

Figure 6.6 Combination of error plot for 0 PI features; 4 PI features; and
error different between two. 64

Figure 6.7 Combination of absolute error plot for 0 PI features; 4 PI fea-
tures; and error different between two. 64

Figure 6.8 The performance analyses of the data-augmented PISP model
using four key metrics: (a) Root Mean Squared Error (RMSE),
(b) Mean Absolute Error (MAE), (c) signal-to-noise ratio in
decibels (SNRdb), and (d) Time Response Assurance Criterion
(TRAC). It compares the model’s performance when incorpo-
rating different numbers of physics-informed (PI) features (1 to
4) against the baseline case with no PI features (considering
only experimental acceleration data). The models with PI fea-
tures are grouped as “with PI," while the one without them is
labeled “without PI." . 66

Figure 6.9 Percentage performance analysis with physics information for
different features. 67

Figure 6.10 Performance analysis with physics information and without physics
for 9 data sets. 69

Figure 6.11 Performance analysis with physics information and without physics
for 9 data sets along with hammering around time and hammer
force. 70

xiv

Figure 7.1 Generic time series forecast scenario that takes into account
how, in the case of univariate data shown in (a), x input exper-
imental acceleration data becomes the time series prediction y
in future. Using different physics-informed feature data, such
as xa, xb, and xc input is showing in (b) illustrates a general
scenario for a time series forecast, with y as the predicted out-
come. In general, the input is multivariate, but the forecast is
identical to that of generic time series forecasting. 78

Figure 7.2 Estimator model problem formulation. 81

Figure 7.3 Corrector model problem formulation. 81

Figure 7.4 Preliminary layout of proposed model PIMENTO is showing:(a)
training: estimator model’s encoder is tuned based on the cor-
rection from the corrector model. During training the decoder
is replicated from the corrector decoder and then tuned during
training; and (b) inference : as the encoder and the decoder
have been tuned in the training phase, so no correction or in-
volvement of the corrector model is needed. 82

Figure 7.5 Corrector model complete architecture 85

Figure 7.6 Estimator model complete architecture 86

Figure 7.7 The full experimental acceleration data is shown in the upper
plot (a) and the bottom (b) shows a close view around the
nonstationarity. 89

Figure 7.8 FEA model of a steel cantilever beam with detail mesh and an
inset that shows close-up looks of the mesh. 89

Figure 7.9 FEA model of the cantilever beam analysis showing: (a) total
displacement; (b) equivalent elastic strain; (c) x directional dis-
placement;(d) y directional displacement; and (e) z directional
displacement of FEA model. 91

Figure 7.10 Physics informed data from FEA model showing: (a) total dis-
placement; (b) equivalent elastic strain; (c) x-axis displacement;
(d) y-axis displacement; and (e) z-axis displacement. 92

xv

Figure 7.11 Different PI features are used for time series forecast from the
estimator model, but all have experimental data acceleration:
(a) no PI feature only acceleration; (b) PI feature strain; (c)
PI feature y-axis displacement, and z-axis displacement; (d) PI
feature strain, x-axis displacement, and y-axis displacement; (e)
PI feature strain, x-axis displacement, y-axis displacement, and
z-axis displacement; and all show a close look around nonsta-
tionary event. Second column shows RMSE, MAE, SNRdb, and
TRAC for different PI features time series forecast. 95

Figure 7.12 Various metrics analysis based on without PI features and with
PI features showing:(a) RMSE; (b) MAE; (c) SNRdb; and (d)
TRAC. 96

Figure 7.13 Percentage improvement over without physics-informed feature
analysis with different numbers of physics information features. . 97

Figure 7.14 Performing sensitivity analysis using features to illustrate: (a)
RMSE; (b) MAE; (c) SNRdb; and (d) TRAC.This figure com-
pares the concurrent performance of the corrector and estimator
models about four PI features (1-4) and also with 0 PI features,
which only consider experimental acceleration. 98

Figure 7.15 Sensitivity analysis varying the input dimension for 4 PI fea-
tures, showing results for (a) RMSE; (b) MAE; (c) SNRdb; and
(d) TRAC. This investigation helps in choosing the most suit-
able input dimensions for the proposed model when there are
4 PI features. To make decisions, values that are near between
the corrector and estimator models are utilized. 99

Figure 7.16 Sensitivity analysis varying the output dimensions for 4 PI fea-
tures and an input dimension is 10000, showing: (a) RMSE;
(b) MAE; (c) SNRdb; and (d) TRAC. This analysis decides the
best output dimensions for the proposed model in the case of
4 PI features. Decisions are made upon close values between
corrector and estimator models. 100

Figure 7.17 The full experimental acceleration data is shown in the upper
plot (a) and the bottom (b) shows a close view around the
nonstationarity. 101

Figure 7.18 Physics informed data from FEA model showing: (a) total de-
formation; (b) equivalent elastic strain; (c) x-axis deformation;
(d) y-axis deformation; and (e) z-axis deformation. 102

xvi

Figure 7.19 Different PI features are used for time series forecast from the
estimator model, but all have experimental data acceleration:
(a) no PI feature only acceleration; (b) PI feature deformation;
(c) PI feature deformation, and strain; (d) PI feature strain, x-
axis deformation, and y-axis deformation; (e) PI feature strain,
x-axis deformation, y-axis deformation, and z-axis deformation;
and all shows a close look around nonstationary event. Second
column shows RMSE, MAE, SNRdb, and TRAC for different
PI features time series forecast. 105

Figure 7.20 Various metrics analysis based on without PI features and with
PI features showing:(a) RMSE; (b) MAE; (c) SNRdb; and (d)
TRAC. 106

Figure 7.21 Percentage improvement over without physics informed feature
analysis with different numbers of physics information features. . 106

Figure 7.22 Performing sensitivity analysis using features to illustrate: (a)
RMSE; (b) MAE; (c) SNRdb; and (d) TRAC.This figure com-
pares the concurrent performance of the corrector and estima-
tor models with regard to four PI features (1-4) and also with
0 PI features, which only take experimental acceleration into
consideration. 107

Figure 7.23 Sensitivity analysis varying the input dimension for 4 PI fea-
tures, showing results for: (a) RMSE; (b) MAE; (c) SNRdb;
and (d) TRAC. This investigation helps in choosing the most
suitable input dimensions for the proposed model when there
are 4 PI features. To make decisions, values that are near be-
tween the corrector and estimator models are utilized. Right
top corner(a.1); (b.1); (c.1); and (d.1) shows a zoom portion
near lowest error change for each metrics. 108

Figure 7.24 Sensitivity analysis varying the output dimensions for 4 PI fea-
tures and an input dimension is 25500, showing: (a) RMSE;
(b) MAE; (c) SNRdb; and (d) TRAC.This analysis decides the
best output dimensions for proposed model in case of 4 PI fea-
tures and input dimension 25500.Decisions are made upon close
values between corrector and estimator models.Right top cor-
ner(a.1); (b.1); (c.1); and (d.1) shows a zoom portion near low-
est error change for each metrics. 109

Figure 7.25 Diagram of an LSTM cell. 112

Figure 7.26 Sequence representation function denoted as §(·). 112

xvii

Chapter 1

Introduction

Over the service life, different types of elements, including age, fatigue, corrosion, and

even natural catastrophes, continuously impact and impair the health of structures.

The cumulative deterioration will lower the ability of the structure to withstand

disasters and occasionally cause partial failure, failure, or even total collapse of the

structures. The possibility of such accidents poses a serious threat to both people’s

lives and property. Given these growing worries, one of the main areas of research

concentration in recent years has been on the health monitoring and rehabilitation

technologies of structures. Despite the enormous amount of study that has been

done in recent years, there are still significant problems and difficulties. The act of

gathering, interpreting, and analyzing data from structures to ascertain their health

state and remaining life span is known as structural health monitoring (SHM). The

idea of SHM is not new; military aircraft have used it in the past with a different

justification but some overlapping features. Safety is the main driver of SHM. The

economic motive is also clear, and it is made achievable by optimizing safety margins

throughout rehabilitation and retrofitting [53]. The goal of this research work is

to analyze temporal forecasting in structural health monitoring systems. In the first

stage, the main focus is time series data of high-rate dynamics systems and developing

models, and implementing those models on hardware. In next stage, the goal is to

improve the data-driven model to a physics-informed model. For the preliminary

study, this work proposes to develop a testbench structure that consists of a cantilever

beam subjected to nonstationary inputs to generate experimental data.

1

Figure 1.1 Example of high-rate dynamics 1

The dynamics, that emerges from the high-rate change of the state of a system,

makes the system characteristics more complex. Understanding the kinematics of the

state-transition function of a dynamic system is a daunting task, in particular for real

world. In the real world, the data caveats (data acquisition, processing, noise) are

worsened by the high-rate (< 100 ms) change in the system. Moreover, the structures

experiencing high-rate dynamics are subjected to three important phenomena [37].

These are: 1) large uncertainties in external loads, 2) high levels of nonstationarities

and heavy disturbances, and 3) the generation of unmodeled dynamics from changes

in system configuration. In general, structures that experience high-rate dynamics

have acceleration amplitudes higher than 100 gn for a duration of under 100 ms. Ex-

amples of structures that experience high-rate dynamics include hypersonic vehicles,

space infrastructure, active blast mitigation structures, and airbag system etc. Mi-

crosecond (µs) structural awareness, damage detection, prognostics, and control of

structures that experience high-rate dynamics (i.e. shock) would benefit from real-

time time-series forecasting of structural responses. Knowledge of future structural

1Sources: https://www.space.com/16726-space-shuttle.html, https://www.aarp.org/
auto/driver-safety/what-to-do-after-car-accident/

2

https://www.space.com/16726-space-shuttle.html
https://www.aarp.org/auto/driver-safety/what-to-do-after-car-accident/
https://www.aarp.org/auto/driver-safety/what-to-do-after-car-accident/

response would increase structure survivability in harsh dynamic environments by

responding appropriately and adapting goals to changing conditions [25].

One key challenge in the development of a real-time monitoring and prediction

methodology is its ability to operate through nonstationarities. A nonstationary event

is one in which the statistical representation of the signal changes. Stationarities can

be classified as weak stationarity, covariance stationarity, or second-order stationarity

[5]. If a shift in time does not induce a difference in the distribution form, a time

series has stationarity, and therefore, the distribution properties (e.g., mean, variance,

and covariance) are constant over time. To address the challenge, we can pursue the

data-drvien models and implement the model in hardware and software levels. But,

data-driven system has its own demerits (Needs to see a large number of input, can

only learn from data not intelligence in the sense that humans are, etc). Again if we

want to use the rule-based model then the demerits are problems with a vast number

of variables problems with many constraints and limited intelligence. So, it brings the

challenge to find a middle ground between this data-driven and rule-based models.

So, hardware-software design of structural health monitoring systems brings the two

important research questions for this dissertation:

• Research Question 1: How to design hardware and software for real-time

forecasting for SHM?

• Research Question 2: How to synergies between data-driven and rule-based

system?

1.1 Research Issues

This research mainly focus on modeling and hardware implementation of the real-

time forecasting of the dynamics of structures experiencing non-stationary inputs.

The major search issues are as follows:

3

1.1.1 Data Scarcity

One of the biggest challenges in high-rate dynamic studies is the scarcity of the

data. Security, compliance, governance restrictions, and intellectual property policies

hinder the data collection process. So, lack of data makes the system analysis more

cumbersome. There is a demanding need to make a data generating algorithm.

1.1.2 Model development for time series forecasting

Time series forecasting of high-rate dynamics is challenging. Specifically, a time se-

ries forecasting technique must be robust enough to operate with noisy sensor data.

Time series forecasting is performed by studying patterns in a variable (or the re-

lationships between variables), building a model, and using this knowledge to build

a model. The model is then used to extrapolate the variable into the future. This

demonstrating approach is especially valuable when little information is accessible on

the information-producing operation or when there is no agreeable illustrative model

that relates the expectation variable to other illustrative factors.

Common techniques for time series prediction incorporate the sliding window,

smoothing, and autoregressive expectation techniques, which are broadly applied in

a forecast of high rate dynamics system states, financial turn of events, environmental

change, and energy interest. The sliding window technique is similar to the single

dramatic smoothing strategy while the smoothing and autoregressive techniques are

similar to the two-fold dramatic smoothing technique and the triple outstanding

smoothing strategy, respectively [50].

If a time series is Xt = {x1, x2, · · · , xt}, then predicting the future value of the

target series can be formulated as:

yt+1 = fs(Xt); Single Horizon (1.1)

y{t+1,t+2,··· ,t+n} = fm(Xt); Multi-Horizon (1.2)

4

Modeling the functions fs(·) and fm(·) for noisy non-stationary data (Xt) for

single horizon (yt+1) or multi-horizon (y{t+1,t+2,··· ,t+n}) involves lot of sub-tasks as the

investigation can be diversified based on the domain demands (online, offline, sliding

window, scalar value, vector value).

1.1.3 Hardware Implementation of the Model

In the simulated environment, speed can be varied based on the processor speed of

the computer involved. The performance of the algorithm/model in a simulated envi-

ronment can show discrepancies to the real-world implementation. So, it is necessary

to see the performance of the developed algorithm in hardware. Moreover, high-rate

dynamics have a very short response time. So, it is crucial to see the performance of

a developed algorithm related to time series prediction in hardware when this whole

issue is very time-sensitive due to sudden impact for a short time.

1.1.4 Synergies between data-driven and rule-based system

The aforementioned issues are directly related with research question 1. Now this

specific issue is related to the research question 2. By addressing the previous is-

sues we can overcome the development phase problems of this research work. Then

the research aims to improve the data-driven approaches. There are several pros

and cons to data-driven approaches. The system is self-learning, capable of handling

complex problems and adapting over time. One of its major strengths is its ability

to analyze large volumes of data and make informed decisions without explicit pro-

gramming. However, a key drawback is its reliance on massive datasets and its lack

of human-like intuition. Data-driven approaches excel at processing and extracting

insights from large datasets, while rule-based systems rely on predefined hypotheses

and equations to make decisions. Rule-based approaches, though effective for smaller

data sets, struggle to scale with large, complex data. To advance this field, a hybrid

5

system is needed—one that synergies the strengths of both data-driven and rule-based

approaches, combining the ability to process vast amounts of data with the logical

structure and interpretability of rule-based methods.

1.2 Contribution

By addressing the research issues stated above, the research proposal aims to con-

tribute the following in the research community:

• This work presents a testbench structure consisting of a cantilever beam sub-

jected to nonstationary inputs, designed to generate experimental data. The

key contribution is the generation of prototype high-rate data, addressing the

challenges of limited access to real high-rate data, which is often unavailable or

restricted for general use and graduate-level research.

• This work proposes two models which can recognize nonstationary events and

alter their anticipated signal in response to them.

– Investigates the performance of the FFT-based approach before, during,

and after a nonstationary event, while evaluating the effects of different

learning window lengths and computation times.

– Proposes the use of an ensemble of Multi-Layer Perceptrons (MLPs) in

the technique, trained offline on both actual and simulated data relevant

to the structure.

• This work implements both models (FFT-based, ensembled MLP based) on

Field Programmable Gate Array (FPGAs).Real time implementation in hard-

ware (FPGA) is the key contribution.

• This works proposes two more models to improve the data-driven models so

that it can handle minimum number of data and a significant amount of physics

6

information about the system. Here physics-informed machine learning comes

to improve the models that are designed and implemented in hardware in the

development phase of this research work. The Figure 1.2 depicts the relationship

between data-driven and physics-informed machine learning.

Figure 1.2 Physics-informed vs Data-driven

In a nutshell, the whole research work aims to develop hardware-software design

for temporal forecasting in structural health monitoring system. In many of diversified

applications, this work focuses mainly to address the issues in the time-series predic-

tion of high-rate dynamic systems both in the simulated and real world as well with

data-driven and physics-informed machine learning models. The Figure 1.3 shows the

relationship of the research areas. Here, Along the way, this work utilizes traditional

data models and two unique problem-specific frameworks to integrate physics-based

rules with the data driven models to predict the time-series data.

1.3 Dissertation Organization

The remainder of the research dissertation is as follows. First, this work focuses

on the data generation process in Chapter 2. Then, Chapter 3 presents numerical

analysis and experimental results for the real-time implementation of a Fast Fourier

Transform (FFT)-based approach for time series forecasting. Chapter 4 discusses

7

FFT based Time series
prediction

Data Generation

Model Development

HW Implementation

Adding Physics in SHM SystemHW-SW Development

MLP based Time series
prediction:

Model Development

HW Implementation

Comparison

RQ 2: How to add physics?

Data-driven ML Physics-informed ML

Data generation

model development model development

FE model development

RQ1: How to design?

Physics-informed model development

Physics data enhance
Time series prediction

FE model development

Physics data generation

Integrate Physics data
with experimental data

Physics knowledge
transfer-based Time

series prediction

FE model development

Physics data generation

Transfer Learning-based
Model Development

Physics-informed model development

Figure 1.3 Research relation overview

the hardware implementation of FFT-based prediction. Chapter 5 reports on the

development of a coupled software-hardware algorithm (ensembled MLP-based) for

deterministic and low-latency online time-series forecasting of structural vibrations

that is capable of learning over nonstationary events and adjusting its forecasted

signal following an event. Chapter 6 enhances the experimental data with the physics

based finite element model data. This focuses the impact of integrating physics data

with the experimental data. In Chapter 7, transfer learning approach was adopted

to make a student model which does not need the physics data but can utilizes the

physics informed trained model as the teacher model was trained based on the physics

enhanced data. Finally, the Chapter 8 summarizes all the accomplished works and

future directions.

8

Chapter 2

Data

Mainly two approaches can be followed for data generation: rule-based and deep

generative models. However, since deep generative models rely heavily on data, a

lack of sufficient data makes it challenging to implement and achieve accurate re-

sults. We focused on rule-based methods for data generation. Our goal is to find the

schema/theory to generate a realistic dataset which can be benefecial for the com-

munity to continue the research in different directions. Two types of experimental

data has been generated for these overall dissertation research work.First approach

is Non-stationary vibration data and second one is Single impact data.

2.1 Non-stationary vibration data

2.1.1 Experimental Setup

Figure 2.1 Experimental setup of a cantilever beam with key components and data
acquisition setup[11]. Puja Chowdhury, CC-BY-SA-4.0..

9

The experimental setup is shown in Figure 2.1. For the purpose of the experiment,

a steel cantilever beam structure of 759 x 50.66 x 5.14 mm is used and a single In-

tegral Electronics Piezoelectric (IEPE) accelerometer (model J352C33 manufactured

by PCB Piezotronics) is mounted close to the edge of the beam structure.The location

of the accelerometer is 0.46 m from the fixed point of the cantilever beam as shown

in Figure 2.1.This accelerometer has a frequency range of 0.5 Hz to 9k Hz with a

sensitivity of 100 mV/g. The sensor data is digitized using a 24-bit NI-9234 IEPE

signal conditioner manufactured by National Instruments.

2.1.2 Mode

To ensure that the accelerometer was not placed at a node of the beam, the mode

shapes and natural frequencies for the first three modes of the cantilever were com-

puted via Euler’s formula [45] and are shown in Figure 2.2. The node of the system

for the second mode is at 0.594 m while the nodes of the system for the third mode

are at 0.380 m and 0.659 m. Therefore, the location of the accelerometer at 0.46 m

does not lie directly at any node.

Figure 2.2 Mode shapes and frequencies for the cantilever beam setup showing: (a)
mode shape 1; (b) mode shape 2, and; (c) mode shape 3.

Equations for the first three natural frequency are given below: First natural

frequency

f1 = (1.875)2/2π
√

(Ed2)/(12ρ(l4)) (2.1)

10

Second natural frequency

f2 = (4.694)2/2π
√

(Ed2)/(12ρ(l4)) (2.2)

Third natural frequency

f1 = (7.855)2/2π
√

(Ed2)/(12ρ(l4)) (2.3)

where, E = young’s modulus (N/m2) = 2.1×1011 (steel), d = depth/ thickness (m)

= 0.00514, ρ = density (kg/m3) = 7850 (steel), l = length (m) = 0.759.

2.1.3 Data acquisition

The beam is excited by an electromagnetic shaker (model V203R manufactured by

LDS), with a useful frequency range of 5-13000Hz and a peak sine force of 17.8N, and

is driven by a power amplifier (model PA25E-CE manufactured by LDS). A 45 N load

cell (model MLP-10 manufactured by Transducer Techniques) is mounted in-between

the shaker and beam structure. A 24-bit bridge input signal conditioner (NI-9237

manufactured by National Instruments) is used to acquire the load-cell data. The

experiment is run through a control computer with a Virtual Instrument written in

LabVIEW.

Figure 2.3 The full 16-second test is shown in the upper plot while the inset shows
the 1 second around the nonstationarity.

11

Figure 2.3 reports the structure’s measured acceleration response (xv) for a com-

posite sinusoidal input from the shaker. In figure 2.3, the composite signal is made

up of 100, 120, and 150 Hz sinusoidal signals. Two sine wave signals are concatenated

together at t=0 where a 50% nonstationary is present. A 50% nonstationary event

is introduced at 0 s, as measured by a 50% increase in the standard deviation of the

signal. To achieve this, an input signal of 0.25 V is used before t=0 while a signal

of 0.375 V is used after t=0. The first half of the composite signal is built from

100, 120, and 150 Hz frequencies while the second half signal consists of 100 and 120

Hz frequencies. The entire 16-second test is shown in Figure 2.3 while the expanded

view shows the 1 s around the nonstationary. This is one of several types of generated

data. All of this data are available in a public repository [35] 1. For this introductory

work, only a harmonic load with a single non-stationary event is considered. Future

work will consider non-harmonic loads.

2.2 Single impact data

These data involves a physical experiment: a cantilever beam is vibrated consistently

and then subjected to an unexpected impact. This simulates real-world situations

where structures experience both regular and sudden forces.

2.2.1 Experimental data generation:

The experimental setup, depicted in Figure 2.4, is as same as like Nonstationary

vibration data generation in 2.1.Only addition is a model hammer (Emerson Model

A034701) to create the sudden single impact in the cantilever beam.The accelerometer

is situated at a distance of 0.55 m from the fixed point of the cantilever beam, as

1https://github.com/High-Rate-SHM-Working-Group/Dataset-4-Univariate-signal-with-
nonstationarity

12

Figure 2.4 Experimental setup of a cantilever beam with key components and data
acquisition setup.

Figure 2.5 The experimental test results, showing (a) the measured acceleration
response, and (b) zoomed in portion of the response.

illustrated in Figure 2.1. Mode shape analysis remains consistent with the approach

in Section 2.1.2, as the same cantilever beam is used.

Data Generation

The shaker initiates a nonstationary excitation of the beam using a pre-generated

sinusoid signal with a 1 V amplitude and a 20 Hz frequency starting at t=0. Around

t=5 secs, a modal hammer (Emerson Model A034701) delivers a secondary non-

13

stationary excitation to the beam. The hammer force is approximately 315.73 N.

Furthermore, the force exerted by the modal hammer is captured to provide insight

into the impact force applied to the cantilever beam and recorded by the DAQ mod-

ule. The structure’s measured acceleration response (Xa) for the entire test is shown

in Figure 2.5(a), while an expanded view depicting the close view around the non-

stationary event created by modal hammer impact is displayed in Figure 2.5(b). The

sample rate of this generated data is around 2560 S/s.These data explanation is for

a single data. We generated these type of several data with different hammer force

and available in a public repository.

