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ABSTRACT 
The use of sensor networks for structural health 

monitoring purposes has gained popularity due to advances in 
electronics enabling the deployment of cost-effective solutions. 
However, linking signal to condition evaluation is still a 
difficult task, and metrics must be developed to validate the 
performance of a given sensor network at conducting its as-
designed structural health monitoring task. In this paper, we 
present a model-assisted sensor network validation strategy. 
The strategy consists of constructing a physical surrogate 
model to perform numerical investigations of sensor network 
performance under uncertainty. The update of the physical 
surrogate provides spatiotemporal data enabling condition 
evaluation. A metric inspired by probability of detection theory 
is developed to quantify performance. We demonstrate the 
methodology to validate the performance of a novel strain-
based sensor network.  
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1. INTRODUCTION 

Structural health monitoring (SHM) is the automation of 
the structural integrity assessment task. Of interest to this paper 
are SHM strategies based on dense sensor networks (DSNs), 
which have recently been empowered through advances in 
smart materials and signal processing. However, linking 
monitoring data to decisions is not an easy task. The condition 
assessment capabilities highly depends on the quality of the 
integrated design of the SHM solution, which is hard to 
evaluate. 

Physical surrogate is a simplified representation of the 
monitored system that is constructed based on a given DSN 
configuration. The performance of the DSN is quantified using 
the probability of detection (POD) metric [1], which allows 
assessing the capability of a DSN to quantify damage in an 
uncertain environment. Originally developed for nondestructive 
evaluation applications, the concept of POD has been extended 
to SHM applications [2]. For instance, Kabban et al. [3] 

proposed a statistical method for analyzing dependent 
measurements and demonstrated the method on a representative 
aircraft structural component. Forsyth et al. [4] investigated 
how POD could be generated from multiple sets of repeated 
measurements. 

Work presented in this paper use the physical surrogate 
model to compute POD (or Model Assisted POD - MAPOD) 
based on user-defined detection requirements and algorithms. 
The application of interest is a strain-based DSN previously 
developed by the authors.  
 
2. METHODS 

In this section, we describe the DSN assessment 
framework, including the DSN of interest, the construction of 
the reference model and its adaptation, and the MAPOD 
process. 
2.1 Strain-based Dense Sensor Network 

In this work, the DSN of interest consists of a network of 
flexible electronics, termed soft elastomeric capacitors (SECs), 
proposed by the authors [5]. The SEC technology is a low-cost 
large area electronics suitable for strain sensing over large-scale 
surfaces. The sensing principle is:  
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    where 2λ≈ is the gauge factor, and xε and yε are the strains 
along the x and y planes, respectively.  

           

 
FIGURE 1: (a) picture of an SEC; and (b) SEC schematic with key 
components annotated. 
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2.2 Model Adaptation 
The reference model is sequentially updated from 

measurement inputs using sliding mode theory. Assume that the 
elements of the system’s stiffness matrix K are the only 
adjustable parameters, and consider respectively the real system 
and estimated systems:  
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The error between both systems can be written ˆ= −A A A , 
where the tilde denotes the estimation error. The estimation 
error matrix A can be written θ=A Q  , whereθ is the vector of 
adjustable parameters, and Q is the matrix containing the non-
adjustable parameters. Consider the sliding surface s : 

ds c
dt

 = + = 
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where ˆ= −e X X is the state error, P = [1, c] is a user-defined 
vector, and c is a strictly positive constant, and take the 
following Lyapunov function 
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    where Γθ is the positive definite diagonal matrix 
representing learning parameters. Function V is positive 
definite and contains all time-varying parameters. Taking its 
time derivative yields: 
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The first term in Equation 5 is negative semi-definite. The 
adaptation rule is selected such that 
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Using Equation 6 and noting that θ̂ θ θ θ= − =− 
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In the discrete time form, the varying parameter becomes: 
    Γ ˆΔ1

Ttsk k kθ θ θ= −+ PQX                          (8) 
 
2.3 Model Assisted Probability of Detection 

MAPOD is used to quantify the performance of a given 
DSN. The process starts by defining the uncertain model 
parameters as random variables with specific probability 
distributions. After, sensor measurements are linked to a 
damage indicator J through a user-defined damage discovery 

algorithm. The MAPOD process is conducted by constructing 
the plot where α is the damage severity by drawing the samples 
and using linear regression to plot the damage indicator versus 
the degree of damage 

ln ln0 1α̂ β β α= + +                               (9) 
    where coefficients 0β , 1β can be determined by a least 
squares estimator, and the  has a Normal distribution 

2(0, )σ  with zero mean and standard deviation σ . For a 
given thresholdα , the POD is computed as follows: 

log log0 1POD( ) (log( ) ) 1 ΦP α β β αα α α
σ

 − +
= > = −  

 
      (10) 

 
3. RESULTS AND DISCUSSION 

The DSN assessment framework is verified through 
numerical simulations of a cantilevered plate of length 276 mm, 
width 33 mm, and thickness 1 mm, illustrated in Figure 2, with 
an assigned Young’s modulus193 GPa, density 8027kg/m3, and 
Poisson’s ratio 0.3. 