14

Chapter 3

FFT Based Time Series Forecasting for

Structures Subjected to Nonstationary Inputs

(This chapter was published on "Time Series Forecasting for Structures Subjected to

Nonstationary Inputs." In Smart Materials, Adaptive Structures and Intelligent Systems,

vol. 85499, p. V001T03A008. American Society of Mechanical Engineers, 2021.[18])

The development of a real-time monitoring and prediction methodology that ob-

serves the current state of a structure and predicts its future state will enable active

structures that can respond to high-rate dynamics in real-time [44]. If an effective

framework can be developed, control commands can be initiated to prevent further

harm or complete system failure [20]. One key challenge in the development of a

real-time monitoring and prediction methodology is its ability to operate through

nonstationarities. A nonstationary event is one in which the statistical represen-

tation of the signal changes. Stationarities can be classified as weak stationarity,

covariance stationarity, or second-order stationarity [5]. If a shift in time does not

induce a difference in the distribution form, a time series has stationarity, and there-

fore, the distribution properties (e.g., mean, variance, and covariance) are constant

over time.

3.1 Background

There are a variety of cases in which a time series does not stay stationary. If these

distribution properties are mishandled, the time series would display nonstationary

15

attributes, which is a significant test for a few fields. The nonstationary time arrange-

ment incorporates time trends, arbitrary strolls (additionally called unit roots), and

seasonality. Time trends in a signal can also be thought of as low frequency compo-

nents with periods longer than the considered data set. Thus, a few methodologies

are created to break down the nonstationary attributes. These methodologies can be

characterized into two primary sorts: time strategies (e.g., Auto-Correlation Analysis

strategy, Regression technique, Seasonal Auto-Regressive Incorporated Moving Av-

erage, Break for Additive Trend and Season) and Spectro-Temporal strategies [57].

Spectro-Temporal techniques consider the portrayal of frequency varieties [56].

Time series forecasting of high-rate dynamics is challenging. Specifically, a time

series forecasting technique must be robust enough to operate with noisy sensor data.

Time series forecasting is performed by studying patterns in a variable (or the re-

lationships between variables), building a model, and using this knowledge to build

a model. The model is then used to extrapolate the variable into the future. This

demonstrating approach is especially valuable when little information is accessible

on the information-producing operation or when there is no agreeable illustrative

model that relates the expectation variable to other illustrative factors. Much effort

has been committed to the improvement and development of time series forecasting

models [41]. The investigation of the time series can be separated into two tasks.

The initial task is to acquire the structure and basic knowledge (i.e. dynamics) of the

observed information. The subsequent task is to fit a model that will be used to make

predictions. Observing past information can be utilized for the examination of the

dynamics of a structure under nonstationary inputs as well as prediction of its future

dynamics. A standard methodology in dissecting time series is to decompose the mon-

itored variable into the three segments: trend, nonstationary, and residual [51]. For

the most part, time series examination can be isolated into univariate and multivari-

ate examinations. Univariate time series includes a period arrangement containing a

16

solitary perception recorded consecutively over time. Multivariate time arrangement

is utilized when several time series factors are included, and their connections are to

be considered [6]. Common techniques for time series prediction incorporate the slid-

ing window, smoothing, and autoregressive expectation techniques, which are broadly

applied in a forecast of high rate dynamics system states, financial turn of events,

environmental change, and energy interest. The sliding window technique is similar

to the single dramatic smoothing strategy while the smoothing and autoregressive

techniques are similar to the two-fold dramatic smoothing technique and the triple

outstanding smoothing strategy, respectively [50].

The main aim of this work is to investigate the real-time implementation of time

series forecasting over a nonstationary event. In this work, a change in loading is in-

troduced into a cantilever beam structure to generate a nonstationarity event. This is

intended to represent a structure subjected to a high-rate dynamic event (e.g. impact)

that changes the state (i.e. damage) of the structure. This work presents a numerical

analysis for the real-time implementation of a Fast Fourier Transform (FFT)-based

approach for time series forecasting. For this preliminary study, a testbench structure

that consists of a cantilever beam subjected to nonstationary inputs is used to gener-

ate experimental data. For online time series forecasting, the FFT-based approach is

implemented in a rolling window configuration. The main contribution of this paper

is a investigation into how the FFT-based approach responds before, during, and

directly following a nonstationary event, while considering different learning window

lengths and assumed computation times. The performance of the system is quan-

tified using a variety of metrics that investigate the quality of the prediction. The

FFT-based approach with the shortest learning time achieves the best performance.

Here 0.1 s, 0.5 s, and 1 s learning window length have been considered with different

computation times simulated. The effect of learning window length in different states

is described with MAE (mean absolute time) and transient state. The mean absolute

17

Figure 3.1 Schematic Algorithm diagram of FFT-based time series prediction algo-
rithms.

error (MAE) can be used to classify errors that are uniformly distributed [7]. The

computation time is an approximation of the actual computation time needed for the

FFT, signal extraction, and IFFT. These values are reasonable approximations for

actual hardware. The effect of computational time is also analyzed in different states

and described with mean error and transient time. The algorithm configuration with

the shortest learning window that exceeds the lower bound set by the Nyquist sam-

pling theorem (0.1 s) is shown to converge faster following the nonstationary when

compared to algorithm configurations with longer learning windows. The shortest

computational time (0.01 s) is also impactful for smaller mean errors in different

states and for obtaining the shortest transient time.

3.2 Methodology

We followed the same data genertion process described in Chapter 2. In this study,

periodic structural vibration is analyzed. The measured acceleration signal is xv =

(x1, x2, x3, . . . , xV) where V is the total sample points in the observed signal. A

rolling window, xa of size, N moves forward through time as time progresses. By ap-

18

plying the FFT-based time series forecasting method, a signal is generated that is M

points long where M > N . The difference, (M −N) presents the length of the predic-

tion horizon. By determining N and M , this method can be applied to achieve a pre-

dicted signal of desirable length. The rolling window is xa = (xa1, xa2, xa3, . . . , xaN).

The first step is to remove any trend line from the acceleration xa. xtrend represents

the trend component of the acceleration data xa. This trend component is the part of

the acceleration signal that captures any long-term, systematic behavior or pattern,

such as a steady increase or decrease over time, rather than short-term fluctuations

or random noise. To do this, a polynomial function used where

xtrend = p(x) = c0 + c1x + c2x
2 + + cqx

q (3.1)

and q is the degree of the polynomial and c is a set of coefficients. In this work, q = 1,

meaning it’s a linear trend. After removing the trend, the new acceleration signal

without trend is x = xa − xtrend which has the same sample size as N . As considered,

the acceleration signal without the trend, x = (x1, x2, x3, . . . , xN), is a time series

of N -samples that the frequency content is extracted from. Therefore, the discrete

Fourier transform (DFT) of that series can be expressed as

Xk =
N−1∑
n=0

xne(−i2π(kn/N)) for k = 0, . . . , N (3.2)

where,

ω = 2π/N = 2πf (3.3)

(Xamp)k = |Xk| (3.4)

(Xphase)k = Xk/|Xk| (3.5)

Similarly, the inverse DFT can be written as

xn = 1
N

N−1∑
k=0

Xke(i2πkn/N) for n = 0, . . . , N (3.6)

19

Now, consider a new series of M length where M > N . Using amplitude and phase

information, the time series can be constructed and written as

xm =
M−1∑
k=0

((Xamp)k
˙cos(2π(km/M)) + (Xphase)k) for m = 1, . . . , M (3.7)

The xm time series with the trend information added back can be expressed as

xa_new = xm + xtrend (3.8)

The predicted series would then be:

xpred = (xa_new(N+1), xa_new(N+2), xa_new(N+3), . . . , xa_new(M)) (3.9)

Frequency domain Xk, measures for frequency (f), amplitude (Xamp)k, and phase

(Xphase)k. Here k is the index of components in the frequency domain while n and m

are the indexes in the time domain for the original series and the new extended series

respectively. Thereafter, selective frequency components are collected. For this work,

only 28 frequencies are used for propagating the frequencies forward. The selected

frequencies are those that have the most energy in the original signal. Here, the list

of collected frequencies are given in Table 3.1

Table 3.1 Collected frequencies

frequencies (Hz)
20 -20 60 -60 70 -70 80
-80 100 -100 120 -120 140 -140
150 -150 160 -160 170 -170 180
-180 200 -200 220 -220 240 -240

For time series forecasting, the FFT-based approach is implemented in a rolling

window configuration. In this work, the sliding window length and the prediction

window length is 1 s. The performance of this work has been analyzed with different

learning window length (L) and various computational times (T). Here, three lengths

20

of learning windows are used, they are: i) 0.1 s window length, ii) 0.5 s window length,

and iii) 1 s window length. Here, four computational times are assumed, intended

to model the latency of the FFT, signal extraction, and IFFT on various hardware

architectures. These are: i) 0.01 s, ii) 0.1 s, iii) 0.5 s, and iv) 1 s.

The algorithm is diagrammed in Figure 3.1. The left side of the figure shows

how the rolling window is used to enable time series forecasting while the right-side

flow chart shows how frequency component extraction and time series prediction is

performed. Table 3.2 shows the parameter values.

Table 3.2 Parameter values

learning length computational time prediction length
L (s) T (s) P (s)

0.1, 0.5, 1 0.01 1
0.1, 0.5, 1 0.1 1
0.1, 0.5, 1 0.5 1
0.1, 0.5, 1 1 1

3.3 Results and Discussion

The effect of two parameters on the algorithm have been analyzed: the length of

the learning window and the computational time required to perform the FFT-based

algorithm.

Figure 3.2 reports the time series prediction for the FFT-based algorithm for the 12

window lengths considered. Figures 3.2(a)-(e) show that when the learning window is

shorter than the period of the lowest frequency component of the signal, a periodicity

in the predicted signal develops. However, when the learning window exceeds the

base period in the signal, the periodicity in the predicted signal is removed; as shown

in Figures 3.2(i)-(l). The lowest frequency among the frequencies that compose the

signal is 20 Hz, as presented in Table 3.1. For a 20 Hz frequency, the corresponding

period is 0.05 s. Therefore, to capture this frequency, the minimum learning window

21

Figure 3.2 time series prediction using various learning window lengths showing: (a)
0.01 s window length; (b) 0.02 s window length; (c) 0.03 s window length; (d) 0.04 s
window length; (e) 0.05 s window length; (f) 0.06 s window length; (g) 0.07 s window
length; (h) 0.08 s window length; (i) 0.09 s window length; (j) 0.1 s window length;
(k) 0.5 s window length; and (l) 1 s window length.

length needs to be twice the period of the signal, per the Nyquist Theorem. Applying

the Nyquist Theorem, the minimum length of the learning window should be 0.1

s. This minimum sampling rate requirement is shown in Figures 3.2(j)-(l). For

accurately capturing all the frequencies listed in Table 3.1, the minimum period

should be higher than the Nyquist limit; for this data set the minimum learning rate

22

is about 0.15 s. As the length of the learning window increases beyond 0.1 s, the

quality of the reproduced signal improves. This is shown in Figures 3.2(k)-(l) where

Figure 3.2 (l) shows the best prediction. Signal convergence during the transient

Figure 3.3 Calculated instantaneous error over for the experiment data with various
learning window lengths showing: (a) 0.01 s window length; (b) 0.02 s window length;
(c) 0.03 s window length; (d) 0.04 s window length; (e) 0.05 s window length; (f) 0.06 s
window length; (g) 0.07 s window length; (h) 0.08 s window length; (i) 0.09 s window
length; (j) 0.1 s window length; (k) 0.5 s window length; and (l) 1 s window length.

state is affected by the length of the learning window. As shown in Figure 3.2(l), the

longest learning window length (1 s) takes approximately 1.3 seconds compared to

23

the 0.4 s learning window length in Figure 3.2(j) which requires only 0.4 seconds to

converge. For the purpose of this paper, the system is said to be transient or in a

transient state when it has not converged to a steady-state, quantified by looking at

the change in error of the system.

The instantaneous (i.e. point-by-point) error for the FFT-based algorithm for

the 12 window lengths considered is shown in Figure 3.3. The periodicity in the

predicted signal is removed when the learning window reaches twice the signal’s base

frequency, as seen in Figures 3.3(j)-(l). Figure 3.3(j) shows the error for a learning

window length is 0.1 s and has a slight periodic pattern, this is due to it being at the

Nyquist limit. In Figures 3.3(j)-(l), the period of the signal that is in the transient

state is denoted by a significantly higher level of error.

Figure 3.4 and Table 3.3 consider the three learning window lengths of 0.1 s (j),

0.5 s (k), and 1 s (l) for further analysis. Figure 3.4 and Table 3.3 report the effects

of the selected learning window length on both the MAE and the transient time.

Figure 3.4(a) shows that if the learning window length is increased, the mean error

for the considered state decrease. Moreover, Figure 3.4(b) shows that if the learning

length increases, the transient time also increases. Therefore, the mean error and

learning window length relationship are inversely proportional while the transient

time and learning window length relationship are proportional.

Table 3.3 Performance metrics for various learning window lengths.

learning window length
0.1 s 0.5 s 1 s

State MAE (m/s2)
Pre-event steady state 0.0112 0.0039 0.0038

Transient event 0.0409 0.0398 0.0335
Post-event steady state 0.0298 0.0103 0.0102

Transient time (s) 0.42 0.82 1.32

Following the analysis of learning window length, the computational time of the

algorithm is considered as another important parameter. Figure 3.5 and Table 3.4

24

Figure 3.4 Effect of various learning window lengths (L) showing: (a) MAE in
different states, and; (b) transient time.

display the impact of four simulated computational times (0.01 s, 0.1 s, 0.5 s, and

1 s) for a constant learning length of 0.1 s. The learning length of 0.1 s was chosen

as it provides a nice trade-off between the considered metrics of MAE and transient

time. Figure 3.5 and Table 3.4 show that as the computational time increases, the

MAE and transient time increases. This is a proportional relationship. Figure 3.5(a)

depicts the MAE in various states. The MAE across the three computational times

varies by less than 3%, this relatively constant error results from the benefits of

a shorter computational time only being leveraged when the system experiences a

transient event it must respond to. Figure 3.5(b) and Table 3.4 shows that the 0.01

s computational time results in a response with less transient time than 1 s.

25

Figure 3.5 Effect of various computational time (T) in a specific learning window
length (L) showing: (a) MAE in different states, and; (b) transient time.

Table 3.4 Performance metrics for various computational times.

computational time
0.01 s 0.1 s 0.5 s 1 s

State MAE (m/s2)
Pre-event steady state 0.0099 0.0112 0.0175 0.0254

Transient event 0.0408 0.0409 0.0414 0.0441
Post-event steady state 0.0265 0.0298 0.0459 0.0666

Transient time (s) 0.32 0.42 0.82 1.32

3.4 Conclusion

This work describes a method for forecasting the state of dynamic structures ex-

periencing nonstationary inputs, capable of time series predictions across different

timescales. Hypersonic vehicles and space launch systems are the target applications

26

for this system. This work presents a mathematical examination and exploratory out-

comes for the continuous execution of a Fast Fourier Transform (FFT)-based method-

ology for time series forcasting. For offline time series forecasting, the FFT-based

approach is implemented in a rolling window configuration. Two types of parameter

effects have been analyzed for the algorithm. The length of the learning window

and the computational time taken to run the FFT-based algorithm are the two pa-

rameters. The effect of learning window length is described concerning mean error

and transient state. Learning window lengths are inversely proportional with mean

error in different states and proportional with transient time. In the case of mean

error, the longest learning window length of 1 s provides the best performance in the

steady-state condition. In the case of transient time or convergence duration, the

shortest learning window length that is above the Nyquist limit (0.1 s) performs the

best. The relationship between computational time and mean error in different states,

as well as transient time, is proportional. The shortest computational time (0.01 s)

shows the best performance in MAE and also in transient time. In future work, the

FFT-based rolling window prediction method will be implemented in hardware for

real-time online time series forecasting.

27

Chapter 4

Hardware Implementation of Nonstationary

Structural Dynamics Forecasting by FFT-based

Prediction

(This chapter was published on "Time Series Forecasting for Structures Subjected to

Nonstationary Inputs." In Smart Materials, Adaptive Structures and Intelligent Systems,

vol. 85499, p. V001T03A008. American Society of Mechanical Engineers, 2021.[18])

High-rate time series forecasting has applications in the domain of high-rate struc-

tural health monitoring and control. Hypersonic vehicles and space infrastructure are

examples of structural systems that would benefit from time series forecasting on tem-

poral data, including oscillations of control surfaces or structural response to an im-

pact. This paper reports on the development of a software-hardware methodology for

the deterministic and low-latency time series forecasting of structural vibrations. The

proposed methodology is a software-hardware co-design of a fast Fourier transform

(FFT) approach to time series forecasting. The FFT-based technique is implemented

in a variable-length sequence configuration. The data is first de-trended, after which

the time series data is translated to the frequency domain, and frequency, amplitude,

and phase measurements are acquired. Next, a subset of frequency components is

collected, translated back to the time domain, recombined, and the data’s trend is re-

covered. Finally, the recombined signals are propagated into the future to the chosen

forecasting horizon. The developed methodology achieves fully deterministic timing

by being implemented on a Field Programmable Gate Array (FPGA). The developed

28

methodology is experimentally validated on a Kintex-7 70T FPGA using structural

vibration data obtained from a test structure with varying levels of nonstationarities.

Results demonstrate that the system is capable of forecasting time series data 1 mil-

lisecond into the future. Four data acquisition sampling rates from 128 to 25600 S/s

are investigated and compared. Results show that for the current hardware (Kintex-7

70T), only data sampled at 512 S/s is viable for real-time time series forecasting with

a total system latency of 39.05 µs in restoring signal. In totality, this research showed

that for the considered FFT-based time series algorithm the fine-tuning of hyperpa-

rameters for a specific sampling rate means that the usefulness of the algorithm is

limited to a signal that does not shift considerably from the frequency information of

the original signal. FPGA resource utilization, timing constraints of various aspects

of the methodology, and the algorithm accuracy and limitations concerning different

data are discussed.

4.1 Background

Real-time model-based control of active structures operating in high-rate environ-

ments requires real-time time series structural response forecasting. For example,

hypersonic, space, and military systems require active control within the microsecond

(µs) timescale as dictated by the dynamics of the system [25]. Real-time model-based

control of these structures would enable real-time decision-making that would boost

structure survivability in these extreme environments by modifying mission goals and

outputs to changing conditions. According to Hong et al.[38], the high-rate problem

is marked by:

1. significant external load uncertainty;

2. high levels of nonstationarities and heavy disturbances; and

3. produced dynamics from modifications to the system design.

29

In general, structures that experience high-rate dynamics have acceleration ampli-

tudes higher than 100 gn for a duration of under 100 ms.

Time series forecasting with high-rate dynamics is challenging as any approach

used must be robust enough to operate with noisy sensor data [41]. Time series

forecasting is accomplished by examining patterns in a variable (or the connections

between variables) or developing a model and using either the learned pattern or

model to forecast signals into the future. To analyze time series data, it is common

practice to divide the monitored variable into the three categories of trend, nonsta-

tionary, and residual[51]. Various methods can be used to do this, including sliding

window, smoothing, and autoregressive expectation, which is widely used in forecast-

ing high-rate dynamic system states, financial turn of events, environmental change,

and energy interest. [50]. When numerous time series components are present and

their interactions need to be taken into account, a multivariate time arrangement is

used [6].

The timing requirements driven by µs structural health monitoring were articu-

lated by Dodson et al. [25]. Based on the dynamics of the considered “high-rate”

class of systems, this work sets a system latency and forecasting horizon of 1 ms. To

expand, the algorithmic work developed in this paper seeks to forecast the dynamic

structural response (i.e. signal) 1 ms into the future while completing all required

computations within a latency of 1 ms. To enable deterministic and low-latency time

series forecasting of nonstationary signals, an FFT-based forecasting approach was

developed that was implemented on a Field Programmable Gate Array (FPGA).

This study outlines the development of an online structural vibration time series

forecasting hardware/software system [12]. The FFT-based forecasting technique is

employed in this study and is implemented in a variable-length sequence configura-

tion. After the data has been de-trended, it is translated into the frequency domain

and measurements of frequency, amplitude, and phase are made. The data’s trend

30

Figure 4.1 Data set with varied sample rates, showing: (a) the native sample rate
of 51200 S/s; (b) sub-sampled at 25600 S/s; (c) 512 S/s; (d) 256 S/s; (e) 128 S/s;
and inset plots provide a close look around nonstationary for each sampled data.

is then retrieved by gathering a selection of frequency components, translating them

back into the time domain, and recombining them. The signals are extended into the

future to the selected forecasting horizon at this point. The proposed methodology

is experimentally evaluated on a Kintex-7 70T FPGA using structural vibration data

from a test structure with varying levels of non-stationaries. [11] Four data collection

sampling rates, ranging from 128 to 25600 S/s, are examined and compared.

Results show that the system can forecast time series data within the 1 ms latency

constraint. However, it needs to be noted that a key challenge of FFT-based time

series forecasting is that the periodicity of the time series signal must be properly

considered. There must be sufficient perceptions of a period arrangement that may

31

need to be processed as whole components (not partial cycles). To expand, there are

challenges when trying to forecast a period signal when considering anything other

than full periods of the signal that initiate and terminate as the zero-crossing. The

contributions of this work are two-fold, 1) An experimental investigation showing the

potential of the FFT-based time series forecasting methodology for high-rate signals,

and 2) a detailed discussion of the periodicity challenge for FFT-based time series

forecasting.

4.2 Methodology

This section describes the experimental testbed, experimental data, and the formu-

lation of the FFT-based forecasting methodology.

4.2.1 Experimental Testbed

We followed the same data generation process described in Chapter 2, Section 2.1.

Figure 4.1 reports the structure’s measured acceleration response (xv) for a composite

sinusoidal input from the shaker. In this work, the composite signal is made up of 50,

70, and 100 Hz sinusoidal signals. Two sine wave signals are concatenated together

at t=5 s where a nonstationary is present due to a change of frequency. To achieve

this, an input signal of 0.25 V is used before t=5 s while a signal of 0.25 V is used

after t=5 s. The first half of the composite signal is built from 50, 70, and 100 Hz

frequencies while the second half signal consists of 50 and 100 Hz frequencies. Four

different sampled data were created from this data and Figure 4.1 shows all of that

including zoomed section near by nonstationary event. The original sampling rate of

the data is displayed in figure 4.1 (a). This data is available in a public repository

[11]

32

Figure 4.2 Schematic Algorithm diagram of FFT-based time series forecasting al-
gorithms.

4.2.2 Algorithm Formulation for FFT-based Forecasting

Figure 4.2 diagrams the algorithm used in this work for periodic structural vibration

forecasting. The signal of observed acceleration is xv = (x1, x2, x3, . . . , xV) where

V is the total sample points in the observed signal. A variable length sequence, xa of

size, N moves forward through time as time progresses. By applying the FFT-based

time series forecasting method, a signal is generated that is M points long where

M > N . The difference, (M − N) presents the length of the forecasting horizon.

By determining N and M , this method can be applied to achieve a predicted signal

of desirable length. The variable length sequence is xa = (xa1, xa2, xa3, . . . , xaN).

The first step is to remove any trend line from the acceleration xa. To do this, a

polynomial function is used where

xtrend = p(x) = c0 + c1x + c2x
2 + · · · + cqx

q (4.1)

and q is the degree of the polynomial and c is a set of coefficients. In this work, q = 1.

After removing the trend, the new acceleration signal without trend is x = xa −xtrend

which has the same sample size as N . As considered, the acceleration signal without

the trend, x = (x1, x2, x3, . . . , xN), is a time series of N -samples that the frequency

content is extracted from[18]. Therefore, the discrete Fourier transform (DFT) of that

series can be expressed as

Xk =
N−1∑
n=0

xne(−i2π(kn/N)) for k = 0, . . . , N (4.2)

33

where,

ω = 2π/N = 2πf (4.3)

(Xamp)k = |Xk| (4.4)

(Xphase)k = Xk/|Xk| (4.5)

Similarly, the inverse DFT can be written as

xn = 1
N

N−1∑
k=0

Xke(i2πkn/N) for n = 0, . . . , N (4.6)

Now, consider a new series of M length where M > N . Using amplitude and phase

information, the time series can be constructed and written as

xm =
M−1∑
k=0

((Xamp)k
˙cos(2π(km/M)) + (Xphase)k) for m = 1, . . . , M (4.7)

The xm time series with the trend information added back can be expressed as

xa_new = xm + xtrend (4.8)

The FFT-based algorithm works best when the waveform is not interrupted. Let’s

say a signal is embedded with 1 Hz, 5 Hz, and 10 Hz frequencies. Now if an acquisition

(learning) window of 1.5 seconds in length is considered, then all of these waveforms

are cropped except 10 Hz. In FFT, the time domain and frequency domain maintain

the circular topologies. So, the two endpoints of input length are assumed to meet

at the same point. But this is not true for this example. That’s why it is necessary

to ensure that the acquisition length considered for FFT must contain the integer

number of periods. In a non-stationary signal, it is not possible to have all the

embedded signals with different frequencies start at the same time. So, even taking

a 1-second window cannot solve the situation. When the input length is shorter

than the period of the lowest frequency component of the signal, periodicity in the

predicted signal develops. However, when the input length exceeds the base period in

the signal, the periodicity in the predicted signal is removed. Therefore, to capture

34

this frequency, the minimum learning window length needs to be twice the period of

the signal, per the Nyquist Theorem. For accurately capturing all the frequencies,

the minimum period should be higher than the Nyquist limit.

4.2.3 Hardware Validation

While implementing any algorithm in FPGA hardware is a challenge, the FFT-based

forecasting approach is a relatively simple algorithm making it well-suited for hard-

ware implementation. In this work, hardware validation is done on a Kintex-7 70T

FPGA housed in a NI cRIO-9035 that also incorporates a CPU running NI Linux

Real-Time. Figure 5.2 diagrams how data is collected and processed on the FPGA,

as well as how data is transmitted through parallel FFT-based forecasting. The sam-

pling rate of the hardware system is set from 128 to 51,200 S/s and is restricted to

intervals of the internal clock of the 24-bit ADC used in this project. Data is passed

from the DAQ to FIFO and stored in the FPGA’s look-up table memory. From FIFO

through a for-loop data is going to the FFT process. The next step is collecting spe-

cific frequencies to make more accurate forecasting and finally restoring the signal

which is equivalent to 1 ms into the future is produced. The FFT process includes

different steps like measuring real and imaginary, measuring phase, and measuring

amplitude.

Figure 4.3 Flowchart for data collection and processing during FFT-based forecast-
ing in case of hardware implementation.

35

Figure 4.4 Simulation outcomes of forecasting at various sample rates, showing: (a)
25600 S/s; (b) 512 S/s; (c) 256 S/s; and (d) 128 S/s.

Table 4.1 FFT size and input length for different sampled data in hardware imple-
mentation.

sampling rate
(S/s) 25600 512 256 128

FFT size 128 512 256 128
input

(samples) 256 512 256 128

In this work, the LabVIEW FPGA development environment was used for devel-

36

oping the FPGA hardware designs, before being converted to a bitstream file through

a Xilinx/Vivado workflow. The built-in LabVIEW FPGA FFT function has a range

of size limitations between 8 to 8192 samples. Each size of FFT has a latency of cycles

from 16 to 16384. For each sample rate, the goal was to pass a second of data to

the FFT. However, due to hardware restrictions related to the chosen Kintex-7 70T

FPGA, at the higher sampling rate of 25600 S/s the FPGA design could not meet

timing requirements. Therefore, as shown in table 4.1, the FFT size and number of

inputs are constrained for the sampling speeds of 25600 S/s. As a result, for subse-

quent research, only sampling data with a speed range of 128 to 25600 S/s is taken

into consideration. The investigation of algorithm deployment on larger hardware is

left to future work.

Table 4.2 For various sampling data, simulation outputs including RMSE, SNR,
and chosen frequencies.

Sampling Rate
(S/s) RMSE SNR Frequency List

25600 0.001727 17.12 50, 70, 100, 210, 220, 240, 260, 280, -50, -70,
-100, -210, -220, -240, -260, -280

512 0.001889 16.33 50, 70, 100, -50, -70, -100
256 0.001911 16.18 50, 70, 100, -50, -70, -100
128 0.033853 0.15 50, 58, 22, 14, 20, 24, -50, -58, -22, -14, -20,

-24

4.3 Results

Figure 4.4 reports on the time series forecasting for four different sampling rates. Note

that the native sampling rate of 51200 S/s is not shown for brevity as it performs

similarly to 25600 S/s. Compared to the higher sampled data, the prediction accuracy

for the lowest sampled data, 128 S/s, is poor. Note the significant drop-off in the

algorithm’s capabilities between 256 S/s and 128 S/s; which demonstrates that 256

S/s is the lower limit in terms of forecasting capabilities due to the loss of the higher

frequency content in the signal down-sampled to 128 S/s.

37

Table 4.2 shows the frequencies used in reconstructing the signal and reports the

RMSE and SNR for the four considered sampling speeds. The average difference

between values predicted by a model and the actual values is measured by the Root

Mean Squared Error (RMSE). The ratio of a signal’s (valid) power to background

noise (error) is known as the signal-to-noise ratio (SNR). Here, signals are expressed

using the logarithmic decibel (dB) scale as the signals considered have a wide dynamic

range. In contrast to other speeds such as 128 S/s, the frequency list reveals that

25600 S/s utilized more frequencies. When data is sampled at faster speeds, more

frequency-rich information is gathered, allowing for frequencies to be used in the

reconstruction of the signal. Due to this, the algorithm is considered useless at the

lowest sampling speed of 128 S/s. Figure 4.5 reports the same RMSE and SNR data

but in a graphical format, showing how values change in response to changes in the

sampling speed.

Figure 4.6 shows the required computation time and device utilization for differ-

ent intermediate steps of hardware implementation. The 512 S/s sampling rate takes

greater computation time for various intermediate hardware implementation phases

Figure 4.5 Effects of variously sampled data from simulation results, showing: (a)
RMSE; and (b) SNR.

38

Figure 4.6 Results of the hardware validation procedure for varied sampled data in
cases of (a) computation time required; and (b) device utilization.

than other sampling rates, as seen in figure 4.6(a). Moreover, the larger the FFT

size as defined in table 4.1, the larger the latency. This is the reason that the small-

est sampled data 128 S/s has the lowest computation time, despite its forecasting

results being completely unusable. Device utilization is shown in figure 4.6(b) and

experiences the same situation where the faster sampling rates generally require more

FPGA resources. Note that for device utilization, the signal sampled at 512 S/s uses

96% of the FPGA slices, signifying that a sample rate of 512 S/s, along with an

FFT size of 512 samples (see table 4.1) is effectively the largest useful implementa-

tion of the FFT-based time series forecasting algorithm that can be deployed on the

considered hardware (Kintex-7 70T).

Table 4.3 Time required for different aspects of FFT-based forecasting.
sampling rate

(S/s)
input

(samples)
data input FFT process collect specific frequency restore signal

ticks microsecond
(µs) ticks microsecond

(µs) ticks microsecond
(µs) ticks microsecond

(µs)
25600 256 1 0.025 2305 57.625 15717 392.925 802 20.05
512 512 1 0.025 7679 191.975 38502 962.55 1562 39.05
256 256 1 0.025 3584 89.6 18789 469.725 802 20.05
128 128 1 0.025 1792 44.8 9445 236.125 410 10.25

39

Table 4.3 illustrates that all data sampling speeds require the same amount of

time for the data input step of 0.025 µs. An important outlier to note is that the

sampling speed of 512 S/s requires the most time with a total latency of 39.05 µs in

case of restoring signal. This is because the sample rate of 512 S/s is paired with an

FFT size of 512; which maximizes the device hardware. In comparison, the higher

sampling rates of 25600 required its pairing with reduced FFT sizes to enable its

deployment on the chosen FPGA hardware.

Table 4.4 Device utilization for FFT-based forecasting where FPGA elements are
shown by device utilization.

sampling
rate
(S/s)

total
slice

slice
registers

slice
LUTs

block
RAMs DSP48s

slices
used

slices
available % used slices

used
slices

available % used slices
used

slices
available % used slices

used
slices

available % used slices
used

slices
available % used

25600 7377

10250

72 28321

82000

34.5 17728

41000

43.2

75 135 55.6

46

240 19.2
512 9837 96 40052 48.8 20688 50.5 46
256 7220 70.4 28320 34.5 17716 43.2 46
128 5999 58.5 21663 26.4 15802 38.5 46

Table 4.4 shows that the device utilization for DSP48s and block RAMs remains

constant across all data. Except for this, every other FPGA component shows a

considerable amount of variance depending on the sampling rate of the data.

4.4 Conclusion

This work describes the creation of a hardware/software system for real-time struc-

tural vibration time series forecasting. The suggested method makes use of a forecast-

ing algorithm based on FFT. While any algorithm is difficult to implement in FPGA

hardware, the straightforward nature of this technique makes it less complicated for

hardware implementation. The FFT-based approach collects, processes, and extends

the chosen frequencies to the forecast horizon. In FFT, the circular topologies are

maintained in both the time domain and the frequency domain. Thus, it is assumed

that the input length’s two ends match. Because of this, it is essential to make sure

that the acquisition duration taken into account for FFT must include an even num-

ber of periods that start and stop at zero. Results show that for the current hardware

40

(Kintex-7 70T), only data sampled at 512 S/s is viable for real-time time series fore-

casting of the considered system with a total system latency of 39.05 µs in restoring

signal. While a sampling speed of 256 S/s shows usefulness, a sampling speed of 25600

S/s requires FPGA resources beyond that provided by the chosen hardware. Lastly,

the FFT-based time series algorithm itself completely falls apart for a sampling speed

of 128 S/s. In totality, the tuning of hyperparameters for the FFT-based time series

algorithm and its deployment onto FPGA hardware was found to be finicky and la-

borious while being tied to a signal within a limited frequency bandwidth. Future

work will investigate the deployment of a hardware-in-a-loop implementation of the

hardware/software system proposed here.

41

Chapter 5

Deterministic and low-latency time-series

forecasting of nonstationary signals by

Ensembled MLP

(This chapter was published on "Deterministic and low-latency time-series forecasting of

nonstationary signals." In Active and Passive Smart Structures and Integrated Systems

XVI, vol. 12043, pp. 466-472. SPIE, 2022. [12])

Microsecond (µs) structural awareness, damage detection, prognostics, and control of

structures that experience high-rate dynamics (i.e. shock) would benefit from real-

time time-series forecasting of structural responses. Knowledge of future structural

response would increase structure survivability in harsh dynamic environments by re-

sponding appropriately and adapting mission goals/outcomes to changing conditions.

5.1 Background

The timing requirements driven by µs structural health monitoring of structures

were articulated by Dodson et al. [25] and are presented in Table 5.1. Based on the

dynamics of the considered class of system, a prediction horizon of 1 ms is used for

this work. This work experimentally demonstrates that an ensemble of MLPs can

be used for time series forecasting at an iteration step of 40 µs, resulting in a new

forecasted data point 1 ms into the future every 40 µs.

To enable deterministic and low-latency time-series forecasting [63] of nonstation-

ary signals, an ensemble-based approach was developed that consists of a series of

42

Table 5.1 Types and examples of timescales for high-rate monitoring [25].

Time scales of. . . Time Scales Examples

duration of the event 30 µs – 100 ms structural loading - blast,
high-speed impact, automotive crash [38]

sensor response 3 µs – 10 µs accelerometer, strain gage, ect. [67]
different physical
behavior regimes 250 µs – 1 sec energy propagation,structural resonance

algorithm execution
and decision-making 100 µs – 1 ms damage detection, uncertainty quantification,

state awareness

Multi-Layer Perceptrons (MLP) implemented on a Field Programmable Gate Array

(FPGAs) [49]. The MLPs are trained offline where the proportion of trustworthiness

that is associated to the output of any particular MLP is updated online through an

attention layer. Through parallelizing the neural networks, the length of the graph is

reduced, thereby enabling low-latency inference. In this preliminary work, a series of

MLPs are trained offline on dynamics learned from the system. When the system ex-

periences a nonstationarity and transfers to another state the attention layer adapts

to the changing dynamics, thereby allowing for a continuous prediction horizon.

This chapter describes the creation of a software-hardware system for online struc-

tural vibration time-series forecasting that can recognize nonstationary events and

alter their anticipated signal in response to them. An ensemble of multi-layer per-

ceptrons is used in the proposed technique, which is trained offline on actual and

simulated data relevant to the structure. The outputs of the multiple models are

then selectively scaled by a dynamic attention layer to generate a unified anticipated

signal over the relevant prediction horizon. The results show that for the system

under consideration, a total system latency of less than 1 ms may be attained with

appropriate precision. The time consumption [32] for various components of code and

device utilization is the major focus for hardware implementation in this preliminary

work.

43

5.2 Methodology

We followed the same data genertion process described in Chapter 2. The algorithm

consists of an ensemble of MLPs running in parallel, each sampling the incoming

observations at a different rate. The use of an ensemble empowers multi-rate sampling

to capture multi-temporal features of the time series. Also, the parallel arrangement

of the network enables the fast computation times required by high-rate applications.

An attention layer combines the output information of the individual MLPs in the

ensemble to model the input time series. The architecture of the pre-trained networks

connected with the attention layer is illustrated in Fig. 5.1. MLP i is a multi-layer

perceptron network pre-trained to predict with a unique time delay and sequence

input. The output of each of the MLPs is a pre-defined feature of the input time

series, e.g. a specific frequency of the input. The attention layer scales the output

features from the MLPs as the input to another feed-forward network for the target

prediction. In this specific case, the attention layer is a single neuron with linear

activation.

Figure 5.1 Schematic Algorithm diagram of an ensemble of MLPs using the 50 most
recent data points and predicting 25 data points (1 ms) into the future.

The steps for the forward pass of the network for online prediction are as follows:

1. The input to the network is an online stream of observations sampled at fs.

2. The input to MLP i is a vector Ti of length mi constructed by taking every

si (si ∈ N) observation from the raw input. The length and sub-sampling rate

44

of the inputs are determined according to the desired extracted features of the

time-series during the pre-training phase of the individual MLPs. At time step,

the input Ti is of the form:

Ti = {xt−(mi−1)si
, · · · , xt−si

, xt} (5.1)

3. The input to the attention layer is the output of the individual MLPs. The

attention layer assigns a real-valued weight to each of the outputs hi of MLPs

as:

A =

α1 0 · · · 0

0 α2 · · · 0
...

0 0 · · · αn

h1

h2

...

hn

(5.2)

where αi ∈ R. The output vector of the attention layer is fed into a linear

regressor neuron to make a prediction at a 25-step ahead (1 ms) as:

ŷ(t+25) = W1×nAn×1 + b (5.3)

where W and b are the weight matrix of the MLP outputs and the bias scalar,

respectively.

4. The loss of the prediction is calculated as:

J = (y − ŷ)2

2 (5.4)

where y is the target value.

The prediction error can be propagated backward in the network to train the

attention layer and the linear regressor. The goal is to obtain the gradient of the

prediction error with respect to trainable parameters αi, W, and b, i.e. ∂J
∂αi

, ∂J
∂W , and

∂J
∂b

. Using the chain rule :

∂J

∂αi

= ∂J

∂ŷ

∂ŷ

∂Ai

∂Ai

∂αi

∂J

∂W
= ∂J

∂ŷ

∂ŷ

∂W
∂J

∂b
= ∂J

∂ŷ
(5.5)

45

The chain derivative terms are calculated as:

∂J

∂ŷ
= ŷ − y

∂ŷ

∂A
= W

∂A
∂αi

= hi
∂ŷ

∂W
= AT (5.6)

With the gradients obtained, the parameters are trained with gradient descent method

as:

αt+1
i = αt

i − learning_rate × ∂J

∂αi

(5.7)

Wt+1 = Wt − learning_rate × ∂J

∂W
(5.8)

bt+1 = bt − learning_rate × ∂J

∂b
(5.9)

5.3 Hardware Validation

In this work, hardware validation is done on a Kintex-7 70T FPGA housed in a

NI cRIO-9035 that also incorporates a CPU running NI Linux Real-Time. Fig. 5.2

diagrams how data is collected and processed on the FPGA [8] , as well as how data

is transmitted through the parallel MLP tracks.

Figure 5.2 Flow chart of data collection and processing in parallel MLP tracks.

The sampling rate of the system is set to 25,000 S/s and is restricted to intervals of

the internal clock of the 24-bit ADC used in this project, a NI-9239 manufactured by

NI. Data is passed from the DAQ to a set of 50 registers, stored in the FPGA’s look-up

table memory. The registers make up a software-defined rolling buffer of the 50 most

recent digitized signals. The rolling buffer is sub-sampled at 5,000 S/s, 6,250 S/s,

46

and 8,333 S/s for the three different MLP tracks. The data is then normalized,

by detecting maximum and minimum values from input data and ranging the data

between -1 to 1. Next, the normalized data is fed through the MLP (i.e. forward

pass) to obtain a prediction that is then passed to the attention layer before a final

prediction of the signal 25 clock cycles (1 ms) into the future is produced.

5.4 Results

In validating the proposed algorithm, it is assumed that the input signal was available

as prior knowledge based on which the hyper-parameters of the ensemble architecture

and training sets of individual MLPs were selected. In this application, three MLPs

are selected to represent the three harmonics making the input time series. Three

synthetic datasets, each containing a single frequency harmonics with 1,562 Hz, 1,875

Hz, and 2,344 Hz frequency were created and sampled at a similar rate of 25,000 S/s

to the target dataset to pre-train the MLPs. The inputs to the individual MLPs are

Figure 5.3 Algorithm results, showing: (a) the truth and prediction result of the
ensemble; (b) the absolute error before and after the nonstationary event, and; (c)
the evolution of the attention weights for different MLP’s.

sampled at four times the oscillating frequency of the corresponding harmonic, i.e.

6,248 Hz, 7,500 Hz, and 9,376 Hz, which translates to s = {5, 4, 3} for MLPs 1, 2,

and 3, respectively. All MLPs have an input length of 10 (m = 10) as well as a single

hidden layer with rectified linear unit (ReLU) activation function and four neurons

47

followed by a single neuron output layer with a linear activation function. The MLPs

were pre-trained on batches of 10 for 10 epochs with a learning rate of 0.05 to predict

25 steps (1 ms) into the future.

Figs. 5.3(a) and (b) show the prediction result of the ensemble along with the

error, respectively. The error is maximum at the beginning of the prediction and

after the nonstationary event, but it quickly settles into a steady-state error. To

measure the convergence of the error at the two locations, an exponential curve of

the form y = a − be−ct is fitted to the error before and after the nonstationary event

where a is the error floor, b the error amplitude, and c error convergence rate. The

fitted curves are also shown in Fig. 5.3(b) in dashed and dashed-dotted lines. The

convergence is defined as the time where the error curve reaches ±5% of the error

floor. Table 5.2 lists the root mean squared error (RMSE), error floor, signal to noise

ratio (SNR), and convergence time of the network before and after the nonstationary

event.

Table 5.2 Performance metrics of the predicted results.

RMSE (m/s2) a (m/s2) SNR convergence (ms)
before nonstationary event 0.019 0.015 6.09 18.5
after nonstationary event 0.031 0.024 5.63 71.6

The deterministic characteristics of the algorithm are provided by the FPGA

Figure 5.4 Time required for different aspects of the process.

48

implementation, timing, and resource utilization are discussed here. The FPGA’s

base clock is compiled at 80 MHz and a single pass through the algorithm takes 2,005

clock ticks (25.76 µs). As a new sample is digitized every 40 µs, the system is dormant

for 1,195 clock ticks (14.24 µs) between each iteration as it waits for a new data point

to be added to the rolling memory buffer. Fig. 5.4 reports the timing performance

for different aspects of the process. Resource utilization is presented in Table 5.3,

which reports the resource utilization in terms of slices used, slice availability, and

percentage (%).

Table 5.3 The FPGA elements are shown by the device utilization.

slices used slices available percentage used (%)
total slice 9895 10250 96.5

slice registers 36661 82000 44.7
slice LUTs 27917 41000 68.1

block RAMs 19 135 14.1
DSP48s 48 240 20.0

5.5 Conclusion

This study outlines the development of a software-hardware system for online forecast-

ing of structural vibration time-series that can learn over nonstationary occurrences

and adjust the expected signal accordingly. The proposed technique employs an en-

semble of multi-layer perceptrons that are trained offline on simulated data relevant

to the structure. The results reveal that a total system latency of 25.76 µs can be

achieved with sufficient precision for the high-rate systems under discussion. The key

focus for the current hardware implementation is the time consumption for various

components of code and device utilization. The current implementation is largely

limited by the amount of memory available in look-up tables at the cell level block.

49

Chapter 6

Predicting Structural Responses in Impact

Scenarios with Physics-Guided Machine

Learning

(This chapter was partially published on the following:

"Physics informed machine learning part I: Different strategies to incorporate physics into

engineering problems. In Conference Proceedings of the Society for Experimental

Mechanics Series". Springer Nature Switzerland, 2024 [65]

"Physics informed machine learning part II: Applications in structural response

forecasting". In Conference Proceedings of the Society for Experimental Mechanics Series.

Springer Nature Switzerland, 2024.[26])

To effectively manage real-time model-predictive control of active structures within

extreme dynamic environments, it’s crucial to have a modeling program that accu-

rately represents dynamic structural behavior and can adapt to rapid changes in

external conditions. Active structures, such as supersonic aircraft, active blast miti-

gation systems, and adaptive response mechanisms during vehicle crashes, are subject

to high-rate dynamics that pose significant challenges for predictive modeling. Tra-

ditional black/gray-box machine learning approaches to modeling these structures

often encounter difficulties with data trustworthiness, primarily due to the rapid and

complex nature of the dynamics involved. The challenge is further compounded by

the limited availability of data from structures that have sustained damage, making

50

diagnoses and predictions using supervised machine learning techniques less reliable.

This study introduces PISP (Physics Informed Series Prediction) model designed to

enhance the accuracy of dynamic response forecasts for structural systems. The focus

is on structures undergoing non-stationary events, such as impacts, superimposed on

what are considered stationary dynamic conditions, like wind-induced loading. A key

objective of this research is to assess the forecasting capabilities of a neural network-

based forecaster that incorporates physical knowledge from numerical models through

a data augmentation approach. The experimental setup involves a cantilever beam

subjected to consistent excitation, with an additional impact excitation to simulate a

nonstationary event. Physics-informed features derived from finite element analysis

of the beam are integrated into the machine learning model. This approach not only

aids in overcoming the limitations posed by the lack of data from damaged structures

but also introduces a novel way of enriching machine learning models with physical

insights. The results of this study demonstrate a significant improvement, with the

proposed physics-informed machine learning approach outperforming purely exper-

imental data-driven methods in forecasting accuracy in the form of percentages is

around 18% for RMSE, 9.80% for MAE, 9.65% for SNRdb, and 0.91% for TRAC.