The study starts with the plate virtually equipped with five 
SECs, and synthetic data were produced in MATLAB by 
discretizing the plate into 100 elements and subjecting a point 
load at the tip taken as the real or true system. A white noise 
excitation with a bandwidth of 100 Hz and magnitude of 20 N 
(Figure 2(b)) was used to produce synthetic measurements for 
the reference model verification stage, and a harmonic 
excitation of magnitude 10 N at 5 rad/s (Figure 2(c)) was used 
for the MAPOD-based DSN assessment. An arbitrary 20% 
Gaussian noise was added to the simulated measurements. 

 
FIGURE 2: (a) Virtual system under investigation; (b) white 

noise excitation; and (c) harmonic excitation. 
The proposed framework was verified by assessing the 

performance of the DSN configuration using MAPOD and 
subjecting the plate to a harmonic load at its tip. Two sources of 
uncertainties were considered including uncertainty on the 
input, where a Gaussian variation of 10% was added to its 
magnitude, and an uncertainty on the strain measurements, with 
the 20% added Gaussian noise. A total of 20 damage patterns 
were simulated by reducing the bending rigidity of the fixity to 
represent damage at the cantilever root. Damage cases were 
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generated by reducing the bending rigidity randomly between α 
= 0.02 and α = 0.4. Damage is considered “discovered” when 
the damage indicator J exceeds the threshold value 510J −= . The 
analysis conducted using 1000 realizations of synthetic data 
sets for each damage by Latin hypercube 
sampling.

 
FIGURE 3: (a) J vs. α; and (b) POD plot. 
 
Figure 3(a) is the J-α plots showing the simulated values, 

linear regression, 95% confidence bounds on the linear 
regression, and damage detection bound. Figure 3(b) is the 
resulting POD plot and the black curve represents the upper 
(conservative) 95% confidence bound of the linear regression. 
Results show that for the particular DSN configuration and 
damage detection algorithm, there is a 50% probability with 
95% confidence of detecting a change of bending rigidity 
greater than α50/95 = 0.081 at the cantilever’s root (bottom 
black dashed arrow), and a 90% probability with 95% 
confidence of detecting a change greater than α90/95 = 0.113 
(upper black dashed arrow). 

The DSN assessment procedure is repeated on different 
DSN configurations (six DSN scenarios: 5, 6, 7, 8, 9 and 10 
SECs) to demonstrate how the proposed framework can be 
leveraged in designing a DSN (Figure 4(a)). POD curves were 
generated using the same methodology as for the five SECs. 
Figure 4(b) reports the resulting POD surface plot for damage 
detection with a 95% confidence. Results in Figure 4(c) shows 
that, by increasing the resolution of the network, the 90% 
damage detection with 95% improves substantially from an 
11.3% change in bending rigidity using 5 SECs to a 3.1% 
change in rigidity using 10 SECs. 

 

 
FIGURE 4:(a) Different DSN configurations under 

investigation (5 SECs (left), 7 SECs (center), and 10 SECs (right)); 

and (b) 95% POD surface plots; and (c) 90%/95% damage detection 
under different DSN configurations 

 
4.  CONCLUSION 

This paper presented a preliminary investigation of a 
performance assessment framework for structural health 
monitoring solutions leveraging dense sensor networks (DSNs). 
The framework consists of constructing a physical surrogate 
model based on a given DSN configuration, sequentially 
adapting the model from field data using sliding mode theory, 
and using a model-assisted probability of detection (MAPOD) 
to assess the DSN’s capability at detecting user-defined damage 
cases of varying degrees of severity. 

A numerical study was conducted to verify and 
demonstrate the framework on a simple cantilevered plate 
equipped with a DSN measuring strain. Uncertainties 
considered in the model included uncertainties in the applied 
load and sensor noise. Results showed that MAPOD was 
capable of assessing the performance of the DSN at detecting 
damage at the root. Other DSN configurations were considered 
in the simulations, and the MAPOD-based assessment showed 
that it was possible to quantify the performance of each DSN 
configuration. Such results could be used to conduct a cost-
benefit analysis of the SHM system to select an optimal DSN 
resolution.  
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