This advancement underscores the potential of combining physical principles with

machine learning to create more robust, reliable models for predicting the dynamic

responses of structures under complex, high-rate dynamic conditions. By integrating

detailed physical insights into the machine learning process, this research paves the

way for more effective real-time predictive control of active structures, ensuring better

preparedness and response to dynamic environmental challenges.

6.1 Background

The real-time forecasting of structural responses using time-series analysis offers sig-

nificant advantages in understanding structural behavior, detecting damage, and con-

51

trolling systems under high-rate dynamics like shock events. This capability enhances

survivability in dynamic environments, facilitating adaptive responses to changing

conditions. Accurately predicting a structure’s future behavior is crucial for its sur-

vival in harsh environments. This applies to high-rate dynamics including hypersonic

vehicles, space infrastructure, and blast mitigation systems [25], all experiencing ex-

treme accelerations over very short durations. Challenges in high-rate dynamics in-

clude uncertainties in external loads, nonstationarities, disruptive disturbances, and

unmodeled dynamics [38].

Time series analysis is a technique for analyzing data collected over time to under-

stand system evolution and changes. It is widely used in various fields for prediction

and decision-making. However, traditional methods like ARIMA [36]. and support

vector machines struggle with the complexity of high-rate dynamics. Deep learning

models are well-suited for handling large, multi-dimensional datasets, making them

advantageous for complex structures experiencing high-rate dynamics. However, deep

learning can be limited by the availability of data and the difficulty in interpreting

its results [64].

Physics-Informed Machine Learning (PIML) breaks new ground by seamlessly

combining the strengths of machine learning with well-understood physics principles.

Imagine injecting expert knowledge directly into the model! This empowers PIML

to create highly accurate predictions that are firmly rooted in real-world physics.

This innovative marriage of techniques allows PIML to tackle complex problems,

adapt to changing situations, and deliver reliable results even with limited data. In

essence, PIML rewrites the rules of time series prediction by harmonizing practical

observations with fundamental scientific laws. PIML isn’t without its challenges [65].

These can be broadly categorized into two areas: data and models. Since PIML

relies on machine learning, it inherits some of its limitations. Data issues like repre-

sentation, combining data from different sources, scarcity, noise, and validation can

52

all affect performance. Additionally, researchers are still actively exploring the best

models for complex, multi-dimensional problems. This includes figuring out how to

incorporate physical constraints into the model’s design, how much weight to give

existing physics knowledge, and how to optimize these complex models with all their

multi-dimensional limitations [59]. Despite its potential, PIML encounters limita-

tions related to data representation, cross-domain data adaptation, model selection,

and optimization.PIML presents a promising approach for real-time forecasting of

high-rate dynamic structures. While limitations exist, ongoing research holds the

potential to revolutionize structural health monitoring [14] and control in demanding

environments [40].

One promising approach to enhance the capabilities of Physics-Informed Machine

Learning (PIML) is through data augmentation. PIML, while powerful for complex

problems with limited data, inherits challenges from its machine learning founda-

tion, such as data scarcity and difficulty capturing intricate physical relationships.

Data augmentation bridges this gap by artificially expanding the training dataset.

This is achieved by generating new data points through techniques like random rota-

tions, scaling, or adding noise. By injecting this enriched information into the PIML

model, it improves its ability to learn complex physics even with a limited original

dataset [21].

This research explores how a neural network predictor can be enhanced by in-

corporating physical knowledge from numerical models. This "data-augmented" ap-

proach bridges the gap between purely data-driven models and physics-based models,

aiming to improve prediction accuracy. The experiment uses a vibrating beam with

an extra, unexpected impact to simulate a real-world situation. Information from a

computer model of the beam is fed into the machine-learning model. This not only

helps overcome the challenge of limited data on damaged structures but also creates

a new way to enrich machine learning models with real-world physics. This work

53

analyses how an increased number of physics-informed features improves temporal

prediction. The contributions of this paper are: 1) Generating data originating from

experimental observations and finite element analysis for a cantilever beam structure,

and 2) Physics-informed data augmented model development.

6.2 Data Generation

This research utilizes two data sources. The first involves a physical experiment: a

cantilever beam is vibrated consistently and then subjected to an unexpected im-

pact. This simulates real-world situations where structures experience both regular

and sudden forces. The second data source is computational. A finite element anal-

ysis of the beam is used to extract physics-informed features. This additional data

enriches the machine learning model with valuable insights about the beam’s physical

behavior.

6.2.1 Experimental data generation:

We followed the same data generation process described in Chapter 2, Section 2.2.

The shaker initiates a nonstationary excitation of the beam using a pre-generated

sinusoid signal with a 1 V amplitude and a 20 Hz frequency starting at t=0. Around

t=5 secs, a modal hammer (Emerson Model A034701) delivers a secondary non-

stationary excitation to the beam. The hammer force is approximately 315.73 N.

Furthermore, the force exerted by the modal hammer is captured to provide insight

into the impact force applied to the cantilever beam and recorded by the DAQ mod-

ule. The structure’s measured acceleration response (Xa) for the entire test is shown

in Figure 2.5(a), while an expanded view depicting the close view around the non-

stationary event created by modal hammer impact is displayed in Figure 2.5(b). The

sample rate of this generated data is around 2560 S/s.

54

6.2.2 Physics-informed data generation:

The physical properties of a beam, including displacement and strain, play a crucial

role in influencing a shaker’s ability to move it up and down. Firstly, it highlights the

importance of understanding the displacement characteristics, particularly flexibility,

of the beam. A more flexible beam will deform more easily, potentially affecting

the shaker’s ability to induce controlled movements. Conversely, a rigid beam may

resist displacement, requiring more force from the shaker. Secondly, it emphasizes

the significance of strain, which measures the displacement of a material under stress.

Different materials exhibit varying levels of strain in response to applied forces. The

shaker must consider the material’s strain behavior to effectively move the beam, as

excessive strain could lead to permanent displacement or failure, ultimately affecting

the shaker’s control.

The model of a fixed-supported continuous cantilever beam has been designed

in ANSYS for generating Physics-informed features. The length (L), width (W),

and depth (D) of the beam are considered 0.759 mm, 0.05066 mm, and 0.00514 mm

respectively. Steel is taken as the material for the fixed supported continuous beam

and its properties are taken as for steel Young’s modulus as 2E11 Pa, Poisson’s ratio

as 0.3, and density as 7850 kg/m3.The fixed supported continuous beam considered

for modeling in ANSYS is shown in Fig. 7.8. This figure shows the overall mesh of

320 elements and 2588 Nodes. The fixed support cantilever beam is excited as an

experimental excitation force through the free end and fed as tabular data of forces.

As a result, total displacement, equivalent elastic strain, x-axis, y-axis, and z-axis

deformations are generated. The overall physics-informed data from the FEA model

have been shown in Fig. 7.18.

55

Figure 6.1 FEA model of a steel cantilever beam with detail mesh.

Figure 6.2 Physics informed data from FEA model showing: (a) total displacement;
(b) equivalent elastic strain; (c) x-axis displacement; (d) y-axis displacement; and (e)
z-axis displacement.

56

Figure 6.3 Simple overall architecture and workflow of the proposed model PISP
(a) training; and (b) inference.

6.3 Methodology

The proposed PISP model is a physics-informed data-augmented machine learning

model for time-series prediction. Improving the temporal forecasting in the case of

univariate data with data augmented physics-informed model is the main contribution

of this model. This model is well enough to predict nonstationary events like high-

rate dynamic events. This model is a combination of Bidirectional Long Short-Term

Memory (Bi-LSTM) representation learning to digest raw information for feature en-

gineering; where the generation of latent features and fully connected layers-based

regression for time series prediction is evolved eventually. The simple model archi-

tecture based on training and inference are shown in the figure 6.3. The model

architecture and detailed workflow of the overall model are shown in the figure 6.4

and the algorithm 1 respectively.

Let n represent the temporal span of the input acceleration data Xa which can

be written as:

Xa = [xa,0, xa,1, xa,2, . . . , xa,n] (6.1)

Next, consider the prediction acceleration to be Ŷa and its horizon to be m. the

corresponding output is denoted as:

Ŷa = [ŷa,0, ŷa,1, ŷa,2, . . . , ŷa,m] (6.2)

For physics-informed (PI) data augmentation problems, there exist more PI input

features (e.g. Xb, Xc, ..., Xz) along with the experimental input acceleration data,

57

experimental
data

{
Xa xa,0 xa,1 xa,n, ,

Xc xc,0 xc,1 xc,n,

series data

Xz xz,0 xz,1 xz,n, ,

Xb xb,0 xb,1 xb,n, ,{feature PI data

lo
ss

 (
L

)

neural network model (PISP)

input sample

Ya

Ya

predicted signal

tr
ut

h
va

lu
e

ca
lc

ul
at

e
er

ro
r

Ya

fully connected layer

fully connected layer

fully connected layer

feature representation

adjusted series

reduced feature

ya,0 ya,1 ya,n, ,

BiLSTM

activation function

Figure 6.4 Overall detailed architecture and workflow of the proposed model PISP

Xa. But the goal remains to predict a single output vector Ŷa.

The PISP model starts with the feature representation function by using BiL-

STM, β(·) as below in equation 7.27. The input is the PI augmented data which is

[Xa, Xb, Xc, Xd, Xe, Xf].

H = β
(
[Xa, Xb, Xc, Xd, Xe, Xf]

)
(6.3)

As the input length and the output length are not the same, the next step of this

model is to adjust the series length. For that, a Fully Connected Layer, l1 is preferred

58

which includes the weight and bias of Wl1, bl1. In the equation 6.4 the input is the

τ(H) which is the transpose of the H (the output from equation 7.27). The adjusted

series, S is derived by the equation 6.5 via inverse transformed.

δ = τ(H) · Wl1 + bl1 (6.4)

S = τ ′
(
δ

)
(6.5)

Now this adjusted series, S goes through two fully connected layers (l2, l3) and the

activation function, ϕ(·) to derived the final output, Ŷa.

R = S · Wl2 + bl2 (6.6)

Ŷa = ϕ
(
R · Wl3 + bl3

)
(6.7)

The training loss L in Equation 6.8 is a Mean squared error loss which is between

the truth value of acceleration Ya and final prediction value Ŷa.

L =
m∑

i=1

(
Ya − Ŷa

)2
(6.8)

The overall flow of this proposed physics-informed knowledge transformation model

is shown in algorithm 1 and Fig ??.

Algorithm 1 PISP workflow
1: Xa ← acceleration data ▷ figure. 2.5(a)
2: Xb ← total displacement ▷ figure. 7.18(a)
3: Xc ← equivalant elastic strain ▷ figure. 7.18(b)
4: Xd ← x-axies displacement ▷ figure. 7.18(c)
5: Xe ← y-axies displacement ▷ figure. 7.18(d)
6: Xf ← z-axies displacement ▷ figure. 7.18(e)
7: Ya ← truth value
8: repeat
9: H = get_BiLSTM_features ([Xa, Xb, Xc, Xd, Xe, Xf]) ▷ equation 7.27

10: S = get_adjusted_series (H) ▷ equation 6.4, 6.5
11: R = get_reduced_features (S) ▷ equation 6.6
12: Ŷa =activation (get_final_features (R)) ▷ prediction, equation 6.7
13: L =MSE (Ya, Ŷa) ▷ equation 6.8
14: until convergence

The data is standardized for all experiments and is split by 50%, and 50% into

training, and test sets. Pytorch [52] is used as a learning framework for developing the

59

proposed model. Adam optimizer is used with a learning rate of 5E-04 and batch size

of 2 for the PISP (Physics-informed series prediction model) model. For activation

function ‘Selu’ [42] is used. Each model is trained by the tuned hyperparameter stated

in Table 7.6. All the experiments are conducted on a 64-bit machine with Intel(R)

Xeon(R) Gold 6250 CPU 3.90 GHz (32 cores) and 96.0 GB memory and NVIDIA

Quadro P400 GPU.

Table 6.1 Model Parameters used for PISP model.

hyper-parameters
input window hidden dimension number of layers output window

50 32 2 5
activation function batch size epoch learning rate

‘Selu’ 2 100 5E-04

6.4 Results and Discussion

6.4.1 Performance metrics:

Here are the expressions for various performance metrics including RMSE, MAE,

SNRdb, and TRAC.

Root Mean Squared Error (RMSE) evaluates the average disparity between pre-

dicted values from a model and actual observations, while Mean Absolute Error

(MAE) measures the absolute numerical difference between recorded and estimated

states.

RMSE =
√√√√ 1

n

n∑
i=1

(xi − yi)2 (6.9)

MAE = 1
n

n∑
i=1

|xi − yi| (6.10)

60

The signal-to-noise ratio (SNR) serves as a statistical gauge comparing the strength

of a signal to the level of background noise. Higher SNR values suggest better signal

quality, reflecting a stronger signal amidst lower noise levels. SNRdb is expressed in

decibels (dB) owing to the broad dynamic range of involved signals.

SNRdb = 10 · log 10
(

Psignal

Pnoise

)
(6.11)

One approach to assess the correlation between two time traces is the Time Re-

sponse Assurance Criterion (TRAC). TRAC values range from 0 to 1, with values

nearing 1 indicating a strong correlation between the two traces [3]. In the discussed

scenarios, TRAC represents the correlation between truth data (x) and forecasted

data (y) across one Degree of Freedom (DOF) over time.

TRAC = [xTy]2
[xTx] · [yTy] (6.12)

Here are the equations for different performance metrics such as RMSE, MAE,

SNRdb, and TRAC.

Root Mean Squared Error (RMSE) measures the average difference between model-

forecasted values and actual observations, while Mean Absolute Error (MAE) quan-

tifies the absolute numerical difference between measured and estimated states.

RMSE =
√√√√ 1

n

n∑
i=1

(xi − yi)2 (6.13)

MAE = 1
n

n∑
i=1

|xi − yi| (6.14)

The Signal-to-Noise Ratio (SNR) is a statistical measure that compares the strength

of a signal to the amount of background noise. Higher SNR ratios indicate better

61

signal quality, as they show a stronger signal among lower noise levels. The SNRdb

is measured in decibels (dB) due to the wide dynamic range of the signals involved.

SNRdb = 10 · log10

(
Psignal

Pnoise

)
(6.15)

One method used to determine how much two time traces correlate with one another

is the Time Response Assurance Criterion (TRAC). The values obtained via TRAC

fall between 0 and 1, with values closer to 1 denoting a strong correlation between

the two traces [3]. The TRAC for the scenarios discussed here is the correlation

between the truth data (x) and the forecast data (y) for one DOF overall time.

TRAC = [xT y]2
[xT x] · [yT y] (6.16)

6.4.2 Feature selection:

Having a total of five PI features: total displacement, strain, x-axis displacement,

y-axis displacement, and z-axis displacement; the data-augmented PISP model has

been developed in four fashions with different PI features combination:

1. displacement

2. displacement + strain

3. strain + x-axis displacement + y-axis displacement

4. strain + x-axis displacement + y-axis displacement + z-axis displacement

Acceleration experimental data is included as well in the four configurations listed

above. Only experimental data acceleration with no PI features is taken into con-

sideration in the case of 0 PI feature configuration. The selection of the above four

fashions with different PI feature combinations is based on best performance. As

total displacement is an extracted feature from the x, y, and z-axis deformations, the

need for another possible version (strain + x-axis displacement + y-axis displacement

+ z-axis displacement + total displacement) was not considered for this analysis.

62

time (s)

0 PI features

RMSE: 9.93E-03

MAE: 3.74E-02

SNRdb: 8.925

TRAC: 0.8925

1 PI features

RMSE: 9.28E-03

MAE: 3.65E-02

SNRdb: 9.220

TRAC: 0.8970

2 PI features

RMSE: 8.89E-03

MAE: 3.63E-02

SNRdb: 9.406

TRAC: 0.8973

3 PI features

RMSE: 8.58E-03

MAE: 3.49E-02

SNRdb: 9.560

TRAC: 0.9015

4 PI features

RMSE: 8.14E-03

MAE: 3.37E-02

SNRdb: 9.787

TRAC: 0.9046ac
ce

le
ra

ti
on

 (
m

/s
2)

 a
bs

ol
ut

e
er

ro
r

(m
/s

2)
 a

bs
ol

ut
e

er
ro

r
(m

/s
2)

 a
bs

ol
ut

e
er

ro
r

(m
/s

2)
 a

bs
ol

ut
e

er
ro

r
(m

/s
2)

 a
bs

ol
ut

e
er

ro
r

(m
/s

2)

prediction truth absolute error nonstationary

ac
ce

le
ra

ti
on

 (
m

/s
2)

ac
ce

le
ra

ti
on

 (
m

/s
2)

ac
ce

le
ra

ti
on

 (
m

/s
2)

ac
ce

le
ra

ti
on

 (
m

/s
2)

(a)

(b)

(c)

(d)

(e)

Figure 6.5 Different PI features are used for time series forecast from the estimator
model, but all have experimental data acceleration: (a) no PI feature only accel-
eration; (b) PI feature strain; (c) PI feature y-axis displacement, and z-axis dis-
placement; (d) PI feature strain, x-axis displacement, and y-axis displacement; (e)
PI feature strain, x-axis displacement, y-axis displacement, and z-axis displacement;
and all show a close look around nonstationary event. Second column shows RMSE,
MAE, SNRdb, and TRAC for different PI features time series forecast.

63

Figure 6.6 Combination of error plot for 0 PI features; 4 PI features; and error
different between two.

Figure 6.7 Combination of absolute error plot for 0 PI features; 4 PI features; and
error different between two.

6.4.3 Temporal prediction analysic:

Figure 6.5 compares predictions made by a data-augmented PISP model with and

without physics-informed features. Subfigure (a) shows the prediction without these

features. Subfigures (b) through (e) progressively add one to four (1-4) physics-

informed features and show how the prediction accuracy improves with each addi-

tion. The table in the second column provides numerical data that confirms this

improvement.

This study evaluates the performance of the prediction using four key metrics:

Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), signal-to-noise

64

ratio (SNR), and Time Response Assurance Criterion (TRAC). Lower RMSE and

MAE indicate better forecasts, while higher SNR and TRAC are desirable (with

TRAC not exceeding 1). More details on these metrics can be found in a dedicated

section (Section 6.4.1). The specific values for all four metrics are provided in a table

on the right side of Figure 6.5. Figures 6.6, and 6.7, illustrate the overall error and

absolute error differences between the models without physics-informed features (0

PI features) and with physics-informed features (4 PI features), allowing for a closer

examination of the impact of incorporating physics-informed knowledge. While the

effect may not be immediately apparent in the plots, the numerical results indicate

a significant improvement when using physics-informed features.

The trends in these metrics are further illustrated in Figure 6.8. This figure shows

the results for five scenarios, using 0 to 4 physics-informed (PI) features. The case

with 0 PI features is the baseline, where no physics information is included. As you

can see in subfigures (a) and (b), both Root Mean Squared Error (RMSE) and Mean

Absolute Error (MAE) decrease when PI methods are applied. Similarly, subfigures

(c) and (d) show improvements in signal-to-noise ratio (SNR in decibels) and Time

Response Assurance Criterion (TRAC).

Table 6.2 dives deeper into the performance improvements achieved with different

numbers of features. The table reveals a clear trend: the more features used in the

data-augmented PISP model, the greater the improvement in the predicted signal.

This increasing improvement, highlighted in the ‘percentage improvement’ column of

the table, motivates a closer look at the impact of physics-informed (PI) features. To

understand this better, need to compare the performance of PISP models enhanced

with different PI feature sets. Figure 6.9 provides a visual representation of this

improvement.

To ensure the robustness of the PISP model and confirm that the observed im-

provements are not limited to a single dataset, try to extend the analysis by including

65

0 1 2 3 4

physics informed features

0.85

0.90

0.95

1.00
 R

M
SE

 (m
/s

2)
×10 2

(a)

0 1 2 3 4

physics informed features

3.4

3.5

3.6

3.7

 M
A

E
(m

/s
2)

×10 2

(b)

0 1 2 3 4

physics informed features

9.0

9.2

9.4

9.6

9.8

SN
R

db

(c)

0 1 2 3 4

physics informed features

0.898

0.900

0.902

0.904

TR
A

C

(d)

Figure 6.8 The performance analyses of the data-augmented PISP model using four
key metrics: (a) Root Mean Squared Error (RMSE), (b) Mean Absolute Error (MAE),
(c) signal-to-noise ratio in decibels (SNRdb), and (d) Time Response Assurance Cri-
terion (TRAC). It compares the model’s performance when incorporating different
numbers of physics-informed (PI) features (1 to 4) against the baseline case with no
PI features (considering only experimental acceleration data). The models with PI
features are grouped as “with PI," while the one without them is labeled “without
PI."

additional datasets. Table 6.3 presents a comprehensive comparison of the perfor-

mance with and without physics-informed features across multiple datasets. This

broader analysis further highlights the significant impact of incorporating physics-

informed features on the model’s accuracy and effectiveness. Figure 6.10, top 4 fig-

ures shows detail layout of with and without physics performance metrics for 9 data

66

Table 6.2 Performance analysis with and without physics information in terms of
percentage improvement.

metrics without physics informed physics informed feature percentage improvement
9.28E-03 1 6.57%
8.89E-03 2 10.48%
8.58E-03 3 13.60%RMSE 9.93E-03

8.14E-03 4 18.00%
3.65E-02 1 2.17%
3.63E-02 2 2.82%
3.49E-03 3 6.46%MAE 3.74E-02

3.37E-02 4 9.80%
9.220 1 3.30%
9.406 2 5.39%
9.560 3 7.11%SNRdb 8.925

9.787 4 9.65%
0.8970 1 0.06%
0.8973 2 0.09%
0.9015 3 0.55%TRAC 0.8965

0.9046 4 0.91%

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
percentage improvement (%)

TRAC

SNRdb

MAE

RMSE

1 PI features
2 PI features
3 PI features
4 PI features

Figure 6.9 Percentage performance analysis with physics information for different
features.

67

sets. For all data blue line is in top which is without PI and follows same trend for

all data and all metrics. Below 4 figures, shows performance improvement compared

with without physics in bar plots. Though in case of all data sets, adding physics im-

proved the performance but this performance improvements numerical value doesn’t

same for all data. To deep down these, Figure 6.11, shows Hammering around time,

and Hammer force along with all other performance metrics improvement in bar plot.

All data are independent and unique from each other due to different hammer force

and impact time. These could be a reason for the variation in performance.

Figure 6.10 presents a detailed layout of performance metrics across nine (9) data

sets, comparing results with and without physics-information. In the top four figures,

the blue lines—representing performance without PI appear at the upper end across

all data sets and metrics, showing a uniform trend. The subsequent four figures illus-

trate the relative performance improvements gained through with PI, displayed as bar

plots. While all data sets demonstrate improved performance with PI, the magnitude

of improvement varies across sets. To investigate this further, Figure 6.11 examines

the hammering timing and hammer force, alongside performance metrics depicted in

bar plots. Each data set is unique, reflecting different hammer forces and impact

times, potentially explaining the observed variability in performance enhancements.

6.5 Conclusion

The quiddities of PIML have drawn more attention in recent years for its perfor-

mance over traditional machine learning algorithms. This study proposed a unique

architecture of the PISP model is an effective physics-informed data-augmented tech-

nique. Improving the temporal forecasting in the case of univariate data with data

augmented physics-informed model is the main contribution of this model. The ex-

perimental analysis has also been provided to evaluate the model performance. This

work provided a way to utilize the experimental data and mesh analysis data dur-

68

Table 6.3 Comparison of data with and without physics-informed features
data 1 data 2 data 3 data 4 data 5 data 6 data 7 data 8 data 9

data configuration
hammering around 4.74 sec. 2.2809 sec. 2.294 sec. 2.356 sec. 2.173 sec. 2.365 sec. 2.137 sec. 2.173 sec. 2.2977 sec.
sample rate 2560 25600 25600 25600 25600 25600 25600 25600 25600
data duration 9.75 sec 9.75 sec 9.75 sec 9.75 sec 9.75 sec 9.75 sec 9.75 sec 9.75 sec 9.75 sec
hammer force 315.73 N 234.5 N 248 N 386 N 350 N 312 N 420 N 351.5 N 416 N

without physics informed (0 PI features)
RMSE 9.97E-02 1.07E-01 7.10E-02 1.36E-01 1.13E-01 1.77E-01 1.70E-01 1.13E-01 1.34E-01
MAE 3.74E-02 6.67E-02 3.08E-02 8.51E-02 4.82E-02 1.39E-01 1.12E-01 3.14E-02 6.25E-02
SNR 8.9251 7.9368 10.2290 7.1858 8.6010 3.3938 7.2590 9.0011 7.9931
TRAC 0.8965 0.8439 0.906 0.8088 0.8758 0.6148 0.8138 0.8886 0.8371

with physics informed (4 PI features)
RMSE 9.03E-02 1.01E-01 6.95E-02 1.31E-01 1.05E-01 1.49E-01 1.61E-01 1.05E-01 1.20E-01
MAE 3.37E-02 5.91E-02 2.76E-02 6.08E-02 2.50E-02 7.18E-02 9.23E-02 3.139E-02 3.79E-02
SNR 9.787 8.3776 10.4153 7.5018 7.8486 4.8848 7.7097 9.2574 8.5974
TRAC 0.9046 0.858 0.9091 0.8235 0.8914 0.6952 0.8337 0.8886 0.8371

percentage improvement
RMSE 9.44% 4.95% 2.12% 3.57% 6.73% 15.42% 5.06% 7.28% 10.82%
MAE 9.80% 11.42% 10.47% 28.46% 48.19% 48.46% 17.92% 0.08% 39.43%
SNR 9.65% 5.55% 1.82% 4.40% 7.04% 43.87% 6.21% 2.85% 11.69%
TRAC 0.91% 1.67% 0.35% 1.81% 1.78% 13.09% 2.45% 0.03% 3.88%

Figure 6.10 Performance analysis with physics information and without physics for
9 data sets.

69

Figure 6.11 Performance analysis with physics information and without physics for
9 data sets along with hammering around time and hammer force.

ing the training phase. As a result, this model’s performance is improved with an

increased amount of physics-informed features compared to univariate experimental

data acceleration and proves the accuracy improvement by using a physics-informed

data-augmented PISP model.

70

Chapter 7

Online Structural Responses Forecasting Using

a Physics-informed Knowledge Transfer Model

(This chapter was partially published on the following:

"Physics informed machine learning part I: Different strategies to incorporate physics into

engineering problems. In Conference Proceedings of the Society for Experimental

Mechanics Series". Springer Nature Switzerland, 2024 [65]

"Physics informed machine learning part II: Applications in structural response

forecasting". In Conference Proceedings of the Society for Experimental Mechanics Series.

Springer Nature Switzerland, 2024.[26])

For real-time model-predictive control, dynamic behavior during operation must

be adequately represented by a modeling program that is sensitive to sudden damage-

related changes in (or active modifications to) the structure. The lack of access to

data from damaged systems hinders effective diagnosis and predictions using super-

vised machine-learning techniques. This study shows how physics-informed machine

learning increases the precision of a time series forecast of the dynamic response of a

structural system experiencing a nonstationary event. This study’s main objective is

to evaluate the time series forecasting potential of a transfer learning approach that

guides an encoder decoder-based neural network with physical knowledge obtained

from numerical models. To generate experimental acceleration data, this work uses

a test structure of a cantilever beam under continuous excitation that experiences a

nonstationary event injected into its excitation input. The physics-informed features

71

are gathered from the finite element analysis of the experimental structure subjected

to the same excitation. The proposed model named PIMENTO1 (Physics Informed

Machine lEarning for Nonstationary Temporal fOrecasting) is a combination of the

estimator and corrector model. Improving the temporal forecasting in the case of

univariate data with a physics-informed assistive model is the main contribution of

this model. Concerning physics information, the improvement in the form of percent-

ages is around 38.86% for RMSE, 29.48% for MAE, 20.78% for SNRdb, and 4.03%

for TRAC.

7.1 Background

Real-time forecasting of structural responses holds potential to enhance the aware-

ness, prognostics, and control of structural systems subjected to high-rate dynamics;

such as shock. Quickly learning the structure’s state following an impact can bol-

ster survivability in extreme dynamic environments, enabling timely and adaptive

responses to evolving conditions. Notable examples of structures susceptible to high-

rate dynamics include hypersonic vehicles, space infrastructure, and active blast mit-

igation systems [25]. The intricate nature of the high-rate challenge, as highlighted

by Hong et al. [38], encompasses factors such as uncertainties in external loads, pro-

nounced nonstationarities, disruptive disturbances, and unmodeled dynamics arising

from system configuration changes. In a broader context, structures undergoing high-

rate dynamics exhibit acceleration amplitudes surpassing 100 gn over intervals shorter

than 100 milliseconds.

Structural response forecasting can be thought of as a time series analysis chal-

lenge. Time series analysis is crucial in various industries, including structural health

monitoring [14], healthcare [29], aviation [40], banking [58], business [62], meteo-

rology [31], entertainment [4], etc. It involves collecting data over time to show

1Source Code: https://github.com/ARTS-Laboratory/PIMENTO

72

https://github.com/ARTS-Laboratory/PIMENTO

system evolution and changes. Time series forecasting is essential for predicting fu-

ture trends, optimizing resource allocation, reducing risks, and creating real-time

policies for problem-solving and identifying opportunities in constantly changing en-

vironments [2]. To deal with the complexity of time series forecasting, a variety

of strategies have been developed. These include support vector machines, decision

trees, and models like Autoregressive Integrated Moving Average (ARIMA) [36].

Deep learning models can be readily adjusted to possess varying numbers of pa-

rameters or architectures for time series forecasting. This adaptability grants them a

notable edge compared to conventional machine learning models, particularly when

confronted with extensive, multidimensional, and diverse datasets [64]. Despite the

achievements of deep learning, it faces challenges in data scarcity, interpretation, gen-

erability, and implementing physical constraints. These issues raise concerns related

to reliability and system safety.

Implementing high-precision physics-based models to perform structural response

forecasting following impacts would be a logical solution; however, the building of

physics-based models brings their own challenges. For example, failure to build a

proper numerical model leads to errors that compound with time and computational

costs are often too high for practical real-world systems [33].

To bridge physics-based modeling and machine learning approaches, a new direc-

tion of research is emerging under the umbrella of physics-informed machine learning

(PIML) [65]. Through the injection of domain-specific information, machine learning

models can create accurate predictions that are anchored in underlying physical re-

alities. This synergy permits the model to adapt to developing settings and deliver

strong predictions even in scenarios with minimal data. The details of PIML will be

discussed in section 7.2.

This study introduces the physics-informed knowledge transfer model for struc-

tural response forecasting and experimentally validates it before, during, and after

73

a nonstationary event. The proposed integration of physics-informed machine learn-

ing with a transfer learning model in this text is termed Physics Informed Machine

lEarning for Nonstationary Temporal fOrecasting (PIMENTO); a reference to the

state cheese of South Carolina. Enhancing temporal forecasting for univariate data

through the integration of a physics-informed assistive model constitutes the primary

contribution of this work. Most importantly the PIMENTO model does not require

physics-informed features during its testing phase. For the generation of experimen-

tal acceleration data, this study employs a cantilever beam test structure subjected

to continuous excitation [11]. This excitation includes a nonstationary event in the

time-series loading profile to simulate a real-world change in the structure’s dynamic

loading conditions. Other noteworthy contributions of this research are enumerated

below:

1. Merging of data from experimental observations and finite element

analysis: This study fuses multi-sourced data from experimental observation

and traditional physics-based models (finite element models). Physics-informed

features are extracted from finite element analyses conducted on the experi-

mental structure under the same excitation conditions. This data generation

addresses the issue of data scarcity to train a PIML model.

2. Development of a sequence representation function: Data coming from

multiple sources is complex and may be noisy. The nonstationary data encom-

passes a substantial number of frequencies. A traditional sequential model does

not have the bandwidth to capture the sequence representation of the high-rate

dynamic data. This study develops robust sequence representation functions

that can handle univariate and multivariate time series data.

3. Model Development: A unique physics-informed knowledge transfer model

is developed, combining both corrector and estimator models using multivariate

74

features. The proposed model integrates elements of transfer learning, partic-

ularly an encoder-decoder architecture, and introduces a distinctive sequence

representation function.

4. Experimental analysis of the proposed model: This study showcases the

performance of PIMENTO under different analyses of physics priors stemming

from using experimental univariate and multivariate data in conjunction with

physics-based features.

The remainder of this paper is organized as follows. We provide relevant back-

ground in Section 7.2. The problem formulation of this study is developed first in

Section 7.2.1. Section 7.4 discusses the details architecture of the proposed model.

For better readability the sequence representation function (§(·)) used in the correc-

tor encoder, corrector decoder, and estimator decoder is explained in Appendix 7.10.

Experimental analysis is provided in Section 7.5 and the summary in Section 7.9.

Lastly, Table 7.1 contains all the notations and the descriptions used in this work.

7.2 Relevant Background

PIML integrates principles from physics and domain expertise into data-driven mod-

els. The goal of this approach is to obtain models that are faster, more generalizable,

and potentially more interpretable through the data-driven model being being forced

to respect physical constraints. This approach has gained traction in engineering,

where fundamental principles or physical laws are often expressed through partial

differential equations (PDEs). For example, in computer-aided engineering, software

packages formulate PDE-based models to simulate physical effects, aiding under-

standing of complex interactions across various fields [54]. Researchers are actively

exploring diverse directions within the field of PIML. These directions encompass

75

Table 7.1 Important notations used in this work, with corresponding descriptions.
Notation Description Details

nx⃗ input time span
ny⃗ forecasted time span
t time step
z input features
PI physics informed
X original and physics-informed features z × n
xa acceleration 1 × n
xs equivalent elastic strain 1 × n
xd total displacement 1 × n
ya predicted acceleration 1 × n
§(·) sequence representation function
I input sequence m × n
H final representation of the sequence r × n
r hidden dimension of LSTM cell
h hidden state of LSTM cell r × 1
ι input gate of LSTM cell∮

forget gate of LSTM cell
o output gate of LSTM cell
W weight
b bias
l fully connected layer
ϕ activation function
c cell state of LSTM cell r × 1
p forward layer of BiLSTM
q backward layer of BiLSTM
te corrector encoder
td corrector decoder
F(·) corrector model Using PI features
Fenc(·) corrector encoder function
ξ encoder output De × n
De encoder features
Fdec(·) corrector decoder function
se estimator encoder
sd estimator decoder
f(·) estimator model using acceleration
fenc(·) estimator encoder function
fdec(·) estimator decoder function
δ interim output of decoder
T transpose

data and feature engineering [74], postprocessing [70], initialization [55], optimizer

design [72], architecture design [66], loss function [69], and hybrid models [43].

Machine learning models require substantial training data. Transfer learning may

enhance forecast outcomes by utilizing related data sets during the training pro-

cess [68]. In essence, transfer learning is the use of knowledge acquired from one

profession to enhance performance on a related but distinct one. This concept en-

ables deep learning models to successfully adapt the complex representations and

traits that have been acquired from large-scale datasets to a range of real-world sce-

narios. Acquiring ample labeled training instances is expensive, time-consuming, or

infeasible. Semi-supervised learning offers a solution with a modest number of labeled

76

instances and a substantial volume of unlabeled data. However, acquiring adequate

unlabeled instances can be challenging, leading to sub-optimal performance. Trans-

fer learning, based on educational psychology and C.H. Judd’s generalization theory,

aims to address these limitations and improve machine learning [75].

Transfer learning may be roughly split into two varieties, namely homogeneous

and heterogeneous transfer learning, based on the disparity across domains. For cir-

cumstances when the domains share the same feature space, homogeneous transfer

learning techniques are created and recommended. When the domains have diverse

feature spaces, the knowledge transfer process is referred to as heterogeneous transfer

learning [75]. In certain transfer learning strategies, the incorporation of multi-view

techniques has gained prominence. For instance, Zhang and colleagues introduced a

multi-view transfer learning framework that enforces coherence across multiple per-

spectives [73]. Yang and Gao extended this concept by integrating multi-view infor-

mation from diverse domains to facilitate knowledge transfer [71]. Another notable

contribution is the work by Feuz and Cook, who devised a multi-view transfer learn-

ing approach specialized for activity learning [28]. Object identification or detection

in photos, action recognition in videos, document categorization, or text sentiment

analysis are examples of typical transfer learning applications [68]. However, transfer

learning has not previously received much attention when applied to time series, such

as sensor readings. According to Fawaz et al [27]. Additional research has been fo-

cused on transfer learning for issues with time series forecasting and other time series

forecasts [34], [68].

Representation learning models serve as an automated feature engineering tech-

nique. By employing these models, it becomes possible to automatically identify and

extract meaningful components from raw data. Since the models inherently learn

from the data and provide meaningful representations, there is no need for manual

feature selection or engineering. The efficiency and efficacy of many machine learning

77

tasks are increased by this automated feature extraction technique, which eventually

results in better performance and wider application across a variety of domains. The

effectiveness of predicting causal links in situations with high-dimensional variables

and treatments has been considerably improved attributed in large part to representa-

tion learning and dimensionality reduction such as Johansson et al [39], Chowdhury

et al [19], Nabi et al [46] etc.

7.2.1 Formulation of a Generic Problem Setup

The overarching goal of this work is to forecast the acceleration response of a structure

into the future by leveraging pre-defined knowledge of the structure’s strain and

displacement. To build up to this multi-input single-output (MISO) problem in the

structural domain, a generic MISO problem will be used to define the mathematical

notation used in this text.

Figure 7.1 Generic time series forecast scenario that takes into account how, in the
case of univariate data shown in (a), x input experimental acceleration data becomes
the time series prediction y in future. Using different physics-informed feature data,
such as xa, xb, and xc input is showing in (b) illustrates a general scenario for a time
series forecast, with y as the predicted outcome. In general, the input is multivariate,
but the forecast is identical to that of generic time series forecasting.

Figure 7.1(a) depicts a generic single-input single-output (SISO) time series fore-

casting problem that can be conceptualized as predicting future values (orange line in

78

Figure 7.1(a)) based on past observed values (blue line in Figure 7.1(a)). In this work,

an arrow above a variable will be used to denote a vector; for example x⃗ denotes a

vector of the variable x. Let nx⃗ represent the temporal span of the input data x (i.e.,

past values, indicated in the blue line). Using this notation, the input acceleration

data is written as

x⃗ = [x0, x1, x2, · · · , xnx⃗
] (7.1)

Next, consider the forecasted vector to be y⃗ and its horizon to be ny⃗, the corresponding

output is denoted as

y⃗ = [y0, y1, y2, · · · , yny⃗
] (7.2)

The learning function that takes x⃗ and map it to y⃗ can be represented as a seq2seq

problem, defined by (f : x⃗ → y⃗). For the MISO problem, there exist more input

features (e.g. x⃗a, x⃗b, x⃗c, ..., x⃗z) but the goal still remains to forecast a single

output vector y⃗. There can be any number of features involved, here z is used as a

placeholder for the end of the last feature considered. A representation of the MISO

problem is shown in Figure 7.1(b). In the multi-variate case, the output would still

be, y⃗ = [y0, y1, y2, · · · , yny⃗
] but the input would change to the matrix X defined as

X =

xa,0 xa,1 xa,2 · · · xa,n

xb,0 xb,1 xb,2 · · · xb,n

...

xz,0 xz,1 xz,2 · · · xz,n

= [x⃗T

0 , x⃗T
1 , x⃗T

2 , · · · , x⃗T
nx⃗

] (7.3)

where a matrix is denoted by a bold capital letter. In equation 7.3, x⃗0 is a row-rise

vector such that x⃗0 = [xa,0, xb,0, · · · , xz,0]. The dimension of X is z × nx⃗. So, the

MISO form of the learning function can be stated as (F : X → y⃗) which becomes a

vec2seq problem.

79

7.3 Problem Statement

The goal of this work is to forecast univariate data directly following a non-stationary

event. Data that is feature-rich will enable more efficient models. It follows that

adding a corrector with sufficient physics-informed features will assist the univariate

data forecasting model to improve efficiency over time. As a result, the main model

f(·) is a lightweight model (estimator model) and is trained on acceleration data only

and cannot utilize the physics-informed features. To improve this an assistive model

F(·) with z features including physics-informed features is introduced as a corrector

model where the corrector model’s input is multivariate data.

Generating more physics-informed features (X) needs a detailed computational

model; while modeling the f(·) and F(·) also comes with its challenges. The challenge

is to formulate a learning solution to design f(·); that utilizes knowledge from F(·)

and predict y⃗ (y⃗a) while using only x⃗ (x⃗a) as input features. The problem can be split

into four subproblems; as discussed below:

1. Generating Physics-informed data : In this research, a cantilever beam

serves as the experimental setup. The process for generating the initial accel-

eration data (x⃗)/(x⃗a) is explained in Section 7.7.1, and this dataset is publicly

available [11]. However, acquiring other physics-informed data, such as strain

and displacement, directly from the experimental setup poses challenges. More-

over, in practical real-world scenarios, it is often impractical to gather all sys-

tem features. Therefore, the development of a computational model capable of

extracting physics-informed features becomes necessary to enhance the model

training process. The detailed solution to this challenge is discussed in Section

7.7.1.

2. Designing estimator model, f(·) :

Following the time series forecast based on acceleration and consider the es-

80

Figure 7.2 Estimator model problem formulation.

timator model as f : x⃗ → y⃗ from equation 7.1 and 7.2, where z = 1, z is

acceleration data only and nx⃗ ̸= ny⃗ (n ̸= n′). The design problem of f would

be: f = fenc(x⃗a) ◦ fdec(ξse).

This model is a simple seq2seq model like fenc(x⃗a) where encodes the input

sequence to a context vector ξse and fdec(ξse) gives the output sequence ˆ⃗y (ˆ⃗ya) .

The goal is to make this output sequence, ˆ⃗y (ˆ⃗ya) similar to the original sequence

y⃗ (y⃗a) (see Figure 7.2).

3. Designing corrector model, F(·) : Consider a corrector model which is an

assistive model for the main estimator model as F : X → y⃗ where n ̸= n′.

This is a vec2seq model that includes physics-informed features. To design F as

composed of two functions: F = Fenc(X)◦Fdec(ξte). Here 1) Fenc(X) first encode

the input sequence to a context vector ξte; 2) Fdec(ξte) utilizes the context vector

ξte to get the output sequence ˆ⃗y (ˆ⃗ya). This can be formulated as an encoder-

Figure 7.3 Corrector model problem formulation.

decoder problem [61] and the generic framework has been shown in Figure 7.3.

81

This overall model design is inspired by the student-teacher [30] model concept.

Figure 7.2 is acted like a student model and Figure 7.3 is assisted as a teacher.

4. Learning and knowledge distillation : The input dimension of fenc(·) is

univariante and Fenc(·) is multivarite. Estimator model Figure 7.2 improved

itself by distillation of physics-informed knowledge from the corrector model

Figure 7.3 model. By using the knowledge distillation concept from [30], the

goal is to train the f(·) in such a way that, f(·) can make the physics-informed

decision during inference session without using any extra physics-informed input

features except the acceleration itself.

The solution of Subproblem (1) is provided in Section 7.7.1 as it is more related

to experiments. In Section 7.4, proposing the details solution to Subproblems (2

∼ 4).

Figure 7.4 Preliminary layout of proposed model PIMENTO is showing:(a) training:
estimator model’s encoder is tuned based on the correction from the corrector model.
During training the decoder is replicated from the corrector decoder and then tuned
during training; and (b) inference : as the encoder and the decoder have been tuned in
the training phase, so no correction or involvement of the corrector model is needed.

7.4 Methodology

The overall flow of the proposed physics-informed knowledge transformation model

is shown in Figure 7.4. The PIMENTO model is a combination of estimator and

82

corrector models. Two types of data generation are used here (details discussed in

Section 7.7.1) for these two types of models.

The corrector model is structurally knowledge-enriched due to utilizing exper-

imental acceleration data and physics-informed data as input. This multivariate

data-based model serves as the assistive model that corrects the estimator model

during the training phase and aids in training the estimator. The assistive model

named as corrector model is a vec2seq encoder-decoder model.

In contrast, the estimator relies solely on experimental acceleration data. The

estimator model is the forecasting model used in this work. The estimator model

takes experimental data acceleration as its input and forecasts acceleration data.

This model is a combination of seq2seq encoder-decoder.

Despite the corrector model handling data-intensive tasks while the estimator

model deals with data-limited tasks, they share fundamental structural similarities.

By structuring the corrector model and the estimator model into encoders and de-

coders, a structural resemblance is established between these two models. These

structural similarities have been leveraged to transfer the knowledge from the correc-

tor to the estimator. Given that both models aim for the same kind of time-series

prediction, the corrector model’s trained decoder can be used to initialize the estima-

tor’s decoder component. However, independent encoders are needed for the corrector

and estimator models due to differences in input features. The estimator’s encoder is

trained from scratch to closely resemble the corrector model’s encoder outputs (fea-

ture representation) in the Euclidean space. In summary, Physics-based knowledge

is transferred from the corrector to the main estimator model in two stages: align-

ing encoder representations and duplicating decoder structures. Comprehending the

corrector-estimator dynamics is similar to knowledge distillation of transfer-learning

schema [30]. Here PI knowledge is distilled from corrector to estimator. During

testing, the corrector model is not required, as the estimator has been trained with

83

transferred knowledge.

Section 7.4 illustrates the PIMENTO model’s design and mathematical represen-

tation. The corrector model in Section 7.4.1, the estimator model in Section 7.4.2,

and eventually the training method in Section 7.4.3.

7.4.1 Corrector Model

This corrector model is an assistive model for the estimator model. The corrector

model consists of two functions, encoder, and decoder: F = FencX ◦ Fdec(ξte) and is

shown in Figure 7.5.

The corrector encoder includes BiLSTM layers, a design originally based on LSTM

cells, for its sequence representation. The finalized sequence representation function

as below which is derived from Equation 7.24 to 7.27 in Appendix 7.10:

[
Hte, hn

pq,te, cn
pq,te

]
= §

(
X, [h0

pq, c0
pq]

)
(7.4)

ξte = ϕte(Hte · Wl1,te + bl1,te) (7.5)

Here, [h0
pq, c0

pq] is the initialization parameters for BiLSTM layers which is zero for the

corrector encoder. The complete architecture of the LSTM cells inside the BiLSTM

is explained in Appendix 7.10. Where h is for hidden states, c is for cell state, p is for

the forward layer, and q is for a backward layer of BiLSTM. X is the input sequence

with a matrix of z input features and n input time span. Where z has original and

physics-informed features. From the sequence representation function §(·), Hte is the

final representation of the sequence with hidden hn
pq,te and cell cn

pq,te state is input

time span n. Final corrector encoder output ξte is in Equation 7.5. Initially Hte is

combined with the weight Wl1,te and bias bl1,te of a fully connected layer l1 and finally

adding an activation function ϕte to recover the latent features like nonstationary

events.

84

Figure 7.5 Corrector model complete architecture

The corrector decoder starts with the sequence representation function §
(
ξte, [hn

pq,te, cn
pq,te]

)
as below Equation 7.6. This is initialize from the corrector encoder Equation 7.5 pa-

rameters hn
pq,te, cn

pq,te and Htd is the final output of this sequence representation in

Equation 7.6

[
Htd, hn

pq,td, cn
pq,td

]
= §

(
ξte, [hn

pq,te, cn
pq,te]

)
(7.6)

δtd = (Htd)T · Wl1,td + bl1,td (7.7)

ˆ⃗ytd = Ŷ n′

a,td = ϕtd(δtd)T · Wl2,td + bl2,td) (7.8)

Equation 7.7 represents an intermediate stage of the corrector decoder. The decoder’s

first fully connected layer l1, which includes the weight and bias of Wl1,td, bl1,td, and

transpose (Htd)T where Htd is the output from Equation 7.6 are combined to create

δtd. Corrector forecast ˆ⃗ytd (Ŷ n′
a,td) is described in Equation 7.8. From Equation 7.7, δtd

85

is transposed (δtd)T and passed through a decoder’s second l2 fully connected layer

Wl2,td, bl2,td and pass through an activation function ϕtd to generate the latent features.

In a nutshell, Equation 7.4’s multivariate X including physics-informed features is the

input for the corrector model, and Equation 7.8’s univariate acceleration forecast is

the output, which is ˆ⃗ytd (Ŷ n′
a,td).

7.4.2 Estimator Model

The estimator model is the main model of this proposed model PIMENTO. The

estimator model consists of two functions, encoder, and decoder: f = fenc(x⃗a)◦fdec(ξse).

and show in Figure 7.6.

Figure 7.6 Estimator model complete architecture

The estimator encoder is implemented as a seq2seq representation. Beginning

experimental acceleration data x⃗a is delivered by a fully connected layer (l1) that has

weights Wl1,se,and biases bl1,se and an output Hse is explained in Equation 7.9.

Hse = x⃗a · Wl1,se + bl1,se (7.9)

ξse = ϕse(Hse · Wl2,se + bl2,se) (7.10)

86

The estimator encoder final output ξse is described by Equation 7.10. For the purpose

of obtaining ξse, Hse is the input of the second fully connected layer l2 of Wl2,se,

bl2,se.Here, after the second fully connected layer (l2), an activation function ϕse is

applied to introduce the non-linearity.

The estimator decoders and corrector decoder 7.4.1 are identical. In case of main

model estimator in Equation 7.11, the sequence representation function §
(
ξse, [hn

pq,te, cn
pq,te]

)
is initialized with estimator encoder output ξse and output is Hsd.δsd is the interme-

diate stage Equation 7.12 output as like Equation 7.7.

[
Hsd, hn

pq,sd, cn
pq,sd

]
= §

(
ξse, [hn

pq,te, cn
pq,te]

)
(7.11)

δsd = (Hsd)T · Wl1,sd + bl1,sd (7.12)

ˆ⃗ysd = Ŷ n′

a,sd = ϕsd((δsd)T · Wl2,sd + bl2,sd) (7.13)

Final forecast ˆ⃗ysd (Ŷ n′
a,sd) is described in Equation 7.13. By the assistance of physics

informed enriched corrector model 7.4.1, the main model estimator input x⃗a (Xn
a)

in Equation 7.9 and final forecast ˆ⃗ysd (Ŷ n′
a,sd) from Equation 7.13 are both univariate

acceleration.

7.4.3 Training

This PIMENTO framework’s ultimate purpose is to obtain an effectively fine-tuned

estimator model with the assistance of a corrector model. The estimator model

focuses on univariate time series forecasts, whereas the corrector model is focused on

multivariate time series forecasts. The training procedure is divided into two parts,

one for the physics-informed corrector model and the other for the estimator model.

The encoder and decoder are the two components of the corrector model as a

whole. The corrector model uses mean average error (MAE), calculated using the

Equation 7.14. Section 7.5 mentions the hyperparameter settings. This model

is saved and will be used to adjust the estimator model later in the framework.

87

This MAE loss Lcorrector takes place between the corrector forecast ˆ⃗ytd (Ŷ i
a,td) from

Equation 7.8 and the acceleration truth value y⃗ (Y i
a).

Lcorrector =
n′∑

i=1
|Y i

a − Ŷ i
a,td| =

n′∑
i=1

|y⃗ − ˆ⃗ytd| (7.14)

At the second stage, the training of the estimator model begins with calculating

the MAE loss in Equation 7.15 between the corrector encoder output ξi,j
te from the

Equation 7.5 and the estimator encoder output ξi,j
se from Equation 7.10. Estimator

decoder architecture is the pre-trained corrector decoder from Sections 7.4.1 and 7.4.2,

therefore no tuning is required because both are sharing the same parameters. The

estimator decoder is excluded from the computational graph during the training of

the estimator as the decoder is already trained during the corrector model.

Lenc =
n∑

i=1

De∑
j=1

|ξi,j
te − ξi,j

se | (7.15)

Lso =
n′∑

i=1

(
Y i

a − Ŷ i
a,sd

)2
=

n′∑
i=1

(
y⃗ − ˆ⃗ysd

)2
(7.16)

Lestimator = Lenc + Lso (7.17)

The second estimator training loss Lso between initial estimator forecast ˆ⃗ysd (Ŷ i
a,sd)

from Equation 7.13 and truth value of acceleration y⃗ (Y i
a) is explained by Equa-

tion 7.16. Lso is a Mean squared error (MSE) loss.The final loss of the estimator is

the sum of the two losses Lenc and Lso in Equation 7.17 as Lestimator.

In summary, it has been proven that corrector model assistance occurs twice to

generate a fine-tuned model estimator for the final forecast. The first assistance

happens once the encoder training loss in 7.15 is Lenc, and the second and most

important assistance occurs when the pre-trained decoder from section 7.4.1 is shared

with the estimator model in section 7.4.2. As a result, physics-based knowledge is

transferred from the corrector 7.4.1 to the model estimator 7.4.2.

88

7.5 Experimental Validation

7.5.1 Data generation

We followed the same data generation process described in Chapter 2, Section 2.1.

The composite signal comprises 50, 70, and 120 Hz sinusoidal signals. Two sine wave

signals are concatenated together at around 5s where a nonstationary is present due

to a change of frequency. To achieve this, an input signal of 1V is used before 5s

while a signal of 1V is used after 5s. The first half of the composite signal is built

from 50, 70, and 120 Hz frequencies while the second half signal consists of 70 Hz

frequency. The data is displayed at the top of Figure 7.7. This data is available in a

public repository [11].

Figure 7.7 The full experimental acceleration data is shown in the upper plot (a)
and the bottom (b) shows a close view around the nonstationarity.

Figure 7.8 FEA model of a steel cantilever beam with detail mesh and an inset that
shows close-up looks of the mesh.

89

The physical properties of a beam, including displacement and strain, play a

crucial role in influencing a shaker’s ability to move it up and down. Here’s how

these properties impact the interaction between the beam and the shaker:

• displacement and Flexibility: The displacement characteristics of the beam,

particularly its flexibility, determine how much it can bend or deform when

subjected to external forces. A more flexible beam will deform more easily,

affecting the shaker’s ability to induce controlled up-and-down movements. On

the other hand, a rigid beam may resist displacement, requiring more force from

the shaker.

• Strain and Material Behavior: Strain is a measure of the displacement of

a material under stress. Different materials exhibit varying levels of strain in

response to applied forces. The shaker needs to account for the material’s strain

behavior to effectively move the beam. Excessive strain may lead to permanent

displacement or failure, impacting the shaker’s control.

The model of a fixed-supported continuous cantilever beam has been designed in

ANSYS for generating physics-informed features. The length (L), width (W), and

depth (D) of the beam are considered 759, 50.66, and 5.14 mm respectively. The

beam material is steel for the fixed supported continuous beam and its properties

are taken as for steel Young’s modulus as 2x1011Pa, Poisson’s ratio set as 0.3, and

density a 7850 kg/m3.The fixed supported continuous beam considered for modeling

in ANSYS is shown in Figure 7.8. This figure shows the overall mesh of 320 elements

and 2588 Nodes.

The fixed support cantilever beam is excited as an experimental excitation force

through the free end and fed as tabular data of forces. As a result, total displacement

and equivalent elastic strain are generated as Figure 7.9 (a), and (b). Along with x,

90

y, and z three directional deformations are generated as figures 7.9 (c), (d), (e). The

overall physics-informed data from the FEA model have been shown in Figure 7.18.

Figure 7.9 FEA model of the cantilever beam analysis showing: (a) total displace-
ment; (b) equivalent elastic strain; (c) x directional displacement;(d) y directional
displacement; and (e) z directional displacement of FEA model.

7.5.2 PIMENTO Setup

The data is standardized for all experiments and is split by 50%, and 50% into

training, and test sets. Pytorch [52] is used as a learning framework for developing

91

Figure 7.10 Physics informed data from FEA model showing: (a) total displacement;
(b) equivalent elastic strain; (c) x-axis displacement; (d) y-axis displacement; and (e)
z-axis displacement.

the proposed model. Adam optimizer is used with a learning rate of 5 × 10−5 and

batch size of 8 for the corrector model. The model estimator uses the same optimizer

Adam [42] with a learning rate of 10−1, For activation function ‘Selu’ [42] is used

for the corrector encoder and decoder. The estimator model encoder uses ‘Elu’ as

an activation function. Each model is trained by the tuned hyperparameter stated

in Table 7.6. All the experiments are conducted on a 64-bit machine with Intel(R)

Xeon(R) Gold 6250 CPU 3.90 GHz (32 cores) and 96.0 GB memory and NVIDIA

Quadro P400 GPU.

92

Table 7.2 Model Parameters used for PIMENTO.

Model Hyper-parameter

corrector encoder input dimension = 10000, hidden dimension = 32, output dimension = 16,
activation function = ‘Selu’, batch size = 8, epoch = 60, learning rate = 5 × 10−5

corrector decoder input dimension= 16, hidden dimension = 32, output dimension = 500,
activation function = ‘Selu’, batch size = 8, epoch = 60, learning rate = 5 × 10−5

estimator encoder input dimension= 10000, hidden dimension = 16, output dimension = 16,
activation function = ‘Selu’, batch size = 8, epoch = 50, learning rate = 10−1

estimator decoder input dimension= 16, hidden dimension = 16, output dimension = 500,
activation function = ‘Elu’, batch size = 8, epoch = 50, learning rate = 10−1

7.6 Results and Discussion

This section presents feature analysis, results for the PIMENTO algorithm for time

series forecasting before and after a non-stationary as well as results from a sensitivity

study. All the reported results in the paper are from test data. The corrector model

itself can be an independent model as in Transfer Learning teacher model can do.

But the corrector model needs PI data. However, the estimator model doesn’t need

the PI data. So, we posted all the results to show that, by only using acceleration

data (without PI data) during the testing phase, the estimator is also powerful like

the corrector model.

7.6.1 Feature Analysis

As feature selection plays a vital role in the development phase, the first challenge of

this work was to address the issue of choosing the best feature combination. Having

a total of five PI features: total displacement, strain, x-axis displacement, y-axis dis-

placement, and z-axis displacement; the experimental studies first focus on analyzing

the effects of features as input, presented in Table 7.7. The best combination has

been selected in the four setups (number of feature range: 1 ∼ 4). For example,

in the case of a single PI-feature, strain was chosen over the total displacement as

it decreased the RMSE and MAE by 9.79% and 3.83% while improving the SNRdb

and TRAC by 6.86% and 0.44% respectively. A similar strategy has been followed

93

for other setups as well. Finally, the PIMENTO model has been developed in four

fashions with the best different PI features combination as input:

1. strain

2. y-axis displacement + z-axis displacement

3. strain + x-axis displacement + y-axis displacement

4. strain + x-axis displacement + y-axis displacement + z-axis displacement

Acceleration experimental data is included as well in the four configurations listed

above. Only experimental data acceleration with no PI features is taken into con-

sideration in the case of 0 PI feature configuration. The selection of the above four

fashions with different PI feature combinations is explained in detail in Table 7.7

with different metrics. As total displacement is an extracted feature from the x, y,

and z-axis deformations, the need for another possible version (strain + x-axis dis-

placement + y-axis displacement + z-axis displacement + total displacement) was

not considered for this analysis.

Table 7.3 Selecting different PI feature combinations based on performance metrics.
physics based features feature combinations RMSE MAE SNRdb TRAC

total displacement 3.62E-06 1.32E-03 11.69 0.9351 strain 3.26E-06 1.23E-03 12.14 0.939
total displacement, strain 3.17E-06 1.22E-03 12.26 0.942
x-axis displacement, y-axis displacement 3.18E-06 1.23E-03 12.25 0.941
y-axis displacement, z-axis displacement 3.17E-06 1.23E-03 12.27 0.9412

x-axis displacement, z-axis displacement 3.20E-06 1.24E-03 12.22 0.941
strain, x-axis displacement, y-axis displacement 3.09E-06 1.21E-03 12.38 0.942
strain, y-axis displacement, z-axis displacement 3.18E-06 1.24E-03 12.25 0.9403
strain, x-axis displacement, z-axis displacement 3.25E-06 1.27E-03 12.16 0.939

4 strain, x-axis displacement, y-axis displacement, z-axis displacement 3.06E-06 1.19E-03 12.42 0.943

7.6.2 Temporal Forecasting Results

The time series forecasts around the nonstationary for different numbers of PI fea-

tures of PIMENTO are shown in Figure 7.19(a) shows the forecast from PIMENTO

without physics-informed features. Whereas the subfigures (b)-(e) show the time-

series forecast of PIMENTO with one - four physics-informed features; respectively.

94

Figure 7.11 Different PI features are used for time series forecast from the esti-
mator model, but all have experimental data acceleration: (a) no PI feature only
acceleration; (b) PI feature strain; (c) PI feature y-axis displacement, and z-axis dis-
placement; (d) PI feature strain, x-axis displacement, and y-axis displacement; (e)
PI feature strain, x-axis displacement, y-axis displacement, and z-axis displacement;
and all show a close look around nonstationary event. Second column shows RMSE,
MAE, SNRdb, and TRAC for different PI features time series forecast.

95

Figure 7.12 Various metrics analysis based on without PI features and with PI
features showing:(a) RMSE; (b) MAE; (c) SNRdb; and (d) TRAC.

Figure 7.19 provides an extensive summary of the forecast improvement both in terms

of truth and absolute error. The numerical metrics value in the second column high-

lights how the PIMENTO model forecast results have been improved by adding more

PI features.

Four performance metrics are considered in this work. They are Root Mean

Squared Error (RMSE), Mean Absolute Error (MAE), signal-to-noise ratio (SNR),

and Time Response Assurance Criterion (TRAC). For RMSE and MAE, lower values

are better. For SNR and TRAC, higher is better with TRAC maxing out at 1.0.

The performance metrics used are discussed in detail in Appendix 7.11. The four

performance metrics considered throughout this work are tabulated on the right-hand

side of Figure 7.19 for the respective time series. These metrics are further visualized

in Figure 7.20 and are presented for the five considered cases, from 0 to 4 PI features.

0 PI feature is the baseline with no PI features. In Figure 7.20(a) and (b), there is an

observed decrease in RMSE and MAE when utilizing physics-informed (PI) methods.

In the case of SNRdb and Time Response Assurance Criterion (TRAC), shown in

Figure 7.20(c) and (d), there are performance improvements.

In Table 7.8, a detailed comparison with different numbers of features shows the

performance improvement. This table shows a trend that the improvement in the

forecasted signal is proportional to the number of features used in the corrector model

during training.

96

Table 7.4 Performance analysis with and without physics information in terms of
percentage improvement.

metrics without physics informed physics informed feature percentage improvement
3.26E-06 1 34.82%
3.17E-06 2 36.66%
3.09E-06 3 38.26%RMSE 5.01E-06

3.06E-06 4 38.86%
1.23E-03 1 26.96%
1.23E-03 2 26.97%
1.21E-03 3 28.33%MAE 1.68E-03

1.19E-03 4 29.48%
12.14 1 18.07%
12.27 2 19.29%
12.38 3 20.36%SNRdb 10.28

12.42 4 20.78%
0.939 1 3.59%
0.941 2 3.84%
0.942 3 3.97%TRAC 0.906

0.943 4 4.03%

The trend from the ‘percentage improvement’ column in Table 7.8, creates the

demand to analyze the effect of PI features and a comparative analysis among dif-

ferent PI feature-enhanced PIMENTO versions. The visual representation of this

improvement is displayed in Figure 7.21.

Figure 7.13 Percentage improvement over without physics-informed feature analysis
with different numbers of physics information features.

7.6.3 Sensitivity Study

This study emphasizes the significance of the constituent PIML models, particularly

addressing the challenges faced during their training and their sensitivity to their

97

Table 7.5 Different metrics analysis of corrector and estimator during various
physics-based features.

RMSE MAE SNRdb TRACphysics
based features corrector estimator corrector estimator corrector estimator corrector estimator

0 6.655E-06 5.01E-06 2.01E-03 1.68E-03 9.05 10.28 0.884 0.906
1 4.05E-06 3.26E-06 1.49E-03 1.23E-03 11.20 12.14 0.932 0.939
2 3.24E-06 3.17E-06 1.22E-03 1.23E-03 12.17 12.27 0.946 0.941
3 3.10E-06 3.09E-06 1.20E-03 1.21E-03 12.36 12.38 0.944 0.942
4 3.27E-06 3.06E-06 1.27E-03 1.19E-03 12.13 12.42 0.940 0.943

input parameters. The training of heavily parameterized PIML models requires ex-

tensive data, and the lack of high-quality data can hinder effective model training.

This issue is further illustrated in the study where a comparative performance of

corrector and estimator models are shown about various PI features, highlighting the

data-dependency challenges in PIML model development. This situation is shown in

Figure 7.22 where a comparison of the corrector and estimator models’ concurrent

performance concerning several PI features is reported.

Figure 7.14 Performing sensitivity analysis using features to illustrate: (a) RMSE;
(b) MAE; (c) SNRdb; and (d) TRAC.This figure compares the concurrent performance
of the corrector and estimator models about four PI features (1-4) and also with 0
PI features, which only consider experimental acceleration.

In PIMENTO the corrector model is heavily parameterized compared to the

lightweight estimator model. That’s why when the number of features is low, that

time the corrector model performance is worse compared to the estimator model; as

shown in Figure 7.22. The corrector model performance starts to improve when the

number of PI features is more than 1. The performance gap between these two models

decreases. The numerical results are shown in Table 7.9. So, this PIMENTO model

architecture can overcome the issue of data scarcity. In the absence of PI features,

98

the estimator can overcome the corrector model and is not affected by the improperly

trained corrector model. And when enough data is available to train the corrector

model properly it improves the estimator model.

Figure 7.15 Sensitivity analysis varying the input dimension for 4 PI features, show-
ing results for (a) RMSE; (b) MAE; (c) SNRdb; and (d) TRAC. This investigation
helps in choosing the most suitable input dimensions for the proposed model when
there are 4 PI features. To make decisions, values that are near between the corrector
and estimator models are utilized.

Figure 7.23 shows the sensitivity analysis with various input dimensions when

four PI features are considered and a second-order model is fit over the data. For

this analysis input dimension range is between 1000 to 51200 samples but Figure 7.23

shows the range between 0 to 30000 which shows a zoom portion near the lowest error

change for each metric.

The top lowest error for the estimator is displayed for 10000, 11000, and 5000.

Concerning the corrector, the lowest errors happened for 15000, 10000, and 16000.

Within these, the input dimensions of 10000 are common to both the estimator

and corrector. A detailed examination of these dimensions is presented in Figure 7.23.

The difference between the estimator and corrector RMSE for 10000 input dimen-

sions is around 0.21 × 10−6 m/s2. Consequently, a 10000 input dimension is selected

as the optimal model configuration as the estimator and corrector error are near to

one another and need less testing time for the estimator around 2.71 seconds.

99

Figure 7.16 Sensitivity analysis varying the output dimensions for 4 PI features and
an input dimension is 10000, showing: (a) RMSE; (b) MAE; (c) SNRdb; and (d)
TRAC. This analysis decides the best output dimensions for the proposed model in
the case of 4 PI features. Decisions are made upon close values between corrector
and estimator models.

Figure 7.16 reports the sensitivity analysis with various output dimensions when

four PI features are used and input dimension is set to 10000. For this analysis

output dimension range is between 5 to 5200 samples but Figure 7.16 shows the

range between 0 to 1000 where shows a zoom portion near lowest error change for

each metrics. The second-order models show that error gradually increases concerning

output dimension increase. Due to of memory issue below 5 was not considered for

this analysis.

In the case of the estimator, the top lowest error shows for 45, 100, 500, 200,

and 800. For the corrector, the top lowest error occurred for 40, 100, 45, 350, and

500. Within this range 45, 100, and 500 output dimensions are common for the

estimator and corrector. The difference between estimator and corrector RMSE are

0.41 × 10−6 m/s2, 0.26 × 10−6 m/s2, and 0.21 × 10−6 m/s2 corresponding to output

dimensions 45, 100, and 500. The lowest testing time for the estimator is around

2.71 s for 500 output dimension, 13.76 s for 100 output dimension, and 30.62 s for

45 output dimension. As a result, for the best model configuration, a 500 output

dimension is chosen considering the lowest error and testing time.

More datasets and experimental analyses have been added as supplemental ma-

terials.

100

Figure 7.17 The full experimental acceleration data is shown in the upper plot (a)
and the bottom (b) shows a close view around the nonstationarity.

Table 7.6 Model Parameters used for PIMENTO.

Model Hyper-parameter

corrector encoder input dimension = 25500, hidden dimension = 32, output dimension = 8,
activation function = ‘Selu’, batch size = 8, epoch = 50, learning rate = 10−3

corrector decoder input dimension= 8, hidden dimension = 32, output dimension = 500,
activation function = ‘Selu’, batch size = 8, epoch = 50, learning rate = 10−3

estimator encoder input dimension= 25500, hidden dimension = 64, output dimension = 8,
activation function = ‘Selu’, batch size = 8, epoch = 50, learning rate = 10−4

estimator decoder input dimension= 8, hidden dimension = 64, output dimension = 500,
activation function = ‘Elu’, batch size = 8, epoch = 50, learning rate = 10−4

7.7 Supplement document for different data

7.7.1 Data generation

The composite signal comprises 50, 70, 100, and 120 Hz sinusoidal signals. Two sine

wave signals are concatenated together at 5s where a nonstationary is present due to

a change of frequency. To achieve this, an input signal of 1V is used before 5s while

a signal of 1V is used after 5s. The first half of the composite signal is built from

50, 70, and 120 Hz frequencies while the second half signal consists of 70 and 100 Hz

frequencies. The data is displayed at the top of Fig. 7.17. This data is available in a

public repository [11].

The PI data generated by ANSYS model has been shown in the Figure 7.18.

101

Figure 7.18 Physics informed data from FEA model showing: (a) total deformation;
(b) equivalent elastic strain; (c) x-axis deformation; (d) y-axis deformation; and (e)
z-axis deformation.

7.8 Results and Discussion

This section presents results for the PIMENTO algorithm for time series forecasting

before and after a non-stationary as well as results from a sensitivity study.

7.8.1 Temporal Forecasting Results

Having a total of five PI features: total deformation, strain, x-axis deformation, y-

axis deformation, and z-axis deformation; the PIMENTO model has been developed

102

Table 7.7 Selecting different PI features combination based on performance metrics.
physics based features feature combinations RMSE MAE SNRdb TRAC

total deformation 4.14E-06 1.62E-03 13.04 0.95121 strain 3.85E-06 1.56E-03 13.36 0.9542
total deformation, strain 4.01E-06 1.58E-03 13.18 0.9537
x-axis deformation, y-axis deformation 4.14E-06 1.58E-03 13.04 0.9718
y-axis deformation, z-axis deformation 3.54E-06 1.47E-03 13.73 0.96012

x-axis deformation, z-axis deformation 4.24E-06 1.60E-03 12.94 0.9730
strain, x-axis deformation, y-axis deformation 3.29E-06 1.40E-03 14.04 0.9653
strain, y-axis deformation, z-axis deformation 4.29E-06 1.63E-03 12.89 0.94973
strain, x-axis deformation, z-axis deformation 3.37E-06 1.43E-03 13.94 0.9613

4 strain, x-axis deformation, y-axis deformation, z-axis deformation 3.11E-06 1.35E-03 14.29 0.9655

in four fashions with different PI features combination:

1. strain

2. y-axis deformation + z-axis deformation

3. strain + x-axis deformation + y-axis deformation

4. strain + x-axis deformation + y-axis deformation + z-axis deformation

Acceleration experimental data is included as well in the four configurations listed

above. Only experimental data acceleration with no PI features is taken into con-

sideration in the case of 0 PI feature configuration. The selection of the above four

fashions with different PI feature combinations is explained in detail in the Table 7.7

with different metrics.

From Table 7.7, analyzing lowest error when dealing with a 1 PI feature, strain

rather than total deformation is used. Approximately 3.85 × 10−6 m/s2 is the RMSE

for strain, and 4.14×10−6 m/s2 is the RMSE for total deformation. In case of selecting

2 PI feature, y-axis deformation + z-axis deformation combination shows lowest error

compare to other combination. For selecting 3 PI features strain + x-axis deformation

+ y-axis deformation combination, shows lowest RMSE around 3.29 × 10−6 m/s2. As

total deformation is an extracted feature from the x, y, and z-axis deformations, the

need for another possible version (strain + x-axis deformation + y-axis deformation

+ z-axis deformation + total deformation) was not considered for this analysis.

103

The time series forecasts around the nonstationary for different numbers of PI

features of PIMENTO are shown in Fig. 7.19(a) shows the forecast from PI-

MENTO without physics-informed features. Whereas the subfigures (b)-(e) show

the time-series forecast of PIMENTO with one - four physics-informed features; re-

spectively.Fig 7.19 provides an extensive summary of the forecast improvement both

in terms of truth and absolute error. The numerical metrics value in the second

column highlights how the PIMENTO model forecast results have been improved by

adding of more PI features.

In this work four performance metrics considered. They are Root Mean Squared

Error (RMSE), Mean Absolute Error (MAE), signal-to-noise ratio (SNR), and Time

Response Assurance Criterion (TRAC). For RMSE and MAE, lower values are better.

For SNR and TRAC, higher is better with TRAC maxing out at 1.0. The perfor-

mance metrics used are discussed in detail in Appendix in the main paper. The four

performance metrics considered throughout this work are tabulated on the right hand

side of Fig. 7.19 for the respective time series. These metrics are further visualized

in Fig. 7.20 and are presented for the five considered cases, from 0 to 4 PI features.

In Fig. 7.20(a) and (b), there is an observed decrease in RMSE and MAE when

utilizing physics-informed (PI) methods. In the case of SNRdb and Time Response

Assurance Criterion (TRAC), shown in Fig. 7.20(c) and (d), there are performance

improvements.

In Table 7.8, a detailed comparison with different numbers of features shows

the performance improvement. This table shows a trend that the improvement in

forecasted signal is proportional to the number of features used in the corrector model

during training.

The trend from the ‘percentage improvement’ column in Table 7.8, creates the

demand to analyze the effect of PI features and a comparative analysis among dif-

ferent PI feature-enhanced PIMENTO versions. The visual representation of this

104

Figure 7.19 Different PI features are used for time series forecast from the esti-
mator model, but all have experimental data acceleration: (a) no PI feature only
acceleration; (b) PI feature deformation; (c) PI feature deformation, and strain; (d)
PI feature strain, x-axis deformation, and y-axis deformation; (e) PI feature strain,
x-axis deformation, y-axis deformation, and z-axis deformation; and all shows a close
look around nonstationary event. Second column shows RMSE, MAE, SNRdb, and
TRAC for different PI features time series forecast.

105

Figure 7.20 Various metrics analysis based on without PI features and with PI
features showing:(a) RMSE; (b) MAE; (c) SNRdb; and (d) TRAC.

Table 7.8 Performance analysis with and without physics information in terms of
percentage improvement.

metrics without physics informed physics informed feature percentage improvement
3.85E-06 1 36.79%
3.54E-06 2 41.84%
3.29E-06 3 45.90%RMSE 6.09E-06

3.11E-06 4 48.97%
1.56E-03 1 21.93%
1.47E-03 2 26.24%
1.40E-03 3 29.71%MAE 1.99E-03

1.35E-03 4 32.09%
13.36 1 17.54%
13.73 2 20.72%
14.04 3 23.49%SNRdb 11.37

14.29 4 25.72%
0.954 1 2.71%
0.960 2 3.35%
0.965 3 3.91%TRAC 0.929

0.966 4 3.93%

Figure 7.21 Percentage improvement over without physics informed feature analysis
with different numbers of physics information features.

improvement is displayed in Fig. 7.21.

106

Table 7.9 Different metrics analysis of corrector and estimator during various
physics-based features.

RMSE MAE SNRdb TRACphysics
based features corrector estimator corrector estimator corrector estimator corrector estimator

0 9.69E-06 6.09E-06 2.54E-03 1.99E-03 9.35 11.37 0.927 0.929
1 4.67E-06 3.85E-06 1.79E-03 1.56E-03 12.52 13.36 0.956 0.954
2 3.20E-06 3.54E-06 1.38E-03 1.47E-03 14.16 13.73 0.968 0.960
3 3.19E-06 3.29E-06 1.42E-03 1.40E-03 14.17 14.04 0.962 0.965
4 2.94E-06 3.11E-06 1.35E-03 1.35E-03 14.54 14.29 0.965 0.965

Figure 7.22 Performing sensitivity analysis using features to illustrate: (a) RMSE;
(b) MAE; (c) SNRdb; and (d) TRAC.This figure compares the concurrent performance
of the corrector and estimator models with regard to four PI features (1-4) and also
with 0 PI features, which only take experimental acceleration into consideration.

7.8.2 Sensitivity Study

This study emphasizes the significance of the constituent PIML models, particularly

addressing the challenges faced during their training and their sensitivity to their

input parameters. The training of heavily parameterized PIML models requires ex-

tensive data, and the lack of high-quality data can hinder effective model training.

This issue is further illustrated in the study where a comparative performance of cor-

rector and estimator models are shown in relation to various PI features, highlighting

the data-dependency challenges in PIML model development. This situation is shown

in Fig. 7.22 where a comparison of the corrector and estimator models’ concurrent

performance with respect to several PI features is reported.

In PIMENTO the corrector model is heavily parameterized compared to the

lightweight estimator model. That’s why when the number of features is low, that

time the corrector model performance is worse compared to the estimator model;

as shown in Fig. 7.22. The corrector model performance starts to improve when the

107

Figure 7.23 Sensitivity analysis varying the input dimension for 4 PI features, show-
ing results for: (a) RMSE; (b) MAE; (c) SNRdb; and (d) TRAC. This investigation
helps in choosing the most suitable input dimensions for the proposed model when
there are 4 PI features. To make decisions, values that are near between the corrector
and estimator models are utilized. Right top corner(a.1); (b.1); (c.1); and (d.1) shows
a zoom portion near lowest error change for each metrics.

number of PI features is more than 1. The performance gap between these two models

decreases. The numerical results are shown in Table 7.9. So, this PIMENTO model

architecture can overcome the issue of data scarcity. In the absence of PI features,

the estimator can overcome the corrector model and is not affected by the improperly

trained corrector model. And when enough data is available to train the corrector

model properly it improves the estimator model.

Fig. 7.23 shows the sensitivity analysis with various input dimensions when four

PI features are considered and a linear model is fit over the data. For this analysis

input dimension range is between 1000 to 51200 samples. Selecting the optimal input

dimension relies on four key criteria:

1. Identifying the lowest error values for both the estimator and corrector.

2. Determining the shared input dimensions within this optimal error range for

both the estimator and corrector.

3. Comparing the estimator and corrector error differences for these shared input

dimensions.

108

Figure 7.24 Sensitivity analysis varying the output dimensions for 4 PI features and
an input dimension is 25500, showing: (a) RMSE; (b) MAE; (c) SNRdb; and (d)
TRAC.This analysis decides the best output dimensions for proposed model in case
of 4 PI features and input dimension 25500.Decisions are made upon close values
between corrector and estimator models.Right top corner(a.1); (b.1); (c.1); and (d.1)
shows a zoom portion near lowest error change for each metrics.

4. Minimum computation time must be verified. The selected one has the lowest

error difference and the shortest computation time.

The top lowest error for the estimator is displayed for 17000, 26500, 11000, 26000,

10000, 51000, 22000, 21500, 25500, and so on. Concerning the corrector, the most and

lowest errors happened for 30000, 12000, 11000, 5000, 15000, 20000, 36000, 25500,

13000, and so forth.

Within the shared range, the input dimensions of 11000 and 25500 are common

to both the estimator and corrector. A detailed examination of these dimensions is

presented in Fig. 7.23 (a.1), (b.1), (c.1), and (d.1).

The difference between the estimator and corrector RMSE for 25500 input di-

mensions is around 1.689 × 10−7 m/s2, whereas for 11000 input dimensions it is

3.42 × 10−7 m/s2. Consequently, a 25500 input dimension is selected as the optimal

model configuration as the estimator and corrector error are near to one another and

need less computing time about 2.93 seconds for each iteration.

Fig. 7.24 reports the sensitivity analysis with various output dimensions when

109

four PI features are used and input dimension is set to 25500. For this analysis

output dimension range is between 50 to 5200 samples.The linear models show that

error gradually increases with respect to output dimension increase. Due to out of

memory issue below 50 was not considered for this analysis. The same four key

criteria that determine the input dimension also determine how to select the optimal

output dimension.

In case of estimator, top lowest error shows for 650, 100, 50, 350, 1300, 500 and

so on. For corrector top lowest error occurred for 100, 50, 650, 150, 1300, 500 and so

on.

Within this range 50, 100, 650, 500, and 1300 output dimension is common for

estimator and corrector.

The difference between estimator and corrector RMSE are 3.302 × 10−7 m/s2,

3.698 × 10−7 m/s2, 1.691 × 10−7 m/s2, 4.042 × 10−7 m/s2, and 1.546 × 10−7 m/s2

corresponding to output dimensions 50, 100, 500, 650, and 1300. Lowest value are

for 1300 and 500. Fig 7.24 (a.1), (b.1), (c.1), and (d.1), shows close look of 500, and

1300. Lowest computational time around 1.01 seconds per iteration for 500 output

dimension and 2.93 seconds per iteration for 1300 output dimension. As a result, for

the best model configuration, a 500 output dimension is chosen.

7.9 Conclusions

The qualities of PIML have drawn attention in recent years for its potential perfor-

mance over traditional machine learning algorithms. This study proposed a unique

PIML architecture Physics Informed Machine lEarning for Nonstationary Tempo-

ral fOrecasting (PIMENTO) consisting of data representation techniques, a physics-

informed corrector model, and a lightweight estimator model with an effective knowl-

edge transfer technique. The goal of this work was to develop an easily optimizable

model whether training the model parameter with physics-informed features from a

110

traditional FEA model. Experimental analysis also provides a method to evaluate

the model performance. This work provided a way to utilize the experimental data

and FEA mesh analysis data during the training phase. With the help of transfer

learning this framework gets rid of physics data dependency during the testing phase.

Moreover, this approach maximizes the efficiency of utilizing pre-trained models, min-

imizes data prerequisites in the target domain, which is particularly advantageous in

real-world scientific and engineering challenges, and lowers computational expenses

by enabling the same model to address multiple tasks with minimal adjustments

tailored to the target dataset. As a result, this model does not need any physics-

informed features during the testing phase, which makes this model more applicable

to real-world applications where physics-informed data is not available.

Appendix

7.10 Sequence Representation function §(·)

Due to the noisy nature of the data, this work focused on the lossless representation

of the sequence. Because of that a unique type of sequence representation function,

§(·) is designed in this paper. Considering an input sequence I with m × n dimension

with m features and n timesteps. So, I = [I0, I1, I2, · · · In] where I t represents a

timestep input with m features (dimension m × 1). This sequence representation

utilizes BiLSTM layers which are based on LSTM cells. An LSTM cell is considered

to process every time-step, I t (Figure 7.25). This cell consists of an input gate (ι),

a forget gate (
∮
), and an output gate (o) with their weight (W) and bias (b). The

output of a cell includes a hidden state (h) and a cell state (c). The cell uses input

timestep data I t, the previous cell’s hidden state (ht−1) and cell state (ct−1) according

111

Figure 7.25 Diagram of an LSTM cell.

to Equations (7.18) to (7.20).

ιt = σ(Wι · [ht−1, I t] + bι) (7.18)∮ t

= σ(W∮ · [ht−1, I t] + b∮) (7.19)

ot = σ(Wo · [ht−1, I t] + bo) (7.20)

c̃t = tanh(Wc · [ht−1, X t] + bc) (7.21)

ct =
∮ t

∗ ct−1 + ιt ∗ c̃t (7.22)

ht = ot ∗ tanh(ct) (7.23)

After that, Hyperbolic tangent (tanh) replaces the memory cell with the new candi-

date (c̃) by following Equation (7.21). Having updated gate values and candidates

from (7.18) to (7.21), LSTM updates its own cell state (ct) and hidden state (ht)

by (7.22) and (7.23) respectively. In the case of BiLSTM layers (Figure 7.26), each

Figure 7.26 Sequence representation function denoted as §(·).

112

timestep (I t) would yields forward hidden states (ht
p), backward hidden states (ht

q),

forward cell states (ct
p) and backward hidden states (ct

q)

ht
pq = concat([ht

p, ht
q]) (7.24)

ct
pq = concat([ct

p, ct
q]) (7.25)

Instead of considering the last cells’ hidden states hn
pq for the whole sequence repre-

sentation, here chose to consider all the hidden states concatenated together as the

sequence representation. This will help us to make a lossless representation of the

sequence. So, our final representation of the sequence becomes:

H = concat([h0
pq, h1

pq, h2
pq, · · · hn

pq]) (7.26)

Now the finalized sequence representation function as:[
H, hn

pq, cn
pq

]
= §

(
Imn, [h0

pq, c0
pq]

)
(7.27)

Here, [h0
pq, c0

pq] is the initialization parameters for BiLSTM layers which can be varied

based on the usage either in encoder or decoder. So, the sequence representation

function would be: § :
(
Imn, [h0

pq, c0
pq]

)
→

[
H, hn

pq, cn
pq

]
where h is for hidden states, c

is for cell state, p is for forward layer, and q is for backward layer of BiLSTM.

Particularly in sequence-to-sequence tasks as encoder-decoder concepts bidirec-

tional long-term memory (BiLSTM) networks are better than conventional long-term

memory (LSTM) networks. Sequence-to-sequence tasks are an area in which Bidirec-

tional Long Short-Term Memory (BiLSTM) networks perform well. These networks

offer several benefits, including capturing bidirectional context, the ability to handle

variable-length sequences with robustness, better comprehension of sequential pat-

terns, enhanced information flow, and the ability to deal with the vanishing gradient

problem. The selection between LSTM and BiLSTM, however, is contingent upon

task-specific attributes, therefore scenarios may differ in terms of applicability. The

choice of BiLSTM over traditional LSTM in this proposed work is motivated by the

data’s noisy nature and the sudden effect of uncertainty or nonstationary events.

113

7.11 Performance evaluation metrics

Here are the equations for different performance metrics such as RMSE, MAE, SNRdb,

and TRAC.

Root Mean Squared Error (RMSE) measures the average difference between model-

forecasted values and actual observations, while Mean Absolute Error (MAE) quan-

tifies the absolute numerical difference between measured and estimated states.

RMSE =
√√√√ 1

n

n∑
i=1

(xi − yi)2 (7.28)

MAE = 1
n

n∑
i=1

|xi − yi| (7.29)

The Signal-to-Noise Ratio (SNR) is a statistical measure that compares the strength

of a signal to the amount of background noise. Higher SNR ratios indicate better

signal quality, as they show a stronger signal among lower noise levels. The SNRdb

is measured in decibels (dB) due to the wide dynamic range of the signals involved.

SNRdb = 10 · log10

(
Psignal

Pnoise

)
(7.30)

One method used to determine how much two time traces correlate with one another

is the Time Response Assurance Criterion (TRAC). The values obtained via TRAC

fall between 0 and 1, with values closer to 1 denoting a strong correlation between

the two traces [3]. The TRAC for the scenarios discussed here is the correlation

between the truth data (x) and the forecast data (y) for one DOF overall time.

TRAC = [xT y]2
[xT x] · [yT y] (7.31)

114

Chapter 8

Conclusions

The goal of this research work is to analyze temporal forecasting in structural health

monitoring systems. This research aims to answer to research questions: 1)How to

design hardware and software for real-time forecasting for SHM? 2) How to synergies

between data-driven and rule-based system? In the first stage, the main focus is time

series data of high-rate dynamics systems and developing models, and implementing

those models on hardware. In next stage, the goal is to improve the data-driven

model to a physics-informed model. For the preliminary study, this work develops

a testbench structure (Chapter 2) that consists of a cantilever beam subjected to

nonstationary inputs to generate experimental data.

For the first work on data-driven approaches, this work proposes numerical analy-

sis and experimental results for the real-time implementation of a Fast Fourier Trans-

form (FFT)-based approach for time series forecasting (Chapter 3 and 4). First, the

data is de-trended, then the time series data is transferred into the frequency domain,

and measures for frequency, amplitude, and phase are obtained. Thereafter, select

frequency components are collected, transformed back to the time domain, recom-

bined, and then the trend in the data is restored. Finally, the recombined signals are

propagated into the future to the selected prediction horizon. This preliminary time

series forecasting work is done offline using pre-recorded experimental data, and the

FFT-based approach is implemented in a rolling window configuration. Here learning

windows of 0.1, 0.5, and 1 s are considered with different computation times simulated.

Results demonstrate that the proposed FFT-based approach can maintain a constant

115

prediction horizon at 1s with sufficient accuracy for the considered system. The per-

formance of the system is quantified using a variety of metrics. Computational speed

and prediction accuracy as a function of training time and learning window lengths

are examined in this work. The algorithm configuration with the shortest learning

window (0.1s) is shown to converge faster following the nonstationary when compared

to algorithm configuration with longer learning windows.

For the second work on data-driven approaches (Chapter 5), this work proposes

the development of a coupled software-hardware algorithm for deterministic and low-

latency online time-series forecasting of structural vibrations that is capable of learn-

ing over nonstationary events and adjusting its forecasted signal following an event.

The proposed algorithm uses an ensemble of Multi-Layer Perceptrons (MLP) trained

offline on experimental and simulated data relevant to the structure. A dynamic at-

tention layer is then used to selectively scale the outputs of the individual models to

obtain a unified forecasted signal over the considered prediction horizon. The scalar

values of the dynamic attention layer are continuously updated by quantifying the

error between the signal’s measured value and its previously predicted value. The

deterministic timing of the proposed algorithm is achieved through its deployment

on a field programmable gate array. The performance of the proposed algorithm is

validated on experimental data taken on a test structure. Results demonstrate that

a total system latency of 25.76µs can be achieved on a Kintex-7 70T FPGA with

sufficient accuracy for the considered system.

Historically used techniques such as FFT, which has a simpler design methodol-

ogy, but performance is less accurate compared to hardcore latest machine learning

approaches. Both techniques have merits and demerits. So, this work proposes a

comparative study of both models proposed in the aforementioned paragraphs. The

goal of this research is to build low-device-utilization, cost-effective hardware models

that can be used to control active structures that encounter dynamic events at the

116

microsecond timeframe. Even though these two problems are separate yet related.

The new strategy used in this project is to adjust hyper-parameters to make them

more user-friendly with various data, particularly vibration, and acceleration, to re-

duce computational timing and latency. To store and update the parameters of the

Fast Fourier Transform (FFT) and the ensemble of multilayer perceptrons (MLP),

field programmable gate arrays (FPGAs) are proposed to utilize. The developed al-

gorithm will increase real-time machine learning by increasing understanding of: (1)

Comparing the FFT model with the ensemble model in the case of FPGA hardware

implementation. (2) How timing and device utilization affect the complex and simple

model. (3) A better way to learn dynamics such as modes, natural frequencies, and

input frequencies. (4) The advantages of different non-stationary time series derived

from sampled data in deterministic models of timing. (5) Maintaining adequate pre-

cision while adhering to microsecond-level real-time limitations. (6) If possible, make

a hybrid model of FFT and MLP which will use the simplicity of FFT and use more

accurate performance of ensemble MLPs. The main concept of this last task is to

compare these two methods in the case of hardware and software.

To address the second research question, this study investigates physics-informed

machine learning methods to enhance traditional data-driven approaches. In Chapter

6, real-world data was augmented with physics-informed computational data. A

cantilever beam was subjected to a controlled vibration and then an unexpected

impact to generate the real-world dataset. A finite element analysis of the beam was

used to extract physics-informed features. This additional data enriched the machine

learning model with valuable insights into the beam’s physical behavior. The results

demonstrate that incorporating more physics-informed features into the real-world

data leads to improved model performance. Specifically, the RMSE and MAE (Root

Mean Squared Error and Mean Absolute Error) decrease, while the SNR and TRAC

(Signal-to-Noise Ratio and Time Response Assurance Criterion) increase.

117

While physics-informed features enhance performance, the scarcity of such data

in real-world applications remains a significant challenge. To address this issue, this

research utilizes transfer learning as presented in Chapter 7. A teacher model (cor-

rector model) is trained using both real-world and physics-informed data. Employing

an encoder-decoder architecture, the student model (estimator model) replaces the

teacher model’s encoder with a lightweight version. This transfer learning approach

allows the student model to predict time series data using only real-world data while

benefiting from the knowledge gained by the teacher model from the physics informed

data. The student model’s parameters are tuned based on the teacher model’s en-

coder, ensuring that it retains some of the physics-informed properties. The results

demonstrate that increasing the amount of physics-informed data used in the teacher

model leads to a more knowledgeable student model and significantly improved per-

formance in the lightweight estimator model.

In conclusion, this dissertation has made substantial contributions to the field

of temporal forecasting within structural health monitoring systems. By addressing

key challenges such as data generation, data model development, physics-based data

generation, physics data integration, data enhancement, and knowledge transfer for

lightweight model development, this research has advanced the state-of-the-art in

this domain. While the primary focus has been on structures subjected to non-

stationary inputs, the developed methodologies can be adapted to address stationary

structures as well. This work has laid a strong foundation for future research and

practical applications in structural health monitoring. Future studies may explore

the integration of other types of physics-informed features, the development of more

efficient data-driven models, and the application of these techniques to a wider range

of structural systems.

118

8.1 Publications

8.1.1 Publications During Ph.D. Program

1. Chowdhury, Puja, Philip Conrad, Jason D. Bakos, and Austin Downey. "Time

Series Forecasting for Structures Subjected to Nonstationary Inputs." In Smart

Materials, Adaptive Structures and Intelligent Systems, vol. 85499, p. V001T03A008.

American Society of Mechanical Engineers, 2021.[18]

2. Singh, Ishrat, Philip Conrad, Puja Chowdhury, Jason D. Bakos, and Austin

Downey. "Real-Time Forecasting of Vibrations with Non-stationarities." In Data

Science in Engineering, Volume 9: Proceedings of the 39th IMAC, A Conference

and Exposition on Structural Dynamics 2021, pp. 21-29. Springer International

Publishing, 2022. [60]

3. Chowdhury, Puja, Vahid Barzegar, Joud Satme, Austin RJ Downey, Simon

Laflamme, Jason D. Bakos, and Chao Hu. "Deterministic and low-latency

time-series forecasting of nonstationary signals." In Active and Passive Smart

Structures and Integrated Systems XVI, vol. 12043, pp. 466-472. SPIE, 2022.

[12]

4. Chowdhury, Puja, Joud Satme, Ryan Yount, Austin R.J. Downey, Mohammad

Sadik Khan, and Jasim Imran. “Spatial mapping of soil saturation levels using

UAV deployable smart penetrometers”. ASCE Geo-Institute 7th Annual Live

Streaming Web Conference, 2022[16].

5. Chowdhury, Puja, Austin RJ Downey, Jason D. Bakos, Simon Laflamme, and

Chao Hu. " Hardware implementation of nonstationary structural dynamics

forecasting." In Active and Passive Smart Structures and Integrated Systems

XVII, SPIE, 2023. [14]

119

6. Chowdhury, Puja, Joud N. Satme, Malichi Flemming, Austin R. J. Downey,

Mohamed Elkholy, Jasim Imran, and Mohammad Sadik Khan. " Stand-alone

geophone monitoring system for earthen levees." In Active and Passive Smart

Structures and Integrated Systems XVII, SPIE, 2023. [17]

7. Chowdhury, Puja, Joud N. Satme, Ryan Yount, Austin RJ Downey, Sadik Khan,

Jasim Imran, and Laura Micheli. "Classifying Soil Saturation Levels Using a

Network of UAV-Deployed Smart Penetrometers." In Smart Materials, Adaptive

Structures and Intelligent Systems, vol. 87523, p. V001T05A002. American

Society of Mechanical Engineers, 2023. [10]

8. Eleonora Maria Tronci, Austin R.J. Downey, Azin Mehrjoo, Puja Chowdhury,

and Daniel Coble. "Physics informed machine learning part I: Different strate-

gies to incorporate physics into engineering problems. In Conference Pro-

ceedings of the Society for Experimental Mechanics Series". Springer Nature

Switzerland, 2024 [65]

9. Austin R.J. Downey, Eleonora Maria Tronci, Puja Chowdhury, and Daniel

Coble. "Physics informed machine learning part II: Applications in structural

response forecasting". In Conference Proceedings of the Society for Experimen-

tal Mechanics Series. Springer Nature Switzerland, 2024.[26]

10. Chowdhury, P., Crews, J., Mokhtar, A., Oruganti, S. D. R., Van Wyk, R.,

Downey, A. R., Flemming, M., Bakos, J. D., Imran, J., Khan, S. "Distributed

real-time soil saturation assessment in levees using a network of wireless sensor

packages with conductivity probes". Proceedings of the ASME 2024 Interna-

tional Mechanical Engineering Congress and Exposition, IMECE2024-145950.

[13]

11. Nemnem, A.M., Chowdhury, P., Crews, C., Downey, A.R.J., Bakos, J., Khan,

120

M.S., Chaudhry, M.H., Imran, J. (2025). "Mapping Seepage Flow in Untreated

and Biopolymer-Treated Soils Using Wireless Sensing Spikes". Submitted to

the 2025 International Conference on Bio-mediated and Bio-inspired Geotech-

nics.[48]

8.1.2 Publications Before Ph.D. Program

1. Nahian, Syed Abu, Dinh Quang Truong, Puja Chowdhury, Debdatta Das, and

Kyoung Kwan Ahn. "Modeling and fault tolerant control of an electro-hydraulic

actuator." International Journal of Precision Engineering and Manufacturing 17,

no. 10 (2016): 1285-1297. [47]

2. Das, Debdatta, Puja Chowdhury, B. N. M. Truong, and Kyoung Kwan Ahn.

"A novel energy recuperation system for hybrid excavator using hybrid actua-

tor." In 2015 15th International conference on control, automation and systems

(ICCAS), pp. 1930-1935. IEEE, 2015. [22]

3. Chowdhury, Puja, Dabdatta Das, B. N. M. Truong, and Kyoung Kwan Anh.

"Research on energy regeneration and effect of dynamic characteristics of sec-

ondary control swing for hydraulic excavator system." In 2015 15th International

Conference on Control, Automation and Systems (ICCAS), pp. 1936-1940.

IEEE, 2015. [15]

4. Ahmmad, Syed Masrur, Puja Chowdhury, and Sajal Chandra Banik. "Design

and Experimental Analysis of a Lens Based Solar Collector." Journal of Thermal

Energy Systems 5, no. 1 (2020): 25-31.[1]

5. Das, Debdatta, Puja Chowdhury, Mohammad Wajih Alam, and SM Rifat

Iftekher. "An Application of Neural-Fuzzy Adaptive PID Controller a Direct

Dive Volume Control Hydraulic Press." In International conference on mechan-

ical engineering and renewable energy. 2015. [24]

121

6. Das, Debdatta, Puja Chowdhury, Mohammad Wajih Alam, SM Rifat Iftekher,

and J. U. Ahamed. "A Study on an Energy Saving Method of Boom Cylin-

der in Electro-Hydraulic Excavator." In International conference on mechanical

engineering and renewable energy. 2015[23]

7. Chowdhury, Puja, Debdatta Das, and S. C. Banik. "A Combination System

Model of Neural Network for Reducing Nonlinear Problem of a DC Servo Motor

System." In International conference on mechanical engineering and renewable

energy. 2015[9]

122

Bibliography

[1] Syed Masrur Ahmmad, Puja Chowdhury, and Sajal Chandra Banik. “Design
and Experimental Analysis of a Lens Based Solar Collector”. In: Journal of
Thermal Energy Systems 5.1 (2020), pp. 25–31.

[2] Samaneh Aminikhanghahi and Diane J Cook. “A survey of methods for time
series change point detection”. In: Knowledge and information systems 51.2
(2017), pp. 339–367.

[3] Peter Avitabile and Pawan Pingle. “Prediction of full field dynamic strain from
limited sets of measured data”. In: Shock and vibration 19.5 (2012), pp. 765–
785.

[4] Michele Berno et al. “A machine learning-based approach for advanced monitor-
ing of automated equipment for the entertainment industry”. In: 2021 IEEE In-
ternational Workshop on Metrology for Industry 4.0 & IoT (MetroInd4. 0&IoT).
IEEE. 2021, pp. 386–391.

[5] Peter J Brockwell, Richard A Davis, and Stephen E Fienberg. Time series:
theory and methods: theory and methods. Springer Science & Business Media,
1991.

[6] Peter J Brockwell et al. Introduction to time series and forecasting. Springer,
2016.

[7] Tianfeng Chai and Roland R Draxler. “Root mean square error (RMSE) or
mean absolute error (MAE)?–Arguments against avoiding RMSE in the litera-
ture”. In: Geoscientific model development 7.3 (2014), pp. 1247–1250.

[8] Andre Xian Ming Chang, Berin Martini, and Eugenio Culurciello. “Recur-
rent neural networks hardware implementation on FPGA”. In: arXiv preprint
arXiv:1511.05552 (2015).

[9] Puja Chowdhury, Debdatta Das, and SC Banik. “A COMBINATION SYSTEM
MODEL OF NEURAL NETWORK FOR REDUCING NONLINEAR PROB-
LEM OF A DC SERVO MOTOR SYSTEM”. In: ICMERE2015 (Nov. 2015).

123

[10] Puja Chowdhury et al. “Classifying Soil Saturation Levels Using a Network of
UAV-Deployed Smart Penetrometers”. In: Smart Materials, Adaptive Structures
and Intelligent Systems. Vol. 87523. American Society of Mechanical Engineers.
2023, V001T05A002.

[11] Puja Chowdhury et al. Dataset-4-Univariate-signal-with-non-stationarity. Apr.
2021. url: https://github.com/High-Rate-SHM-Working-Group/Dataset-
4-Univariate-signal-with-non-stationarity.

[12] Puja Chowdhury et al. “Deterministic and low-latency time-series forecasting of
nonstationary signals”. In: Active and Passive Smart Structures and Integrated
Systems XVI. Vol. 12043. SPIE. 2022, pp. 466–472.

[13] Puja Chowdhury et al. “Distributed Real-Time Soil Saturation Assessment
in Levees Using a Network of Wireless Sensor Packages with Conductivity
Probes”. In: Proceedings of the ASME 2024 International Mechanical Engineer-
ing Congress and Exposition. IMECE2024 IMECE2024-145950. ASME. Port-
land, OR, USA: American Society of Mechanical Engineers (ASME), Nov. 2024.

[14] Puja Chowdhury et al. “Hardware implementation of nonstationary structural
dynamics forecasting”. In: Active and Passive Smart Structures and Integrated
Systems XVII. Vol. 12483. SPIE. 2023, pp. 363–372.

[15] Puja Chowdhury et al. “Research on energy regeneration and effect of dynamic
characteristics of secondary control swing for hydraulic excavator system”. In:
2015 15th International Conference on Control, Automation and Systems (IC-
CAS). IEEE. 2015, pp. 1936–1940.

[16] Puja Chowdhury et al. “Spatial mapping of soil saturation levels using UAV
deployable smart penetrometers”. In: The Geo-Institute Unsaturated Soils Tech-
nical Committee. ASCE Geo-Institute 7th Annual Live Streaming Web Confer-
ence. 2022.

[17] Puja Chowdhury et al. “Stand-alone geophone monitoring system for earthen
levees”. In: Sensors and Smart Structures Technologies for Civil, Mechanical,
and Aerospace Systems 2023. Vol. 12486. SPIE. 2023, pp. 175–181.

[18] Puja Chowdhury et al. “Time series forecasting for structures subjected to
nonstationary inputs”. In: Smart Materials, Adaptive Structures and Intelli-
gent Systems. Vol. 85499. American Society of Mechanical Engineers. 2021,
V001T03A008.

[19] Tanmoy Chowdhury et al. “RAPTA: A hierarchical representation learning so-
lution for real-time prediction of path-based static timing analysis”. In: Pro-
ceedings of the Great Lakes Symposium on VLSI 2022. 2022, pp. 493–500.

124

https://github.com/High-Rate-SHM-Working-Group/Dataset-4-Univariate-signal-with-non-stationarity
https://github.com/High-Rate-SHM-Working-Group/Dataset-4-Univariate-signal-with-non-stationarity

[20] Jerome Connor and Simon Laflamme. Structural motion engineering. Springer,
2014.

[21] Thomas Daniel et al. “Data augmentation and feature selection for automatic
model recommendation in computational physics”. In: Mathematical and Com-
putational Applications 26.1 (2021), p. 17.

[22] Debdatta Das et al. “A novel energy recuperation system for hybrid excava-
tor using hybrid actuator”. In: 2015 15th International conference on control,
automation and systems (ICCAS). IEEE. 2015, pp. 1930–1935.

[23] Debdatta Das et al. “A Study on an Energy Saving Method of Boom Cylinder in
Electro-Hydraulic Excavator”. In: International conference on mechanical en-
gineering and renewable energy. ICMERE2015. Chittagong, Bangladesh, Nov.
2015.

[24] Debdatta Das et al. “An Application of Neural-Fuzzy Adaptive PID Controller
a Direct Dive Volume Control Hydraulic Press”. In: International conference
on mechanical engineering and renewable energy. ICMERE2015. Chittagong,
Bangladesh, Nov. 2015.

[25] Jacob Dodson et al. “High-Rate Structural Health Monitoring and Prognostics:
An Overview”. In: IMAC 39. Feb. 2021.

[26] Austin R.J. Downey et al. “Physics Informed Machine Learning Part II: Appli-
cations in Structural Response Forecasting”. In: Conference Proceedings of the
Society for Experimental Mechanics Series. Springer Nature Switzerland, 2024.

[27] Hassan Ismail Fawaz et al. “Transfer learning for time series classification”.
In: 2018 IEEE international conference on big data (Big Data). IEEE. 2018,
pp. 1367–1376.

[28] Kyle D Feuz and Diane J Cook. “Collegial activity learning between hetero-
geneous sensors”. In: Knowledge and information systems 53 (2017), pp. 337–
364.

[29] Yuyang Gao et al. “Modeling Health Stage Development of Patients With Dy-
namic Attributed Graphs in Online Health Communities”. In: IEEE Transac-
tions on Knowledge and Data Engineering 35.2 (2022), pp. 1831–1843.

[30] G GHinton, Oriol Vinyals, and Jeff Dean. “Distilling the knowledge in a neu-
ral network”. In: Proceedings of the NIPS Deep Learning and Representation
Learning Workshop, Montreal, QC, Canada. 2014, pp. 8–13.

125

[31] Alexander Gluhovsky and Ernest Agee. “On the analysis of atmospheric and
climatic time series”. In: Journal of applied meteorology and climatology 46.7
(2007), pp. 1125–1129.

[32] Yijin Guan et al. “FPGA-based accelerator for long short-term memory recur-
rent neural networks”. In: 2017 22nd Asia and South Pacific Design Automa-
tion Conference (ASP-DAC). IEEE. 2017, pp. 629–634. doi: 10.1109/ASPDAC.
2017.7858394.

[33] Tareq Al-Hababi et al. “A critical review of nonlinear damping identification in
structural dynamics: Methods, applications, and challenges”. In: Sensors 20.24
(2020), p. 7303.

[34] Qi-Qiao He, Patrick Cheong-Iao Pang, and Yain-Whar Si. “Transfer learning
for financial time series forecasting”. In: PRICAI 2019: Trends in Artificial
Intelligence: 16th Pacific Rim International Conference on Artificial Intelli-
gence, Cuvu, Yanuca Island, Fiji, August 26–30, 2019, Proceedings, Part II 16.
Springer. 2019, pp. 24–36.

[35] High-Rate-SHM-Working-Group. Dataset-4 Univariate signal with nonstation-
arity. https://github.com/High-Rate-SHM-Working-Group/Dataset-4-Univariate-
signal-with-non-stationarity. url: https://github.com/High- Rate- SHM-
Working-Group/Dataset-4-Univariate-signal-with-nonstationarity.

[36] Siu Lau Ho and Min Xie. “The use of ARIMA models for reliability forecasting
and analysis”. In: Computers & industrial engineering 35.1-2 (1998), pp. 213–
216.

[37] Jonathan Hong, Simon Laflamme, and Jacob Dodson. “Study of input space
for state estimation of high-rate dynamics”. In: Structural Control and Health
Monitoring 25.6 (2018), e2159.

[38] Jonathan Hong et al. “Introduction to State Estimation of High-Rate System
Dynamics”. In: Sensors 18.2 (Jan. 2018), p. 217. doi: 10.3390/s18010217.
url: https://doi.org/10.3390/s18010217.

[39] Fredrik D Johansson et al. “Generalization bounds and representation learning
for estimation of potential outcomes and causal effects”. In: The Journal of
Machine Learning Research 23.1 (2022), pp. 7489–7538.

[40] Andreas Kanavos et al. “Deep learning models for forecasting aviation demand
time series”. In: Neural Computing and Applications 33.23 (2021), pp. 16329–
16343.

126

https://doi.org/10.1109/ASPDAC.2017.7858394
https://doi.org/10.1109/ASPDAC.2017.7858394
https://github.com/High-Rate-SHM-Working-Group/Dataset-4-Univariate-signal-with-nonstationarity
https://github.com/High-Rate-SHM-Working-Group/Dataset-4-Univariate-signal-with-nonstationarity
https://doi.org/10.3390/s18010217
https://doi.org/10.3390/s18010217

[41] Steven M Kay and Stanley Lawrence Marple. “Spectrum analysis—a modern
perspective”. In: Proceedings of the IEEE 69.11 (1981), pp. 1380–1419.

[42] Günter Klambauer et al. “Self-normalizing neural networks”. In: Advances in
neural information processing systems 30 (2017).

[43] Wendi Liu and Michael J Pyrcz. “Physics-informed graph neural network for
spatial-temporal production forecasting”. In: Geoenergy Science and Engineer-
ing 223 (2023), p. 211486.

[44] Ryan Lowe, Jacob Dodson, and Jason Foley. “Microsecond prognostics and
health management”. In: IEEE Reliab. Soc. Newsl 60 (2014), pp. 1–5.

[45] Pooja Deepak Mane et al. “Comparative analysis of natural frequency for can-
tilever beam through analytical and software approach”. In: International Re-
search Journal of Engineering and Technology (IRJET) 5.2 (2018), pp. 656–
671.

[46] Razieh Nabi, Todd McNutt, and Ilya Shpitser. “Semiparametric causal suffi-
cient dimension reduction of multidimensional treatments”. In: Uncertainty in
Artificial Intelligence. PMLR. 2022, pp. 1445–1455.

[47] Syed Abu Nahian et al. “Modeling and fault tolerant control of an electro-
hydraulic actuator”. In: International Journal of Precision Engineering and
Manufacturing 17.10 (2016), pp. 1285–1297.

[48] Ayman Mokhtar Nemnem et al. “Mapping Seepage Flow in Untreated and
Biopolymer-Treated Soils Using Wireless Sensing Spikes”. In: 2025 Interna-
tional Conference on Bio-mediated and Bio-inspired Geotechnics. Submitted.
2025.

[49] Amos R Omondi and Jagath Chandana Rajapakse. FPGA implementations of
neural networks. Vol. 365. Springer, 2006.

[50] JS Owen et al. “The application of auto–regressive time series modelling for
the time–frequency analysis of civil engineering structures”. In: Engineering
Structures 23.5 (2001), pp. 521–536.

[51] Yi-Hui Pang et al. “Analysis and Prediction of Hydraulic Support Load Based
on Time Series Data Modeling”. In: Geofluids 2020 (2020).

[52] Adam Paszke et al. “Pytorch: An imperative style, high-performance deep learn-
ing library”. In: Advances in neural information processing systems 32 (2019).

127

[53] Gopal Rai. “Challenges in Structural Health Monitoring and Rehabilitation”.
In: ().

[54] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. “Physics-informed
neural networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations”. In: Journal of Com-
putational physics 378 (2019), pp. 686–707.

[55] Syamil Mohd Razak et al. “Embedding physical flow functions into deep learn-
ing predictive models for improved production forecasting”. In: Unconventional
Resources Technology Conference, 20–22 June 2022. Unconventional Resources
Technology Conference (URTeC). 2022, pp. 2098–2117.

[56] Manel Rhif et al. “Wavelet transform application for/in non-stationary time-
series analysis: a review”. In: Applied Sciences 9.7 (2019), p. 1345.

[57] Yan-Fang Sang et al. “The relation between periods’ identification and noises in
hydrologic series data”. In: Journal of Hydrology 368.1-4 (2009), pp. 165–177.

[58] Arjun Singh Saud and Subarna Shakya. “Analysis of look back period for stock
price prediction with RNN variants: A case study on banking sector of NEPSE”.
In: Procedia Computer Science 167 (2020), pp. 788–798.

[59] Pushan Sharma et al. “A Review of Physics-Informed Machine Learning in
Fluid Mechanics”. In: Energies 16.5 (2023), p. 2343.

[60] Ishrat Singh et al. “Real-Time Forecasting of Vibrations with Non-stationarities”.
In: Data Science in Engineering, Volume 9. Springer, 2022, pp. 21–29.

[61] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to sequence learning
with neural networks”. In: Advances in neural information processing systems
27 (2014).

[62] Jie Tao and Lina Zhou. “Can online consumer reviews signal restaurant clo-
sure: A deep learning-based time-series analysis”. In: IEEE Transactions on
Engineering Management (2020).

[63] Ahmed Tealab. “Time series forecasting using artificial neural networks method-
ologies: A systematic review”. In: Future Computing and Informatics Journal
3.2 (Dec. 2018), pp. 334–340. doi: 10.1016/j.fcij.2018.10.003.

[64] Adam Thelen et al. “A comprehensive review of digital twin—part 1: model-
ing and twinning enabling technologies”. In: Structural and Multidisciplinary
Optimization 65.12 (2022), p. 354.

128

https://doi.org/10.1016/j.fcij.2018.10.003

[65] Eleonora Maria Tronci et al. “Physics Informed Machine Learning Part I: Dif-
ferent Strategies to Incorporate Physics into Engineering Problems”. In: Con-
ference Proceedings of the Society for Experimental Mechanics Series. Springer
Nature Switzerland, 2024.

[66] Ziya Uddin et al. “Wavelets based physics informed neural networks to solve
non-linear differential equations”. In: Scientific Reports 13.1 (2023), p. 2882.

[67] K. Ueda and A. Umeda. “Dynamic response of strain gages up to 300 kHz”. In:
Experimental Mechanics 38.2 (June 1998), pp. 93–98. doi: 10.1007/bf02321650.

[68] Manuel Weber et al. “Transfer learning with time series data: a systematic
mapping study”. In: Ieee Access 9 (2021), pp. 165409–165432.

[69] Yuanqing Wu and Shuyu Sun. “Removing the performance bottleneck of pressure–
temperature flash calculations during both the online and offline stages by using
physics-informed neural networks”. In: Physics of Fluids 35.4 (2023).

[70] Bicheng Yan et al. “A physics-constrained deep learning model for simulat-
ing multiphase flow in 3D heterogeneous porous media”. In: Fuel 313 (2022),
p. 122693.

[71] Pei Yang YANG and Wei Gao. “Multi-view discriminant transfer learning”. In:
(2013).

[72] Xinyu Yi et al. “Physical inertial poser (pip): Physics-aware real-time human
motion tracking from sparse inertial sensors”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2022, pp. 13167–
13178.

[73] Dan Zhang et al. “Multi-view transfer learning with a large margin approach”.
In: Proceedings of the 17th ACM SIGKDD international conference on Knowl-
edge discovery and data mining. 2011, pp. 1208–1216.

[74] Tao Zhang, Shuyu Sun, and Hua Bai. “Thermodynamically-consistent flash cal-
culation in energy industry: From iterative schemes to a unified thermodynamics-
informed neural network”. In: International Journal of Energy Research 46.11
(2022), pp. 15332–15346.

[75] Fuzhen Zhuang et al. “A comprehensive survey on transfer learning”. In: Pro-
ceedings of the IEEE 109.1 (2020), pp. 43–76.

129

https://doi.org/10.1007/bf02321650

	Dedication
	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	Research Issues
	Contribution
	Dissertation Organization

	Data
	Non-stationary vibration data
	Single impact data

	FFT Based Time Series Forecasting for Structures Subjected to Nonstationary Inputs
	Background
	Methodology
	Results and Discussion
	Conclusion

	Hardware Implementation of Nonstationary Structural Dynamics Forecasting by FFT-based Prediction
	Background
	Methodology
	Results
	Conclusion

	Deterministic and low-latency time-series forecasting of nonstationary signals by Ensembled MLP
	Background
	Methodology
	Hardware Validation
	Results
	Conclusion

	Predicting Structural Responses in Impact Scenarios with Physics-Guided Machine Learning
	Background
	Data Generation
	Methodology
	Results and Discussion
	Conclusion

	Online Structural Responses Forecasting Using a Physics-informed Knowledge Transfer Mode
	Background
	Relevant Background
	Problem Statement
	Methodology
	Experimental Validation
	Results and Discussion
	Supplement document for different data
	Results and Discussion
	Conclusions
	Sequence Representation function §()
	Performance evaluation metrics

	Conclusions
	Publications

	Bibliography

